CONESTOGA-ROVERS \& ASSOCIATES

MEMORANDUM

To:
FROM:

Scott Adamowski

Thomas Kinney/ Marie Mathé/50/Det.
C.C.:

RE: LNAPL Sampling Event
GMPT - Willow Run Facility
Ypsilanti, Michigan

Ref. No.: 17358-23
DATE: January 10, 2005

DRAFT
 PRIVILEGED AND CONFIDENTIAL

This memorandum summarizes the results of the light non-aqueus phase liquid (LNAPL) characterization study that was completed at General Motors Power Train (GMPT) Willow Run (Site) located in Ypsilanti, Michigan. The study was completed by CRA between January and March, 2004. This memorandum is presented in the following sections:

1.0 INTRODUCTION

2.0 LNAPL SAMPLING
3.0 RESULTS
4.1 RELEVANT CRITERIA/STANDARDS
4.2 ANALYTICAL RESULTS
4.3 LNAPL TYPE
4.4 LABORATORY VALIDATION
5.0 LNAPL THICKNESS OVER TIME

1.0 INTRODUCTION

USE DISCUSSION RE: KNOWN LNAPL PLUME FROM PROPOSAL/CHANGE ORDER number 5 23h Performance of Comprehensive LNAPL Characterization Study

Based on a recent finding of PCB's in a utility conduit, the apparent lack of characteristic data for the
LNAPL, and the ongoing design of LNAPL recovery systems, it was decided to complete a LNAPL characterization across the facility. For this effort, up to 20 wells will be sampled and analyzed for chemistry as well as physical characteristics to verify that current and future management of LNAPL is being performed in an acceptable manner.

Testing of the LNAPL will allow ENCORE to: 1) evaluate potential risks to human health and the environment, 2) evaluate the likely source(s) of the LNAPL, and 3) select the most appropriate treatment/disposal for the recovered LNAPL. Specifically, the tasks associated with this effort will be

Collect LNAPL samples from representative monitoring wells from throughout each LNAPL plume. LNAPL samples will be collected from up to 20 wells: ten wells in the Bay E-28/Bay K-35 Area LNAPL plume located beneath the center of the plant; eight wells in the ATF/Subtest/Chip House Area LNAPL plume located at the eastern edge of the plant; and one well from the Dyno Area LNAPL plume located near the northwestern portion of the plant.

The LNAPL samples will be analyzed for VOCs, SVOCs, TAL Inorganics, and PCBs. The LNAPL samples will also be tested for fingerprinting analyses.

Complete a memorandum summarizing the results. The memorandum will include a sample location map and tabulated laboratory results.

> The tasks will be carried out in accordance with all LLC Consultant and ENCORE/General Motors WFG and GMPTG (Willow Run) safety protocols with the goal of no lost time injuries during work on site. The numbered tasks constitute the WBS as shown on the ENCORE tracking form.

2.0

LNAPL SAMPLING

On January 20, 2004, LNAPL samples were collected from monitoring and recovery wells CRA-013R, CRA-041R, CRA-075M, CRA-080M, CRA-086M, CRA-096M, CRA-102M, CRA-111R, CRA-202M, CRA-210M-B, CRA-229M, CRA-241M, CRA-244R and CRA-408M-S. Due to slow recharge and small quantities of LNAPL recovered CRA-408M, CRA-075M and CRA-096M were sampled daily from January 20 to 23, 2004. On March 30 and 31, 2004 samples were collected from CRA-215M-B, CRA-002R-B, CRA202M, CRA-003R, CRA-235R-B, CRA-001M, CRA-004M, CRA-005R-A, CRA-006R-B, CRA-025R, CRA-111R, CRA-092M, CRA-086M-B, CRA-080M, CRA-015R, CRA-016R, CRA-301M, CRA-300M, CRA-012R-B and CRA-138M. Sample locations are shown on Figure 1.

The static water and product levels were measured and recorded for the wells intended for sampling. Well caps were unlocked and removed allowing the liquid levels in the wells to stabilize. Static liquid levels were measured using an oil/water interface meter, from the top of each riser. Recorded static levels are presented in Table 1. Figure 2 shows a LNAPL thickness contour map.

A 2-inch polyethylene disposable bailer, dedicated to each location, was used to collect LNAPL samples. A $3 / 4$-inch polyethylene disposable bailer was used to collect LNAPL from CRA-408M.

Samples were collected in laboratory-supplied containers, labeled, packed on ice and shipped under chain of custody (COC) protocol. Collected LNAPL on January 20, 2004 was analyzed for target compound list (TCL) volatile organic carbons (VOCs), TCL semi-volatile organic carbons (SVOCs), total analyte list (TAL) Metals, TCL polychlorinated biphenyls (PCBs), Flash Point, Viscosity, Molecular Weight, Specific Gravity and a hydrocarbon fuel scan and samples collected on March 30 and 31, 2004 were analyzed for TCL PCBs. The samples were sent to Severn-Trent Laboratories in North Canton, Ohio, to be analyzed within a standard two-week time frame. Unique sample identifications were assigned to each collected sample and are presented in Table 2, attached with this memorandum. Duplicate samples were collected at CRA-111R and CRA-202M.

Once sampling was completed all PPE and garbage was disposed of on Site. All wells were sealed and locked when possible.

3.0 RESULTS

The analytical results that exceed TSCA or RCRA criteria are presented on Figure 3. The PCB results and PCB concentration contour lines are shown on Figure 4. A summary of analytical results is presented in Table 3. The laboratory analytical results are presented in Appendix A.

4.1 RELEVANT CRITERIA/STANDARDS

[note from TK for editing purposes: re-write (V8)]
Analytical results were evaluated against cleanup criteria established in Part 7 of administrative rules promulgated December 13, 2002, pursuant to Part 201, Environmental Remediation, 1994 PA 451 as amended. Part 213 Operational Memorandum 4 "Tier 1 Lookup Tables for Risk-Based Corrective Action at Leaking Underground Storage Tank Sites" were revised on December 21, 2002 and are the same as Part 201 Criteria.

The relevant criteria for the Site are based on review of the exposure pathway guide sheets presented in the "DEQ Training Material for Part 201, Cleanup Criteria", with consideration given to Site-specific conditions. The following are relevant and applicable Part 201 Generic Industrial-Commercial II, III and IV Criteria (Ind/Comm) for the Site based on current and future potentially complete exposure pathways, and are used for comparison purposes only:

- TSCA; and
- RCRA.

4.2 \quad ANALYTICAL RESULTS

CRA-013R, CRA-075M, CRA-096M, CRA-102M, CRA-202M, CRA-241M, CRA-244R and CRA-408M-S exceeded the Maximum Concentration for Toxicity Characteristics for lead concentrations.

CRA-080M and CRA-086M exceeded the Maximum Concentration for Toxicity Characteristics for Arsenic concentrations.

CRA-202M exceeded the Maximum Concentration for Toxicity Characteristics for Barium concentrations.
CRA-408M-S exceeded the Maximum Concentration for Toxicity Characteristics for 1,2-Dichloroethane and Benzene concentrations.

$4.3 \quad$ LNAPL TYPE

Petroleum distillate is the predominant estimated oil type, based on carbon range and molecular weight. Physical parameters for LNAPL are presented in Table 4.

4.4

LABORATORY VALIDATION

Insert reference to validation memos (48 and 57) and attach validation memo as appendices.

5.0 LNAPL THICKNESS OVER TIME

Significant increases in NAPL thicknesses of between 0.05 and 0.5 feet were observed in monitoring and recovery wells from winter 2001 to March 2004. Other wells showed less significant increases of less than 0.05 feet over the same period of time. Figure 2 highlights these locations. Tables 5 and 6 show the locations where an increase in NAPL thickness occurred over time and Figures 5 and 6 show graphically the NAPL thickness over time for these locations.

DRAFT
PRIVILEGED AND CONFIDENTIAL
PREPARED AT THE REQUEST OF COUNS

LNAPL PLUME
PCB CONCENTRATIONS

Cha conestoga-rovers \& associates

${ }_{\text {¢ }}$	${ }_{\text {cke }}$	${ }^{\text {Daiea }}$ Apmun 2004	
	Popean		
${ }^{\text {a }}$ a 50	17358-23	MEMOO50	figure 4.

LNALP THICKNESS OVER TIME LESS THEN 0.5 FEET GMPT WILLOW RUN SITE YPSILANTI, MICHIGAN

LNAPL THICKNESS OVER TIME GREATER THEN 1.0 FEET GMPT WILLOW RUN SITE YPSILANTI, MICHIGAN

DRAFT
PRIVILEGED AND CONFIDENTIAL PREPARED AT THE REQUEST OF COUNSEL
TABLE 1
Page 1 of 2 LNAPL THICKNESS
JANUARY 20, 2004
GENERAL MOTORS CORPORATION
GMPT - WILLOW RUN YPSILANTI, MICHIGAN

Well Location	Date	Depth to Water (ft below top of riser)	Depth to LNAPL (ft below top of riser)	LNAPL Thickness (feet)
CRA-202M	1/20/2004	6.00	5.41	0.59
CRA-210M	1/20/2004	5.81	5.10	0.71
CRA-119R	1/20/2004	5.92	5.85	0.07
CRA-111R	1/20/2004	7.70	6.79	0.91
CRA-041R	1/20/2004	7.76	6.23	1.53
CRA-236M	1/20/2004	8.30	---	
CRA-096M	1/20/2004	8.40	8.16	0.24
CRA-086M	1/20/2004	8.99	7.58	1.41
CRA-102M	1/20/2004	8.06	9.00	0.94
CRA-013R	1/20/2004	9.05	7.86	1.19
CRA-241M	1/20/2004	8.32	7.48	0.84
CRA-075M	1/20/2004	7.27	6.84	0.43
CRA-408M	1/20/2004	8.17	7.45	0.72
CRA-020R	1/20/2004	10.62	10.61	0.01
CRA-301M	1/20/2004	7.13	6.72	0.41
CRA-080M	1/20/2004	8.43	6.65	1.78
CRA-229M	1/20/2004	8.06	6.15	1.91
CRA-134M	1/20/2004	6.47	6.45	0.02
CRA-120M	1/20/2004	6.07	5.88	0.19
CRA-244R	1/20/2004	12.75	9.66	3.09
CRA-094M	3/31/2004	7.66		
CRA-095M	3/31/2004	8.23		
CRA-092M	3/31/2004	8.78	8.47	0.31
CRA-086M-B	3/31/2004	9.14	7.7	1.44
CRA-097M	3/31/2004	8.1	8.02	0.08
CRA-236M	3/31/2004	8.38		
CRA-107M	3/31/2004	9.52		
CRA-079M	3/31/2004	8.75	6.99	1.76
CRA-017R	3/31/2004	9.695	9.69	0.01
CRA-015R	3/31/2004	7.85	7.38	0.47
CRA-016R	3/31/2004	8.25	7.32	0.93
CRA-301M	3/31/2004	7.22	6.95	0.27
CRA-300M	3/31/2004	8.68	6.9	1.78
CRA-027R	3/31/2004	6.23	6.14	0.09
CRA-010R	3/31/2004	9.8	9.75	0.05
CRA-012RB	3/31/2004	8.6	8.1	0.50
CRA-138M	3/31/2004	10.21	9.83	0.38

TABLE 1
Page 2 of 2
LNAPL THICKNESS
JANUARY 20, 2004
GENERAL MOTORS CORPORATION
GMPT - WILLOW RUN YPSILANTI, MICHIGAN

Well Location	Date	Depth to Water (ft below top of riser)	Depth to LNAPL (ft below top of riser)	LNAPL Thickness (feet)
CRA-106M	$3 / 31 / 2004$	8.18		
CRA-124M	$3 / 31 / 2004$	6.52		
CRA-006RB	$3 / 30 / 2004$	7.13	5.91	1.22
CRA-116R	$3 / 30 / 2004$	6.28	6.17	0.11
CRA-025R	$3 / 30 / 2004$	6.63	6.28	0.35
CRA-111R	$3 / 30 / 2004$	7.31	6.82	0.49
CRA-026R	$3 / 30 / 2004$	6.12	6.05	0.07
CRA-119R	$3 / 30 / 2004$			
CRA-215M-B	$3 / 30 / 2004$	6.58	6.15	0.43
CRA-002RB	$3 / 30 / 2004$	7.33	5.17	2.16
CRA-202M	$3 / 30 / 2004$	7.71	5.58	2.13
CRA-003RB	$3 / 30 / 2004$	6.26	5.15	1.11
CRA-235RB	$3 / 30 / 2004$	5.88	5.17	0.71
CRA-001M	$3 / 30 / 2004$	7.44	5.38	2.06
CRA-004M	$3 / 30 / 2004$	5.93	5.62	0.31
CRA-005RA	$3 / 30 / 2004$	5.81	5.4	0.41

JANUARY 20, MARCH 30 AND MARCH 31, 2004 NAPL SAMPLING EVENT GENERAL MOTORS CORPORATION GMPT - WILLOW RUN YPSILANTI, MICHIGAN

Sample Location
QA/QC
CRA-202M

CRA-210M-B

CRA-111R

CRA-111R
duplicate

CRA-41R

CRA-96M

CRA-86M

CRA-13R

CRA-241M

CRA-75M

CRA-80M

CRA-408M

CRA-229M

> Sample

Identification
O-17358-012004-MM-512
$835 \quad 1 / 20 / 2004$

1/20/2004
930 1/20/2004
1015 1/20/2004

1/20/2004
1055

1/20/2004

O-17358-012004-MM-524

O-17358-012004-MM-525

VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT, VISCOSITY, SPECIFIC GRAVITY HYDROCARBON FUEL SCAN
VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT, VISCOSITY, SPECIFIC GRAVITY

HYDROCARBON FUEL SCAN
VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT, VISCOSITY, SPECIFIC GRAVITY, HYDROCARBON FUEL SCAN
VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT, VISCOSITY, SPECIFIC GRAVITY, HYDROCARBON FUEL SCAN
VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT, VISCOSITY, SPECIFIC GRAVITY HYDROCARBON FUEL SCAN
VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT, VISCOSITY, SPECIFIC GRAVITY
HYDROCARBON FUEL SCAN
VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT, VISCOSITY, SPECIFIC GRAVITY, HYDROCARBON FUEL SCAN
VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT, VISCOSITY, SPECIFIC GRAVITY HYDROCARBON FUEL SCAN
VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT VISCOSITY, SPECIFIC GRAVITY, HYDROCARBON FUEL SCAN
VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT, VISCOSITY, SPECIFIC GRAVITY
HYDROCARBON FUEL SCAN
VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT VISCOSITY, SPECIFIC GRAVITY, HYDROCARBON FUEL SCAN
VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT VISCOSITY, SPECIFIC GRAVITY
HYDROCARBON FUEL SCAN
VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT VISCOSITY, SPECIFIC GRAVITY, HYDROCARBON FUEL SCAN
VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT VISCOSITY, SPECIFIC GRAVITY,

HYDROCARBON FUEL SCAN

TABLE 2 SAMPLE KEY

PRIVILEGED AND CONFIDENTIAL PREPARED AT THE REQUEST OF COUNSEL

JANUARY 20, MARCH 30 AND MARCH 31, 2004 NAPL SAMPLING EVENT
 GENERAL MOTORS CORPORATION
 GMPT - WILLOW RUN
 YPSILANTI, MICHIGAN

Sample Location QA/QC
CRA-244R

CRA-215M-B

CRA-002R-B

CRA-202M

CRA-202M duplicate

CRA-003R-B

CRA-235R-B

CRA-001M

CRA-004M

CRA-005R-A

CRA-006R-B

CRA-025R

CRA-111R

CRA-092M

VOCs, SVOCs, SELECT TAL METALs, PCBs, FLASH POINT VISCOSITY, SPECIFIC GRAVITY, HYDROCARBON FUEL SCAN
PCBs

TABLE 2

Time	Date	Sample Identification	Sample Location	QA/QC	Analysis
939	$3 / 31 / 2004$	O-17358-033104-MM-553	CRA-086M-B	MS/MSD	
1043	$3 / 31 / 2004$	O-17358-033104-MM-554	CRA-079M		PCBs
1150	$3 / 31 / 2004$	O-17358-033104-MM-557	CRA-301M	PCBs	PCBs
1152	$3 / 31 / 2004$	O-17358-033104-MM-558	CRA-300M	PCBs	
1440	$3 / 31 / 2004$	O-17358-033104-MM-559	CRA-012R-B	PCBs	
1508	$3 / 31 / 2004$	O-17358-033104-MM-560	CRA-138M	PCBs	

PREPARED AT THE REQUEST OF COUNSEL
\qquad
Collected samples were sent to STL North Canton, Ohio to be analyzed within a standard two week time-frame under chain-of-custody (COC) protocol.

MS/MSD - Matrix Spike/ Matrix Spike Duplicate
QA/QC - Quality Assurance/ Quality Control
VOC - Volatile Organic Compound

voc (makks																	
隹	-	-	${ }^{1330} 4$	${ }_{77}^{1300}$	$\underset{\text { id }}{\text { ID }}$	${ }_{1}^{1300}$	-	-	-	\cdots	-	\cdots	-		-	-	-
1,1,2-Triehlocorethane	-	-	21	110		ID	-	-	-	-	-	-	-	ND(1.4)	-	-	-
${ }^{1,- \text {-icichoroethane }}$	-	-	240	2300	${ }^{380}$	${ }^{\text {D }}$	-	-	-	-	-	-	-	${ }^{\text {NDP(1.4) }}$	-	-	-
${ }_{\text {l }}^{\text {l }}$	$\stackrel{0.7}{ }$	\cdots	${ }_{11}^{11}$	- ${ }_{3}^{13}$	97	(140	-	-	-	-	-	\cdots	\cdots	N0.4.4)	-	-	-
	-	-	${ }_{0}{ }^{19} 9$	${ }_{12}$		${ }_{\text {ID }}$	-	-	-	-	-	\cdots	-	ND(27)	\cdots	-	-
12.-Dibromethane (Etylyene Dibromide)	-	-	0.25	${ }^{15}$	ID	${ }^{10}$	-	-	-	-	-	-	-	${ }^{\text {ND(1.4) }}$	-	-	-
${ }^{\text {12, }}$ 12.2idiolorobenene	$\stackrel{-}{0}$	\cdots	160 19 19	160 59 59	2500	$\underset{\substack{160 \\ 10}}{10}$	-	-	\cdots	\cdots	\cdots	\cdots	\cdots		\cdots	-	\cdots
12,Didithorppopane	-	-	16	36	${ }_{50}$	2800	-	-	-	-	-	-	-	ND(1.4)	-	-	-
1,3-Dididloroberene	-	-	2	ID	${ }^{\text {D }}$	${ }^{\text {I }}$	-	-	-	-	-	-	-	ND(27)	-	-	-
	7.5 200.	-	- ${ }_{\text {24000 }}^{6.4}$	-	ID	ID ${ }^{\text {Ifono }}$	-	-	-	-	-	\cdots	-	${ }_{\text {ND }}$	-	-	-
		-	5200	8700		${ }^{10}$	-	-	-	-	-	-	-	ND(5])	-	-	-
	-	-	$\xrightarrow[\substack{1300 \\ \text { 3inoo }}]{ }$		$\underset{\substack{11000 \\ 150}}{ }$	${ }_{\text {2000 }}^{20000}$	-	-	-	\cdots	-	\cdots	\cdots		\cdots	-	-
Benene	0.5	-	11	${ }_{3}$	${ }_{68}$	67	-	-	-	-	-	-	-	No(14)	-	-	-
Bromodichlorometane	-	-	14	${ }^{37}$	ID	${ }^{10}$	-	-	-	-	-	-	-	ND(1.4)	-	-	-
	-	-	140 70 70	$\stackrel{3}{3100}$	$\underset{\text { id }}{\text { ID }}$	${ }_{\text {ID }}^{\text {ID }}$	-	-	-	-	-	\cdots	\cdots		\cdots	-	-
Carbon disulfide	\square	-	${ }^{1200}$	${ }^{550}$	${ }^{13}$	${ }_{10}$	-	-	-	-	-	-	-	${ }^{\text {ND(1.4) }}$	-	-	-
Chars	100.0	-	${ }_{86}^{46}$	${ }_{47}^{29}$	${ }_{160}$	${ }_{\text {in }}$	-	-	-	-	-	-	-	Nol(1.4)	-	-	-
	$\overline{6}$	\cdots	$\underset{\substack{400 \\ 150}}{\substack{4 \\ \hline}}$		$\underset{\substack{110 \\ 10}}{10}$		-	\cdots	-	\cdots	\cdots	\cdots	\cdots	(ipler	$=$	$=$	-
Chlormethane Meltyl Chorite)	\cdots	-	${ }_{490}$	${ }_{45}$	${ }_{36}$	210	-	-	-	-	-	-	-	ND(27)	-	-	-
	=	-	${ }^{200}$	$\stackrel{210}{-1}$	${ }^{330}$	${ }^{\text {D }}$	-	-	-	-	-	\cdots	\cdots		$=$	$=$	=
Di.iromochloromethane	-	-	${ }^{18}$	${ }^{110}$	${ }^{\text {ID }}$	${ }^{10}$	-	-	-	-	-	-	-	ND(1.4)	-	-	-
	-	-	(300	cois	${ }_{43}^{10}$	${ }_{170}^{110}$	-	-	-	-	-	\cdots	\cdots	${ }_{\substack{\text { NDO } \\ 0.25)}}$	-	-	-
Sspopopylenenere	-	-	${ }_{6}$	${ }_{56}$	${ }^{29}$	id	-	-	-	-	-	-	-	ND(27)	-	-	-
Methy aceate	-	-	-	-	-	-	-	-	-	-	-	\cdots	\cdots		-	-	-
Metay Teet Buyl Pher	-	-	${ }^{610}$	47000	${ }^{\text {id }}$	${ }^{\text {I }}$	-	-	-	-	-	-	-	ND(57)	-	-	-
Styene	-	-	200 97	120	${ }_{140}$	${ }_{310}$	-	-	-	-	-	\cdots	\cdots	ND(1.4)	=	-	-
Tetachlorethere	${ }_{0} 0$.	\cdots		(170	${ }_{\substack{\text { I } \\ 61}}^{\text {c }}$	\pm	-	-	-	\cdots	$=$	\cdots	\cdots	$\xrightarrow{\text { Not.4) }}$	$=$	$=$	$=$
	$\stackrel{\square}{-}$	\because	120 200 20	(en	$\begin{array}{r}10 \\ 230 \\ \hline 10\end{array}$	$cID ID Ine$	\because	\because	\because	\because	\because	\cdots	\cdots	(0.0.0	\because	\because	\because
	$\stackrel{0.5}{-8}$	\cdots	22 1100 1	¢97	$\underset{\substack{\text { ID } \\ \text { id }}}{ }$	1100 1100	-	-	-	\cdots	-	\cdots	\cdots		-	-	-
Trifluortichloreethane (Freon 113$)$	-	-	${ }^{170}$	170	ID	${ }^{170}$	-	-	-	-	-	-	-	ND(5])	$=$	$=$	-
Vinyl choride	$\stackrel{0.2}{-}$	\cdots	190 190	13 190	${ }_{70}^{38}$	${ }_{190}^{10}$	-	\cdots	-	\cdots	\cdots	\cdots	\cdots	${ }_{\substack{\text { ND, } \\ 0.95]}}$	-	\#-	\because
cis.13,-․i.ihloropopene	-	-	-	-	-	-	-	-	-	-	-	-	-	${ }^{\text {ND(}}$ (4)	-	-	-
	-	-	${ }_{5,5}$	$\frac{16}{26}$	130	-10	-	-	-	-	-	-	-	$\stackrel{\text { Nol }}{ }$	-	-	-

sVoc magke														
	400.0	-	${ }_{10}^{10}$	${ }_{\text {NLV }}$	ID	ID	-	-	-	-	-	-	-	
2 24Diditlorophenal	0.13	-	${ }_{48}$	NLV	${ }_{\text {ID }}$	${ }^{1}$	-	-	-	-	-	-	-	ND(ta)
	-	-	520	NLV	${ }^{10}$	${ }^{10}$	-	-	-	-	-	-	-	ND(400)
	-	\cdots	$\stackrel{-6}{8 .}$	$\stackrel{\text { NLV }}{ }$	ID	iv	\cdots	-	\cdots	\cdots	-	\cdots	\cdots	ND(ta0) ND(ta0)
2.6-Dinitroollene	-	-	-	-	-	-	-	-	-	-	-	-	-	ND(ta)
2 2.choronppphalene	-	-	${ }_{6} 7$	ID	ID	id	-	-	-	-	-	-	-	ND(40)
${ }^{2}$ 2.Chlorophenol	-	-	${ }^{94}$	ID	${ }^{\text {ID }}$	${ }^{\text {ID }}$	-	-	-	-	-	-	-	${ }^{\text {ND } 4000}$
	$\stackrel{\square}{200}$	\cdots	${ }_{80}^{25}$	${ }_{\text {ID }}^{\text {IV }}$	${ }^{\text {ID }}$	${ }_{\text {ID }}^{\text {ID }}$	\cdots	-	-	-	-	-	-	ND(ta) ND(too)
${ }^{2}$ 2-Nitrononinine	$\stackrel{20.0}{-}$	\cdots	\bigcirc	\cdots	-	\cdots	\cdots	-	-	-	-	\cdots	-	ND(1900)
2-Nitiophenol	-	-	79	NLV	ID	${ }^{10}$	-	-	-	-	-	-	-	nd(40)
	-	\square	0.18	NLV	${ }^{\text {ID }}$	${ }^{\text {D }}$	\cdots	-	-	-	$=$	\cdots	-	ND(190)
	\cdots	\cdots	$\stackrel{9}{9.5}$	NLV	-10	$\stackrel{-10}{10}$	\cdots	\cdots	\cdots	\cdots	-	\cdots	\cdots	NDD(190) N(100)
${ }_{4}^{4 \text { Bromopheny phenyl eher }}$	-	\square	79	$\stackrel{-}{\text { Nuv }}$	-	-	\cdots	-	-	-	$=$	\cdots	-	$\substack{\text { ND(fa) } \\ \text { NDTOOO }}$
	-	\cdots	$\stackrel{-}{-}$	Niv	${ }_{-}$	$\stackrel{1}{-}$	\cdots	\because	\cdots	\cdots	$=$	\cdots	\cdots	ND(taO)
	20.0	-	$\stackrel{-10}{810}$	$\stackrel{-}{\text { NLV }}$	-	$\stackrel{-1}{10}$	-	-	-	-	-	-	-	
4 ANitroniline	\cdots	-	$-$	-	-	-	--	-	-	-	-	-	-	ND(1900)
4 4Nitiophenal	-	-	-	$\overline{4}$	-	-	\cdots	-	-	-	$=$	-	-	
	\cdots	\cdots	${ }_{39}^{42}$	${ }_{3,9}^{4.9}$	${ }_{\text {ID }}$	${ }_{\text {ID }}^{\text {ID }}$	-	-	\cdots	\cdots	-	-	-	ND(A0)
Acetophenone	-	-	${ }^{6100}$	${ }^{6100}$	ID	${ }_{\text {ID }}$	-	-	-	-	-	-	-	ND(40)
${ }_{\text {Antracene }}^{\text {Antare }}$	-	-	${ }_{0}^{0.043}$	a,043 NLV	(10)	${ }_{\text {ID }}^{\text {ID }}$	\cdots	\cdots	\cdots	-	-	\cdots	\cdots	ND(40) ND(ta)
Berazadehyde	\cdots	\cdots	\cdots	-	-	-	\cdots	-	\cdots	\cdots	$=$	\cdots	\cdots	ND(f0)
	-	\cdots	0.002	NLV	${ }_{\text {ID }}$	${ }_{10}$	-	-	-	-	-	-	-	ND(ta0)
	-	-	0	$\stackrel{\text { ID }}{\text { NLV }}$	${ }_{\text {I }}^{\text {ID }}$	${ }_{\text {ID }}^{\text {ID }}$	-	-	-	-	-	-	-	$\xrightarrow{\text { NDP(ta) }}$ ND(ta0)
Berookfluorantere	-	-	0.005	NLV	ID	id	-	-	-	-	-	-	-	ND(40)
	-	-	-	-	-	-	\cdots	-	\cdots	-	-	\cdots	\cdots	
bisech Chooeetyly eher	-	-	57	${ }^{210}$	17000	17000	-	-	-	-	-	-	-	ND(ta0)
	-	\cdots		${ }_{\text {NLV }}$	ID		\cdots	-	-	-	-	-	-	${ }_{\text {NDPa }}^{\text {NDP(40) }}$
${ }_{\text {Caprolactam }}$	-	-	38000	${ }^{\text {NLV }}$	-	1000000	-	-	-	-	-	-	-	ND(40)
Carasene	-	-	${ }_{0}$	${ }_{\text {ID }}$	${ }_{\text {ID }}$	${ }_{\text {ID }}$	\cdots	-	-	-	-	-	-	ND(A)O
Diberza, hanntracene	-	-	0.002	${ }^{\text {NLV }}$	${ }_{\text {ID }}^{\text {ID }}$	${ }_{\text {ID }}$	\cdots	-	\cdots	-	$=$	\cdots	-	(ivtal
	-	\cdots	${ }_{100}^{100}$	${ }_{\text {NIV }}$		${ }_{\text {ID }}^{\text {ID }}$	\cdots	-	\cdots	-	-	\cdots	\cdots	ND(tal)
	-	\cdots	${ }_{4}^{4200}$	${ }_{\text {NLV }}^{\text {NLV }}$		${ }_{\text {I }}^{\text {ID }}$	\cdots	-	\cdots	\cdots	-	-	-	ND(40) NDta0)
Din-moxty phtalate	-	-	0.4	NLV	ID	ID	-	-	-	-	-	-	-	ND(40)
	-	\cdots	${ }_{2}^{0.21}$	$\stackrel{0.21}{2}$	$\underset{\text { ID }}{\text { ID }}$	${ }_{\text {ID }}^{\text {ID }}$	\cdots	\cdots	-	-	$=$	\cdots	-	$\xrightarrow{\text { NDP(ta) }}$ Notat
Hexachlorobenere	0.13	-	0.0046	3	${ }^{\text {ID }}$	id	-	-	-	-	-	-	-	ND(40)
Hexeachoroutadiene	$\stackrel{0.5}{-8}$	-	0.4 1.6	3.2 0.42	${ }_{\text {I }}^{\text {ID }}$	${ }_{\text {ID }}^{\text {ID }}$	-	-	-	-	-	-	-	
Hexachloreethane	${ }^{3} .0$	-	1.9	${ }^{50}$	${ }^{\text {ID }}$	${ }^{\text {D }}$	-	-	-	-	-	-	-	nd(40)
	-	-	(0.022	${ }_{\text {NLV }}$		1000 12000	-	-	-	-	-	-	-	ND(ta)
Naphthalene	-	-	${ }^{31}$	${ }_{3}^{31}$		${ }^{31}$	-	-	-	-	-	-	-	${ }^{\text {ND } 4000}$

	CRA-41R	CRA-73M	CRA-73M	CRA-099	CRA-S80M	CRA. gha $^{\text {B }}$	CRA-S8G	CRA-O2M	CRA-O6M	CRA-O6M	CRA-066	cration	111	cRA-111	${ }_{\text {crat-111 }}$	${ }_{\text {ckA } 123}$
	$\begin{gathered} O-17358-012004-M M-516 \\ 1 / 20 / 2004 \end{gathered}$			$\begin{gathered} \text { O-17358-033104-MM-554 } \\ 3 / 31 / 2004 \end{gathered}$	$\begin{gathered} O-17358-012004-M M-523 \\ 1 / 20 / 2004 \end{gathered}$	$\begin{gathered} O-17358-012004-M M-518 \\ 1 / 20 / 2004 \end{gathered}$		$\begin{gathered} O-17358-033104-M M-552 \\ 3 / 31 / 2004 \end{gathered}$	$\begin{gathered} O-17358-012004-M M-516 \\ 1 / 20 / 2004 \end{gathered}$	$\underset{\substack{0.17355-012020-W M-517 \\ 12020004}}{ }$	$\begin{gathered} O-17358-012204-M M-517 \\ 1 / 22 / 2004 \end{gathered}$	$\begin{gathered} \text { O-17358-012004-MM-519 } \\ 1 / 20 / 2004 \end{gathered}$	O-17358-012004-MM-514 1/20/2004		$\begin{gathered} O-17358-033004-M M-551 \\ 3 / 30 / 2004 \end{gathered}$	
voc maske																
	${ }_{\substack{\text { ND(3) } \\ \text { ND(})}}$	${ }_{\substack{\text { NDD (4, } \\ \text { ND(1.4) }}}$	\cdots	\cdots		${ }_{\substack{\text { ND(} \\ \text { NDI } \\ \text { N }}}$	\cdots	\cdots	-		-		${ }_{\substack{\text { ND(1.4) } \\ \text { NDI. }}}^{\text {a }}$	${ }_{\substack{\text { ND(1.4) } \\ \text { NDI. }}}^{\text {a }}$	-	
1,1,2, Trichlorocethane	ND(3)	Nv(1.4)	-	-	Nv(1.4)	Nv(1.4)			-	Nv(1.4)	-	ND(1.4)	ND(1.4)	ND(1.4)		nv(0.001)
	ND(3)	ND(1.4)	-	\cdots	ND(14)		-	\cdots	\cdots	ND(1.4)	-	(ND(1.)	ND(14)	Not.4)	-	
			-	-	${ }_{\text {NDO }}^{\text {N }(2) 7)}$	${ }_{4 .}^{\text {NDI.4. }}$	-	-	-		-	ND(2) ${ }^{\text {N }}$)	${ }_{\text {NDO }}^{\text {N }(2) 7)}$		-	${ }^{\text {Noplo.0) }}$
12.2.ibiomoso.chloropropme (BCCP)	ND(57)	ND(27)	-	-	ND(27)	ND(27)			-	ND(27)	-	ND(27)	ND(27)	ND(27)		nv(0.09)
	ND(3)	ND(1.4)	-	-	ND(1.4)	${ }^{\text {ND(1.4) }}$				ND(1.4)	-	ND(1.4)	${ }^{\text {NDI }}$ (4)	${ }^{\text {ND(}}$ (4)		ND(0.001)
		${ }_{\text {ND }}$	-	\cdots		$\underset{\substack{\text { ND2, } 2 \mathrm{U} \\ \text { ND(1.4) }}}{ }$	-	-	-	$\underset{\substack{\text { ND2, } 2 \mathrm{U} \\ \text { ND(1.4) }}}{ }$	-	NDP(2) ND(14)			-	Nv(0.0) ND(0.00)
12,Disitlocopopopane	ND(3)	ND(1.4)	-	-	ND(1.4)	N0(1.4)	-	-	-	ND(1.4)	-	ND(1.4)	ND(1.4)	ND(1.4)		ND(0.001)
1,3.Dichloroenerene	ND(57)	ND(27)	-	-	ND(27)	${ }^{0.531}$				ND(27)		ND(27)	ND(27)	ND(2)		nv(0.01)
	(ind	ND(27)	-	$=$	(iple	ND(2T)	-	\cdots	-	ND(27)	-	$\xrightarrow[\substack{\text { NDP } 27) \\ \text { N(5 } 50}]{ }$	ND(2)	ND(2)	-	${ }_{\text {Nporain }}$
2 2Heanone	ND(12)	ND(57)	-	-	N(5])	N0(5)	-	-	-	ND(5.9)	-	N(15.0)	N0(5.5)	ND(5.5)	-	N(0.009)
	${ }_{\text {NDO }}^{\text {ND(12) }}$		-	-		${ }^{\text {NDI }}$ N(5)	-	\cdots	-		-				-	Np(0.0.5) NDO.025
Benezere	ND(3)	ND(1.4)	-	-	ND(14)	0.094	-	-	-	ND(1.4)	-	ND(1.4)	ND(1.4)	ND(1.4)	-	nv(0.091)
Bromodithoromethane	${ }_{\text {ND }}^{\text {ND(3) }}$		-	-			-	-	-		-				-	
	N0($($ \%)	ND(2)	-	-	ND(2)	ND(27)	-	-	-	ND(27)	$=$	ND(2)	ND(2)	ND(2)	$=$	ND(0,001)
${ }_{\text {Carbon disulfide }}^{\text {Carbon eterathoride }}$	${ }_{\substack{\text { ND(} \\ \text { N() } \\ \text { (}}}$		-	-	${ }_{\text {NDO }}^{\text {NDI } 1.4)}$		-	\cdots	-	${ }_{\text {NDO }}^{\text {Nol(1.4) }}$	-	${ }_{\substack{\text { NDO } \\ \text { N0. } 1.4) ~}}^{\text {a }}$	${ }_{\text {NVD }}^{\text {NDI } 1.4)}$		-	${ }_{\substack{\text { Nopo.ou) } \\ \text { ND(0.001 }}}$
Churobemene	${ }^{\text {ND(3) }}$	${ }^{\text {NDP(1.4) }}$	-	-	ND(1.4)	ND(1.4)	-	-	-	${ }^{1.11)}$	-	ND(1.4)	ND(1.4)	ND(1.4)	-	ND(0.00)
	${ }_{\text {ND }}^{\text {ND(}(5)}$		-	-		NDD(2) ND(1.4)	-	\cdots	\because		-				\cdots	${ }_{\substack{\text { NDP(0.0) } \\ \text { ND(000) }}}$
Chloremetane (Netyr Choride)	(ind(5)	ND(2)	-	-			-	-	-	ND(27)	-		ND(2)	ND(27)	-	
Cychoneane	ND(12)	N0(5])	-	-	ND(5)	0.088)	-	-	-	ND(5.9)	-	$\mathrm{ND}(5.9)$	$\mathrm{ND}(5.9)$	ND(5.9)	-	
		${ }_{\substack{\text { NDD } \\ \text { N0. } 27)}}$	-	-			--	--	-	$\underbrace{}_{\substack{\text { NDD(4) } \\ \text { N(2) }}}$	-	${ }_{\substack{\text { ND0.4.4) } \\ \text { ND } 2 \text {) }}}$	${ }_{\substack{\text { ND0,4.4) } \\ \text { N0, } 27}}$		-	${ }_{\substack{\text { Nop(0,0) } \\ \text { NDOOOI) }}}$
Etaylbenene	3	ND(1.4)	-	-	0.273	0.415	-	-	-	ND(1.4)	-	ND(1.4)	0211	0.223	-	nv(0.001)
Lsoproyblemene		NDD 27$)$ ND 2 Ju	-	-	ND(27)		-	\cdots	-		-	ND(27)	(ND(27)	ND(27)	-	No(0.009)
Methyl tyclohexeane	2.45	ND(1.4)	-	-	ND(1.4)	0.285	-	-	-	ND(1.4)	-	ND(1.4)	ND(1.4)	ND(1.4)	-	-
Meety Tert buyl ther	${ }_{\text {ND }}^{\text {ND(}}$ (1)	${ }_{\text {NDO }}^{\text {ND(} 51.7)}$	-	-	${ }_{\text {NDO }}^{\text {ND(} 51.7)}$		-	-	-	${ }_{\text {NDP }}^{\text {ND(} 51.9)}$	-	${ }_{\text {NDP }}^{\text {ND(} 51.9)}$	${ }_{\text {NDO }}^{\text {ND(} 51.4)}$		-	
Styrene	${ }^{\text {ND(3) }}$	ND(1.4)	-	-	ND(1.4)	ND(4.4)	-	-	-	ND(1.4)	-	ND(1.4)	ND(1.4)	ND(1.4)	-	${ }^{\text {nvo.onl }}$
	ND(3)	ND(1.4)	-	-	${ }_{0}^{0.191}$	${ }_{0.51}$	-	\cdots	-	ND(1.4)	-	ND(1.4)	${ }_{0}$	${ }_{0}$	-	ND(0.001)
(tans,1.2.i.i.hloretene	$\xrightarrow{\text { ND(1.5) }}$	${ }_{\substack{\text { NDO.71) } \\ \text { NDI } 14)}}$	--	\cdots	ND(0,7)		-	-	-	(mpor)	-			(ND0.0.9)	\cdots	
Trithorofluorometane (CFC-1)	N0($($ 万)	ND(2)	-	-	ND(27)	ND(2)	-	-	-	ND(27)	-	N0127)	ND(2)	ND(2)	-	ND(0.001)
			-	-			-	-	-		-		${ }_{\substack{\text { ND[5, } \\ \mathrm{ND} 27 \\ \hline}}$		-	ND(0.001)
${ }^{\text {x, }}$ /ene (toal)	2993	ND(1.4)	-	-	${ }^{131}$	${ }^{1.8}$	-	-	-	ND(1.4)	-	No(ti)	${ }^{2.235}$	${ }^{0.261}$	-	${ }^{\text {nvo.on) }}$
		${ }_{\text {NDO }}^{\text {ND(1.4) }}$	-	-			-	-	-		-		${ }_{\text {coin }}^{\substack{\text { NDD } \\ \text { N0.4) }}}$		-	${ }_{\substack{\text { Nop(oun } \\ \text { ND(0.001 }}}$
1,3.Didihlorpopepene Tooal																

等		
勆		11
勆		
勆		
硅		
毞		
旁		
戰		11
䍸		
哺		
咢		
㚜		
		11
婷		
婷	年	
年		

	CRA-123R	CRA-138M	CRA-202M	CRA2202	CRA-202M	CRA-200M ${ }^{\text {P }}$	CRA-215M-B	CRA-299	CRA-235R	CRA-24M	CRA-24R	CRA 3 B0M	CRA-301M	CRA 4 H0MM ${ }^{\text {S }}$	CRA-AOSM-S
		O-17358-033104-MM-560 $3 / 31 / 2004$	O-17358-012004-MM-512 1/20/2004	$\begin{gathered} O-17358-033004-M M-542 \\ 3 / 30 / 2004 \end{gathered}$	O-17358-033004-MM-543 3/30/2004	O-17358-012004-MM-513 1/20/2004	$\begin{gathered} O-17358-033004-M M-540 \\ 3 / 30 / 2004 \end{gathered}$	O-17358-012004-MM-525 1/20/2004	$\begin{gathered} O-17358-033004-M M-545 \\ 3 / 30 / 2004 \end{gathered}$	O-17358-012004-MM-521 1/20/2004	O-17358-012004-MM-526 1/20/2004	O-17358-033104-MM-558 3/31/2004	$\begin{gathered} O-17358-033104-M M-557 \\ 3 / 31 / 2004 \end{gathered}$	O-17358-012104-MM-524 1/21/2004	O-17358-012304-MM-524 1/23/2004
voc (makke															
	Np(0,0)2 ND(0.02)	\cdots	ND(1.4) ND(1.4	\cdots	-	(ND(13)	-	ND(29)	\cdots			-	-	${ }^{\text {ND }}$ (5)	-
	${ }^{\text {ND(0)0,022 }}$	-	${ }_{\text {Nol }}^{\text {Nol.4. }}$	\because	-	${ }_{\text {NDO }}(1,13)$	-	ND(29)	-		${ }_{\text {ND }}$	-	\because	N0(3)	-
1,1-Dicichorectane	nv(0,02)	-	ND(1.4)	-	-	ND(1.3)	-	ND(29)	-	ND(1.4)	ND(7.5)	-	-	ND(5)	-
		-		-	-	${ }_{\text {NDO }}^{\text {ND }(1.3)}$	-		-	${ }_{\text {chen }}^{\text {ND(1.4) }}$	${ }_{\text {Nor }}^{\text {ND(7, }}$		-	${ }_{\text {ND }}^{\text {ND(} 3 \text { (7) }}$	
1,2-Dibiromose.chloropropane ((BCC)	ND(0.002)	-	N0(27)	-	-	ND(2)	\cdots	N0(5, ${ }^{\text {a }}$		ND(27)	ND(4)		-	ND(6)	
	N(0.0.022 NDOOO2)	-		-	-		-	NDP(2) ND(5,	-			-	-		-
		-	${ }_{\text {N }}$	-	-	${ }_{\text {NDD }}^{\text {ND(2.3) }}$	-		-	${ }_{\text {NDO }}^{\text {ND }(1.4)}$	ND(7) 7 (5)	-	\cdots		-
12,-Didhloropopene	nd(0,002)	-	ND(1.4)	-	-	Nv(1.3)	-	ND(2,9)	-	Nv(1.4)	nv(7.5)	-	-	${ }^{577}$	-
-		-	ND(27)	-	-	-	-		-	${ }_{\text {No }}^{\text {ND (2, } 27}$	${ }_{\text {No }}^{\text {Nol(4) }}$	-	-	${ }_{\text {NDO }}^{\text {ND(6) }}$ (6)	-
${ }^{2}$-.buanone Methyl	ND(0.01)	-	N0(5.)	-	-	$\mathrm{ND(54)}$	-	N0(12)		N0(\%)	ND(30)			ND(140)	
2 -Hexanone	nv(0.01)	-	ND(5.)	-	-	ND(54)	-	N(12)		ND(57)	ND(30)			ND(40)	
	${ }^{\text {NDD(0.0) }}$	-		-	\cdots		-	${ }_{\text {NDO }}^{\text {ND(2) }}$ (2)U	\cdots		$\pm \substack{\text { Npbou } \\ \text { ND(sou }}$	-	-		
	${ }_{\text {ND(0,0.02) }}$	-	${ }_{\text {ND(}}^{\text {N(1.4) }}$	\cdots	-		-	${ }_{\substack{\text { Nol } \\ 0.17 \mathrm{~J}}}$	\because	cosion	${ }_{\text {N }}$	-	\cdots		-
Bromodidhloromethane	ND(0.02)	-	ND(1.4)	-	-	${ }^{\text {ND }(1.3) ~}$	-	ND(29)	-	ND(1.4)	ND(7.5)	-	-	${ }^{\text {ND(3) }}$	-
		-		-	-	${ }_{\text {NDO }}^{\text {ND(1.3) }}$	-	${ }_{\text {NDO }}^{\text {Nof(2) }}$	\cdots	${ }_{\text {Nol }}^{\text {Nol. }}$ (2)	${ }_{\text {NDP(7) }}^{\text {ND(4) }}$	-	\cdots	${ }_{\text {ND }}^{\text {ND(3) }}$ (6)	-
${ }^{\text {Carbon disulfide }}$	${ }^{\text {Np(0,002 }}$	-	ND(1.4)	-	-	${ }^{\text {NDP(13) }}$	-	${ }^{\text {NDP(2) }}$ (1)	-	${ }^{\text {NDD }}$ (4)	ND(7.5)	-	-	${ }^{\text {NDP(3) }}$	
Chlorovenenere	ND(0,02)	-	${ }_{22}$	-	-	ND(1.3)	-	ND(29)	-	ND(1.4)	${ }_{265}$	-	-	N0(3)	
	ND(0.02) NDOOO2)	\cdots	ND(2T)	-	-	$\xrightarrow{\text { NDD } 2.69}$ ND13)	-	$\xrightarrow{\text { ND(5., }} \mathrm{N}$	-		${ }_{\substack{\text { ND(4) } \\ \text { ND } 759 \\ \hline}}$	-	\cdots	${ }_{\text {Nop }}^{\text {ND(6) }}$	-
Chioroum (Trinotoreneane)	${ }^{\text {NDP(0)022 }}$	-	ND(1.2)	$=$	-	$\xrightarrow{\mathrm{ND}(129)}$	\because		-			-	-	${ }_{\text {ND(}}^{\text {N(6) }}$	-
Cisi.2.ididlorextene	n(0.0.02)	-		-	-	$\xrightarrow[\substack{\text { Np(0.0.6) } \\ \text { NO(} 54)}]{ }$	-		-			-	\cdots	(ND(1)	\cdots
	ND(0,002)	-	ND(1.4)	-	-	ND(13)	-	ND(29)	-	ND(1.4)	ND(7,5)	-	\cdots	ND(3)	-
Didhlordifucomethane (CCC.12)	Nv(0.0)2 ND(0.02)	-	${ }_{\substack{\text { ND(27) } \\ 0.23}}$	-	\cdots	${ }_{\text {NDP(2, }}^{\text {ND(3) }}$	-		-		${ }_{\text {ND. }}^{\text {N }}$ (4)	-	\cdots	$\frac{\mathrm{ND}(6)}{980 \times 2}$	-
Lsopropylenenere	0.002	-	ND(27)	-	-	ND(26)	-	13)	-	0.615	${ }^{4)}$	-	-	970	-
Methy ceate	-	-		-	--		-		\cdots	$\underbrace{\text { a }}_{\substack{\text { NDD2, } \\ 0.3}}$	${ }_{\text {ND(4) }}^{\text {21] }}$	-	\cdots	${ }_{\substack{\text { N0] } \\ 60}}$	-
Methy Tert buyly Eher	0.005	-	ND(5.9)	-	-	ND(54)	-	ND(12)	-	ND(57)	ND(30)	-	-	ND(40)	-
Methlene chloride		-	${ }_{\text {NDD }}^{\text {ND(14) }}$	-	-	${ }_{\text {NDD }}^{\text {N0.3 }}$ (13)	-		-			-	-	${ }_{\text {N }} \begin{aligned} & \text { ND(35) } \\ & \text { ND(5) }\end{aligned}$	-
Terachloreetere	ndo.002)	-	ND(1.4)	-	-	${ }^{\text {ND(}}$ (13)	-	ND(29)	-	ND(1.4)	${ }^{\mathrm{ND}(5.5)}$	-	-	ND(35)	-
	ND0.0002)	-	${ }_{\text {N0, }}^{\text {N0, }}$	-	-	ND(0,6)	-	${ }_{\text {Nom }}^{\text {Nobl }}$	-	N0.0)		-	-	Nv(1)	-
		-	ND(1.)	-	-	(ND1.3)	-	NDL 2) ND56,	-	(0.34	${ }_{\text {NDO }}$	-	-	ND(3)	-
	ND(0.002)	-	${ }_{\text {NDP (5, }}$	-	-		-	ND(5.0)	-	ND(5 N ${ }^{\text {ND }}$		-	-	${ }_{\text {ND }}^{\text {ND(6) }}$	-
Viny choride	Np(0,02) ND(0.02)	\cdots		\cdots	\cdots		-	$\underset{\substack{\text { ND(5.0) } \\ 14}}{ }$	\cdots	${ }_{\substack{\text { ND(2) } \\ 3.8}}$	${ }_{21}^{\text {ND(4) }}$	-	\cdots		\cdots
cisi,3-Disichoroppepene	N(10.02)	-	Nv(1.4)	-	-	ND(1.3)	-	ND(2,	-	ND(1.4)	ND(7.5)	-	-	${ }^{\text {ND(35) }}$	-
	N(0.0.02)	-	${ }^{\text {NDO }}$ (14)	-	-	ND(1.3)	-	ND(2.9)	\cdots	ND(1.4)	ND(.5)	-	\cdots	ND(3)	\cdots

GMpT-WILLOW RUN
YPSILANII, MICHIGA

	${ }_{\text {CRA-123R }}$	${ }_{\text {CRA-38S }}$	CRA-202M	CRA-202M	CRA-202M	${ }_{\text {CRA-20M-B }}$	CRA-275M-B	CRA-299	CRA-23sR	CRA-24M	CRA-24R	CRA-309	CRA-301M	CRA-68MM	${ }_{\text {crat-AsMM }}$ S
		$O-17358-033104-M M-560$ $3 / 31 / 2004$	O-17358-012004-MM-512 $1 / 20 / 2004$	$\begin{gathered} O-17358-033004-M M-542 \\ 3 / 30 / 2004 \end{gathered}$	$\begin{gathered} \text { O-17358-033004-MM-543 } \\ 3 / 30 / 2004 \end{gathered}$	O-17358-012004-MM-513 $1 / 20 / 2004$	$O-17358-033004-M M-540$ $3 / 30 / 2004$	$O-17358-012004-M M-525$ $1 / 20 / 2004$	O-17358-033004-MM-545 $3 / 30 / 2004$	O-17358-012004-MM-521 $1 / 20 / 2004$ (2010	O-17358-012004-MM-526 $1 / 20 / 2004$	O-17358-033104-MM-558 $3 / 31 / 2004$	$\begin{gathered} O-17358-033104-M M-557 \\ 3 / 31 / 2004 \end{gathered}$	$O-17358-012104-M M-524$ $1 / 21 / 2004$	O-17358-012304-MM-524 1/23/2004
Svoc mmKk															
	${ }_{\text {ND(1) }}^{\text {ND(}}$ (2)	\cdots	NDP(ta) NDPAOO	\cdots	\cdots	NDP(ta) NDPAOO	-	${ }_{\substack{\text { Np(toon) } \\ \text { ND(a000) }}}$	-	NDP(ta) NDPAOO)	${ }_{\substack{\text { Np(000) } \\ \text { ND(aom) }}}$	-	-	-	
	N0, 025	\cdots	ND(foo)	-	-	ND(ta0)	-	Nv(100)	-	ND(too)	No(1000)	-	-	-	Notat N
		\cdots	Notal	\cdots	\cdots	Notan	-	Notiolou)	-	Noter	Notiouo	-	\cdots	-	Notat
		-	ND(1900) ND(ta0)	\cdots	-	ND(1900) ND(ta0)	-		-			-	-	-	ND(190) ND(ta0)
2. -Dinitrofoluere	N0(0.2)	-	ND(ta0)	-	-	ND(ta0)		No(1000)	-	ND(ta0)	ND(1000)	-		-	ND(ta0)
${ }^{2}$ 2.chloronphthalene	N(0.02)	-	ND(ta0)	-	-	ND(ta0)		ND(1000)	-	ND(ta0)	ND(1000)	-			ND(ta0)
	${ }^{\text {NDO }}$ (025	-	Nota)	-	-	ND(ta0)	-	Nv(1000)	-	ND(ta)	NN(100)	$=$	-	-	ND(ta0)
${ }_{\text {a }}^{\text {a }}$	${ }^{\text {ND(0, } 2 \text {) }}$	-	NDPAOO) ND(taO)	\cdots	\cdots	NDP(40) ND(A0)	-	ND(taoo) ND(100)	-			\cdots	\cdots	\because	
${ }^{2}$ 2-Nititaniline	N(12.25)	-	N(1900)	-	-	nptaso)	-	${ }^{\text {Nptasom }}$	-	Not(190)	${ }^{\text {Notssom }}$	-	-		N(tapo)
	${ }_{\text {ND }}^{\text {ND(1) }}$ (1)	\because		\cdots	-		-	${ }^{\text {Npplasom }}$	-			-	-	\because	${ }^{\text {Np(ata) }}$
		-	${ }_{\substack{\text { ND(900) } \\ \text { ND(1900) }}}$	-	-		-		-	N(1900)		-	-		ND(1000)
	ND(02)	\because	ND(190)	\cdots	\cdots	ND(190)	-	Nop(iou)	-	NDD(190)	ND(tatoo)	-	-	,	Not(on)
	ND(0.25) NDO 25	-	NDP(ta) NDPAOO	\cdots	-		-	${ }_{\substack{\text { ND(tooo) } \\ \text { ND(1000) }}}$	-			-	-	-	${ }_{\text {NDPa0) }}^{\text {NDPAOO) }}$
${ }_{4}^{4}$ Chhororoneneny phenyl ether	NN(0,2)	\cdots	ND(ta0)	\cdots	-	N(tato	-	ND(1a00)	-	ND(to)	NN(1a0)	-	-	\because	Nif(ta)
		-		-	-	${ }^{\text {NDP(ta) }}$	-		-		Np(toos) ND(4800)	-	-	-	
4 -Nituphenol	${ }^{\text {ND(0.25 }}$		nd(1900)	-	-	ND(1900)	-	ND(4s0)	-	ndi(900)	nd(sso)		-	-	nd(1900)
Acenpphene Acenapthylene	${ }_{\text {NDO }}^{\text {ND(0.25) }}$	\cdots		-	-		-	NDD(00) ND(Iooo)	-		ND(000) No(lioo)	-	-	\because	
Acetophenone	NT029	-	Np(ta0)	-	-	ND(ta0)	-	Np(too)	-	N(tata)	ND(toon)	-	-	-	Np(ta)
Antazaine	N(1)29	-	ND(to0)	-	-	ND(ta0)	-	No(liooo)	-	ND(ta0)	ND(1,000)	-			ND(ta0)
Benalateryde	\cdots	-	Np(ta)	-	-	Nipal	-	${ }^{\text {Nplotoo) }}$	-	Np(ta)		-	\cdots	-	
${ }_{\text {Bermoapprene }}$	N(0,25)	-	ND(ta)	-	-	ND(ta0)	-	ND(1000)	-	ND(ta0)	ND(1000)	-	-	\because	ND(A0)
		-	NDP(ta) ND(taO)	-	-	ND(40) ND(ta0)	$=$	${ }^{\text {NDD(a00) }}$ N0	-	NDP(ta) ND(ta0)		-	-	\because	${ }_{\text {NDPa }}$
	N0(025)	-	ND(ta0)	-	-	ND(too)	-	ND(1000)	\cdots	ND(ta0)	Not(looo)	-	-	\because	ND(A00)
	No(0.25)	-	${ }_{\substack{\text { a }}}^{\text {ND(taO) }}$	\cdots	-		-	ND(taon) ND(100)	-		Np(too) ND(1000)	-	-	-	
		-	Notan)	-	-	Notal	\square	Notooo)	-	Nptao)	NN(1000)	-	-	\because	Notal
	${ }_{\text {NDO }}^{\text {ND(0.25) }}$	-	${ }_{\substack{\text { a }}}^{\text {NDP(ta) }}$ N(ta0)	-	-		-	${ }^{\text {NDP(a00) }}$	-			-	-	-	
${ }_{\text {Caprocatam }}$	--30	-	NR(ta)	-	-	ND(ta)	-	Np(ta0)	-	$\xrightarrow{\text { Nptal }}$	${ }^{\text {Nptooou }}$	-	-	-	$\xrightarrow{\text { Nptal }}$
carbazale Chysene	${ }^{\text {ND(0) }}$ (02)	-	ND(ta0)	-	-	NDP(t0)	-	Not(ouo)	-	ND(ta0)	Nod(iou)	-	-	\cdots	ND(ta0)
Pitenza.anentracene	${ }^{\text {NDO }}$ (025	-	ND(ta)	-	-	${ }^{\text {NDP(40) }}$	-	ND(too)	-	ND(40)	${ }^{\text {Nep(000) }}$	-	-	-	$\xrightarrow{\text { NDP40) }}$
	${ }^{\text {N0, }} \mathrm{ND}(0.25)$	\because	Notal	\cdots	\cdots		-		-		Not(00) Nof(100)	-	-	\because	
		-	NDP(ta) NDPAOO	\cdots	\cdots		\cdots		-	(idat	${ }_{\substack{\text { ND(toon) } \\ \text { NDIouou) }}}$	\cdots	\cdots	\because	NDP(A0) NDPAOO)
	N(0, 2 2)	\cdots	N(ta0)	\cdots	-	N(ta0)	-	ND(1a00)	-	ND(ton)	NN(1,00)	-	\cdots	\because	N(tao)
${ }_{\text {flo }}^{\substack{\text { fluarantere } \\ \text { Fluoree }}}$		-		\cdots	-	ND(f0) ND(ta0)	-	NDD(tao) ND(100)	-		ND(100) ND(1000)	-	-	-	NDPAOO NDPAOO
Hexachlorobemene	N(00.25)	-	Np(ta)	-	-	ND(ta)	-	NDi(a0)	-	ND(ta0)	Nv(100)	-	-	$-$	ND(tao)
${ }_{\text {Hexachloobuadiene }}^{\text {Hexachlorexclopentasiene }}$	${ }_{\text {ND(0, }}^{\text {N0, }}$ (0)	-	${ }_{\text {NDPa }}^{\text {ND(ta) }}$	-	-	${ }^{\text {NDP(ta) }}$	-		-		Np(toon) ND(\$80)	-	-	\because	${ }_{\text {Noma }}^{\text {ND(taO) }}$
Hexachlorematane	${ }^{\text {N(0, } 2 \text { 25 }}$	-	ND(ta0)	-	-	ND(ta0)	-	N(tiou)	-	ND(00)	N(tioom	-	-	-	N(ta0)
Indenot(2).calpyene	${ }_{\text {N0, }}^{\text {N(0, } 025}$	-	ND(ta0)	-	-	ND(ta0)	-		-		ND(toon)	-	-	\because	(ndem)
(Naphalene		-		-	-		-		-		Np(toon) ND(Ifoo)	-	-	\because	NDP(40) ND(A00)

GMPT - WILLOW RUN YPSILANTI, MICHIGAN										
Sample Location:		CRA-13R	CRA-41R	CRA-044M	CRA-75M	CRA-75M	CRA-080M	CRA-080M	CRA-86M	CRA-096M
Sample Identification		O-17358-012004-MM-520	O-17358-012004-MM-516	O-017358-101002-JD-001	O-17358-012004-MM-522	O-17358-012104-MM-522	O-017358-101002-JD-003	O-17358-012004-MM-523	O-17358-012004-MM-518	O-17358-012004-MM-516
Sample Date	$\underline{\text { Units }}$	1/20/2004	1/20/2004	10/10/2002	1/20/2004	1/21/2004	10/10/2002	1/20/2004	1/20/2004	1/20/2004
Parameters										
Chlorine	mg/L	--	--	2220	--	--	1905	--	--	--
Heating value	BTU/gal	--	--	143331	--	--	140528	--	--	--
Heating value	вTU/lb	--	--	19578	--	--	18957	--	--	--
Ignitability	$\operatorname{deg} f$	> 180	> 180	200	--	> 180	200	> 180	> 180	--
Phosphorus	ug/g	--	--	50	--	--	56	--	--	--
Specific gravity	API	--	--	29.5	--	--	27.5	--	--	--
Specific gravity	lbs/gal	--	--	7.321	--	--	7.413	--	--	--
Specific gravity	none	0.84	0.79	0.8791	--	0.96	0.8901	0.89	0.84	--
Sulfur	\%	--	--	0.24	--	--	0.24	--	--	--
Viscosity	cp	53.3	--	--	22.0	--	--	50.0	41.3	12.5
Viscosity at 100C	cST	--	--	7.372	--	--	--	--	--	--
Viscosity at 40C	cST	--	--	69.61	--	--	--	--	--	--
Carbon Range		C11 to C34	--	C-15 to C-28	C11 to C22	--	C-11 to C-20 (Fuel Oil), C-11 to C-28 (Total Sample)	C10 to C34	C9 to C36	C9 to C22
Estimated Oil Type		Petroleum Distillate/ Mineral Oil	--	Hydraulic Fluid/Lube Oil	Petroleum Distillate	--	Fuel Oil, Hydraulic Fluid/Lube Oil	Petroleum Distillate/ Mineral Oil	Petroleum Distillate/ Mineral Oil	Petroleum Distillate
LNAPL Thickness	ft	--	--	1.78	--	--	--	--	--	--
Date LNAPL Measured		--	--	10/7/2002	--	--	--	--	--	--
(Average)	$\mathrm{g} / \mathrm{mol}$	--	--	--	--	--	--	--	--	--

TABLE 4
LNAPL CHARACTERISTICS

TABLE 4
LNAPL CHARACTERISTICS

YPSILANTI, MICHIGAN									
Sample Location:		CRA-210M-B	CRA-229M	CRA-229M	CRA-241M	CRA-241M	CRA-244R	CRA-244R	CRA-408M-S
Sample Identification		O-17358-012004-MM-513	O-017358-101002-JD-005	O-17358-012004-MM-525	O-017358-101002-JD-002	O-17358-012004-MM-521	O-017358-101002-JD-006	O-17358-012004-MM-526	O-17358-012304-MM-524
Sample Date	$\underline{\text { Units }}$	1/20/2004	10/10/2002	1/20/2004	10/10/2002	1/20/2004	10/10/2002	1/20/2004	1/23/2004
Parameters									
Chlorine	mg/L	--	1020	--	1319	--	864	--	--
Heating value	BTU/gal	--	139239	--	151095	--	137587	--	--
Heating value	BTU/lb	--	19336	--	19544	--	19644	--	--
Ignitability	$\operatorname{deg} f$	> 180	200	> 180	200	> 180	200	> 180	84
Phosphorus	ug/g	--	36	--	35	--	864	--	--
Specific gravity	API	--	32.1	--	20.9	--	36.7	--	--
Specific gravity	lbs/gal	--	7.201	--	7.731	--	7.004	--	--
Specific gravity	none	0.84	0.8647	0.84	0.9283	0.81	0.841	0.78	0.94
Sulfur	\%	--	0.26	--	0.3	--	0.22	--	--
Viscosity	cp	79.0	--	19.8	--	41.3	--	14.3	92.8
Viscosity at 100C	cST	--	2.368	--	--	--	1.831	--	--
Viscosity at 40C	cST	--	8.62	--	--	--	5.434	--	--
Carbon Range		C11 to C36	C-11 to C-22	C11 to C22	C-1 to C-20, C-11 to C-28 (Total Sample)	C10 to C34	C-11 to C-22	C9 to C24	C7 to nC13 and C10 to C36
Estimated Oil Type		Mineral Oil	Diesel Range	Petroleum Distillate	Fuel Oil, Hydraulic Fluid/Lube Oil	Petroleum Distillate/ Mineral Oil	Diesel Range	Petroleum Distillate	Gasoline, Or Diesel \#4, Diesel Fuel \#6, Bunker C
LNAPL Thickness	ft	--	1.73	--	0.86	--	2.8	--	--
Date LNAPL Measured		--	10/9/2002	--	10/15/2002	--	10/18/2002	--	--
(Average)	$\mathrm{g} / \mathrm{mol}$	--	--	--	--	--	--	--	128

PRIVILEGED AND CONFIDENTIAL PREPARED AT THE REQUEST OF COUNSEL

TABLE 5
LNAPL THICKNESS SUMMARY FOR FIGURE 5 GENERAL MOTORS CORPORATION GMPT - WILLOW RUN YPSILANTI, MICHIGAN

	CRA-016R		CRA-017R		CRA-078M		CRA-204M-B			CRA-245R0.47	CRA-235RB	
	2/26/2002	0.24	2/26/2002	1.16	2/26/2002	0.34	2/27/2002	0.98	4/30/2002		2/27/2002	0.01
	6/5/2002	0.17	4/4/2002	0.55	5/31/2002	0.16	6/4/2002	1.48	6/5/2002	0.97	4/3/2002	0.55
	6/25/2002	0.61	4/30/2002	0.72	10/16/2002	0.13	10/17/2002	1.64	6/25/2002	0.9	4/30/2002	0.6
	7/24/2002	1.13	6/5/2002	0.01	12/18/2002	0.55	12/19/2002	1.59	7/24/2002	1.23	6/6/2002	0.79
	12/18/2002	0.96	6/25/2002	0.94	4/3/2003	0.9	4/2/2003	1.04	1/1/2003	0.01	6/26/2002	0.7
	1/1/2003	1.19	7/24/2002	1.16	4/3/2003	0.9	7/17/2003	1.61	4/1/2003	0.49	7/23/2002	0.68
	3/7/2003	0.98	10/16/2002	2.29			7/17/2003	1.61	4/29/2003	0.01	10/9/2002	0.72
	4/1/2003	0.97	12/18/2002	0.12			7/17/2003	1.61	6/6/2003	0.43	12/17/2002	0.81
	4/29/2003	1.13	7/18/2003	1.73					8/8/2003	0.42	1/1/2003	0.83
	6/6/2003	1.03	7/18/2003	1.73					9/5/2003	0.92	3/7/2003	0.84
	7/18/2003	0.83	7/18/2003	1.73					9/5/2003	0.92	4/1/2003	0.76
	8/8/2003	1.04	7/18/2003	1.73					9/5/2003	0.92	4/30/2003	1.49
	9/5/2003	1.03	7/18/2003	1.73					9/5/2003	0.92	6/6/2003	0.79
	9/5/2003	1.03	7/18/2003	1.73					9/5/2003	0.92	7/17/2003	0.89
	9/5/2003	1.03	7/18/2003	1.73					9/5/2003	0.92	8/8/2003	0.8
	9/5/2003	1.03	7/18/2003	1.73					9/5/2003	0.92	9/5/2003	0.84
									9/5/2003	0.92	9/5/2003	0.84
Min	6/5/2002	0.17	2/26/2002	1.16	10/16/2002	0.13	2/27/2002	0.98	1/1/2003	0.01	4/3/2002	0.55
Max	9/5/2003	1.03	7/18/2003	1.73	4/3/2003	0.9	10/17/2002	1.64	9/5/2003	0.92	4/30/2003	1.49
increase		0.86		0.57		0.77		0.66		0.91		0.94

PRIVILEGED AND CONFIDENTIAL PREPARED AT THE REQUEST OF COUNSEL

TABLE 6
LNAPL THICKNESS SUMMARY FOR FIGURE 6
GENERAL MOTORS CORPORATION
GMPT - WILLOW RUN
YPSILANTI, MICHIGAN

	CRA-004M			CRA-004RA		CRA-001RB		CRA-005RA		CRA-015R		CRA-013RB
	12/4/2001	1.21	2/27/2002	1.41	4/3/2002	1.67	12/4/2001	1.52	4/4/2002	0.01	6/5/2002	1.25
	12/11/2001	1.26	4/3/2002	2.17	4/30/2002	1.87	4/3/2002	1.06	4/30/2002	0.01	6/25/2002	1.2
	6/26/2002	2.67	5/1/2002	2.02	6/6/2002	2.02	5/1/2002	2.32	7/24/2002	0.01	7/24/2002	0.25
	7/25/2002	2.59	6/6/2002	2.54	6/26/2002	1.45	6/6/2002	2.77	4/29/2003	0.02	1/1/2003	2.5
	10/17/2002	2.85	1/1/2003	2.82	7/25/2002	2.2	6/26/2002	1.98	9/5/2003	1.19	1/1/2003	2.5
	12/19/2002	2.66	3/7/2003	2.58	4/1/2003	3.63	7/25/2002	1.7	9/5/2003	1.19	1/1/2003	2.5
	4/3/2003	2.43	4/1/2003	2.31	4/30/2003	3.63	10/17/2002	0.42	9/5/2003	1.19	1/1/2003	2.5
	7/17/2003	2.53	4/30/2003	2.27	6/6/2003	3.65	1/1/2003	0.36	9/5/2003	1.19	1/1/2003	2.5
	7/17/2003	2.53	6/6/2003	0.47	7/17/2003	3.55	3/7/2003	0.37	9/5/2003	1.19	1/1/2003	2.5
	7/17/2003	2.53	7/17/2003	3.27	8/8/2003	3.62	4/1/2003	0.48	9/5/2003	1.19	1/1/2003	2.5
	7/17/2003	2.53	8/8/2003	3.26	8/8/2003	3.62	4/30/2003	0.48	9/5/2003	1.19	1/1/2003	2.5
	7/17/2003	2.53	9/5/2003	4.42	8/8/2003	3.62	6/6/2003	0.37	9/5/2003	1.19	1/1/2003	2.5
	7/17/2003	2.53	9/5/2003	4.42	8/8/2003	3.62	7/17/2003	0.41	9/5/2003	1.19	1/1/2003	2.5
	7/17/2003	2.53	9/5/2003	4.42	8/8/2003	3.62	8/8/2003	0.4	9/5/2003	1.19	1/1/2003	2.5
	7/17/2003	2.53	9/5/2003	4.42	8/8/2003	3.62	9/5/2003	2.61	9/5/2003	1.19	1/1/2003	2.5
	7/17/2003	2.53	9/5/2003	4.42	8/8/2003	3.62	9/5/2003	2.61	9/5/2003	1.19	1/1/2003	2.5
	CRA-004M			CRA-004RA		CRA-001RB		CRA-005RA		CRA-015R		CRA-013RB
Min	12/4/2001	1.21	6/6/2003	0.47	6/26/2002	1.45	1/1/2003	0.36	4/4/2002	0.01	7/24/2002	0.25
Max	10/17/2002	2.85	9/5/2003	4.42	6/6/2003	3.65	6/6/2002	2.77	9/5/2003	1.19	1/1/2003	2.5
increase		1.64		3.95		2.2		2.41		1.18		2.25

PRIVILEGED AND CONFIDENTIAL PREPARED AT THE REQUEST OF COUNSEL

TABLE 6

LNAPL THICKNESS SUMMARY FOR FIGURE 6

GENERAL MOTORS CORPORATION

GMPT - WILLOW RUN
YPSILANTI, MICHIGAN

	CRA-097M	CRA-112R		CRA-212M-A			CRA-222M	CRA-201M-A			CRA-252R
5/31/2002	0.45	11/30/2001	4.72	6/3/2002	3.19	12/3/2001	3.22	12/4/2001	1.48	6/5/2002	0.03
7/18/2003	6.2	6/7/2002	0.08	10/18/2002	5.34	12/4/2001	0.86	12/11/2001	0.06	6/25/2002	2.28
7/18/2003	6.2	6/26/2002	0.18	4/2/2003	5.1	2/25/2002	3.81	2/27/2002	1.6	7/24/2002	2.81
7/18/2003	6.2	7/25/2002	0.17	7/17/2003	5.14	5/29/2002	4	2/27/2002	1.6	1/1/2003	0.01
7/18/2003	6.2	10/17/2002	0.7	7/17/2003	5.14	10/9/2002	2.55	2/27/2002	1.6	9/5/2003	4.91
7/18/2003	6.2	12/19/2002	0.23	7/17/2003	5.14	4/2/2003	2.92	2/27/2002	1.6	9/5/2003	4.91
7/18/2003	6.2	1/1/2003	0.14	7/17/2003	5.14	7/17/2003	3.32	2/27/2002	1.6	9/5/2003	4.91
7/18/2003	6.2	3/7/2003	0.13	7/17/2003	5.14	7/17/2003	3.32	2/27/2002	1.6	9/5/2003	4.91
7/18/2003	6.2	4/1/2003	0.13							9/5/2003	4.91
7/18/2003	6.2	6/6/2003	0.17							9/5/2003	4.91
7/18/2003	6.2	7/17/2003	0.13							9/5/2003	4.91
7/18/2003	6.2	8/8/2003	0.2							9/5/2003	4.91
7/18/2003	6.2	9/5/2003	1.12							9/5/2003	4.91
		9/5/2003	1.12							9/5/2003	4.91
		9/5/2003	1.12							9/5/2003	4.91
		9/5/2003	1.12							9/5/2003	4.91
	CRA-097M		CRA-112R		CRA-212M-		CRA-222M		CRA-201M-		CRA-252R
5/31/2002	0.45	6/7/2002	0.08	6/3/2002	3.19	12/4/2001	0.86	12/11/2001	0.06	1/1/2003	0.01
7/18/2003	6.2	9/5/2003	1.12	10/18/2002	5.34	5/29/2002	4	2/27/2002	1.6	9/5/2003	4.91
	5.75		1.04		2.15		3.14		1.54		4.9

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Michigan Act 451, Part 201 Generic Residential \& Industrial Criteria ${ }^{(1)}$} \& \multirow[t]{2}{*}{CRA-001M

O-17358-033004-MM-546} \& \multirow[t]{2}{*}{CRA-002RB} \& \multirow[t]{2}{*}{CRA-003RB} \& \multirow[t]{2}{*}{CRA-004M} \& \multirow[t]{2}{*}{CRA-005RA}

\hline Maximum Concentration for Toxicity Characteristic ${ }^{(2)}$ (mg/L) \& $$
\begin{aligned}
& \mathrm{TSCA}^{(3)} \\
& (\mathrm{mg} / \mathrm{kg})
\end{aligned}
$$ \& Groundwat er Contact Criteria (mg/L) \& Industrial \& Commercial II, III, \& IV Groundwater to Volatilization to Indoor Air Inhalation Criteria (mg / L) \& Flammability and Explosivity Screening Levels (mg/L) \& Acute Inhalation Screening Levels (mg/L) \& \& \& \& \&

\hline --- \& --- \& 0.0033 \& 0.045 \& ID \& ID \& $\mathrm{ND}(0.19)$ \& $\mathrm{ND}(0.19)$ \& $\mathrm{ND}(0.19)$ \& $\mathrm{ND}(0.19)$ \& $\mathrm{ND}(0.19)$

\hline --- \& --- \& 0.0033 \& 0.045 \& ID \& ID \& $\mathrm{ND}(0.22)$ \& $\mathrm{ND}(0.22)$ \& $\mathrm{ND}(0.22)$ \& $\mathrm{ND}(0.22)$ \& $\mathrm{ND}(0.22)$

\hline --- \& --- \& 0.0033 \& 0.045 \& ID \& ID \& $\mathrm{ND}(0.17)$ \& $\mathrm{ND}(0.17)$ \& $\mathrm{ND}(0.17)$ \& $\mathrm{ND}(0.17)$ \& $\mathrm{ND}(0.17)$

\hline --- \& --- \& 0.0033 \& 0.045 \& ID \& ID \& $\mathrm{ND}(0.29)$ \& $\mathrm{ND}(0.29)$ \& $\mathrm{ND}(0.29)$ \& $\mathrm{ND}(0.29)$ \& $\mathrm{ND}(0.29)$

\hline --- \& -- \& 0.0033 \& 0.045 \& ID \& ID \& $\mathrm{ND}(0.2)$ \& $\mathrm{ND}(0.2)$ \& $\mathrm{ND}(0.2)$ \& $\mathrm{ND}(0.2)$ \& $\mathrm{ND}(0.2)$

\hline --- \& --- \& 0.0033 \& 0.045 \& ID \& ID \& $\mathrm{ND}(0.12)$ \& $\mathrm{ND}(0.12)$ \& $\mathrm{ND}(0.12)$ \& $\mathrm{ND}(0.12)$ \& $\mathrm{ND}(0.12)$

\hline --- \& --- \& ${ }^{0.0033}$ \& 0.045 \& ID \& ID \& $\mathrm{ND}(0.13)$ \& $\mathrm{ND}(0.13)$ \& $\mathrm{ND}(0.13)$ \& $\mathrm{ND}(0.13)$ \& $\mathrm{ND}(0.13)$

\hline --- \& --- \& 0.0033 \& 0.045 \& ID \& ID \& ND(0.033) \& ND(0.033) \& ND(0.033) \& ND(0.033) \& ND(0.033)

\hline -- \& --- \& 0.0033 \& 0.045 \& ID \& ID \& $\mathrm{ND}(0.033)$ \& ND(0.033) \& $\mathrm{ND}(0.033)$ \& ND(0.033) \& $\mathrm{ND}(0.033)$

\hline --- \& 50 \& 0.0033 \& 0.045 \& ID \& ID \& --- \& --- \& --- \& --- \& ---

\hline
\end{tabular}

TABLE 7
SUMMARY OF PCB RESULTS GENERAL MOTORS CORPORATION

PRIVILEGED AND CONFIDENTIAL PREPARED AT THE REQUEST OF COUNSEL

CRA-006RB	CRA-012RB	CRA-13R	CRA-015R	CRA-016R	CRA-025R	CRA-41R	CRA-75M	CRA-75M	CRA-079M	CRA-080M	CRA-86M	CRA-086M
O-17358-033004-MM-549	O-17358-033104-MM-559	O-17358-012004-MM-520	O-17358-033104-MM-555	O-17358-033104-MM-556	O-17358-033004-MM-550	O-17358-012004-MM-516	$\begin{gathered} O-17358- \\ 012004-M M- \\ 522 \end{gathered}$	O-17358 012104-MM522	O-17358-033104-MM-554	$\begin{gathered} O-17358- \\ 012004-M M- \\ 523 \end{gathered}$	$\begin{gathered} \text { O-17358- } \\ 012004-M M- \\ 518 \end{gathered}$	O-17358-033104-MM-553
3/30/2004	3/31/2004	1/20/2004	3/31/2004	3/31/2004	3/30/2004	1/20/2004	1/20/2004	1/21/2004	3/31/2004	1/20/2004	1/20/2004	3/31/2004
$\mathrm{ND}(0.19)$	$\mathrm{ND}(0.19)$	ND(1)	$\mathrm{ND}(0.38)$	$\mathrm{ND}(0.19)$	$\mathrm{ND}(0.19)$	ND(1)	ND(1)	--	$\mathrm{ND}(0.38)$	ND(5)	ND(10) UJ	$\mathrm{ND}(1.9)$
$\mathrm{ND}(0.22)$	$\mathrm{ND}(0.22)$	$\mathrm{ND}(1)$	$\mathrm{ND}(0.44)$	$\mathrm{ND}(0.22)$	$\mathrm{ND}(0.22)$	ND(1)	ND(1)	--	$\mathrm{ND}(0.44)$	ND(5)	ND(10) UJ	$\mathrm{ND}(2.2)$
$\mathrm{ND}(0.17)$	$\mathrm{ND}(0.17)$	$\mathrm{ND}(1)$	$\mathrm{ND}(0.34)$	ND(0.17)	$\mathrm{ND}(0.17)$	$\mathrm{ND}(1)$	$\mathrm{ND}(1)$	--	$\mathrm{ND}(0.34)$	$\mathrm{ND}(5)$	ND(10) UJ	$\mathrm{ND}(1.7)$
$\mathrm{ND}(0.29)$	$\mathrm{ND}(0.29)$	$\mathrm{ND}(1)$	$\mathrm{ND}(0.58)$	$\mathrm{ND}(0.29)$	$\mathrm{ND}(0.29)$	$\mathrm{ND}(1)$	$\mathrm{ND}(1)$	--	$\mathrm{ND}(0.58)$	ND(5)	$\mathrm{ND}(10) \mathrm{U}$	$36^{\text {ca }}$
$\mathrm{ND}(0.2)$	$\mathrm{ND}(0.2)$	$\mathrm{ND}(1)$	$\mathrm{ND}(0.4)$	$\mathrm{ND}(0.2)$	$\mathrm{ND}(0.2)$	$\mathrm{ND}(1)$	$\mathrm{ND}(1)$	--	$\mathrm{ND}(0.4)$	$\mathrm{ND}(5)$	$54{ }^{\text {ca }}$	ND(2)
$\mathrm{ND}(0.12)$	$\mathrm{ND}(0.12)$	$\mathrm{ND}(1)$	$22^{\text {cu }}$	$\mathrm{ND}(0.12)$	$\mathrm{ND}(0.12)$	ND(1)	$\mathrm{ND}(1)$	--	$\mathrm{ND}(0.24)$	$29^{\text {a }}$	ND(10)UJ	$\mathrm{ND}(1.2)$
$\mathrm{ND}(0.13)$	${ }^{\text {cta }}$	$\mathrm{ND}(1)$	$\mathrm{ND}(0.26)$	$\mathrm{ND}(0.13)$	$\mathrm{ND}(0.13)$	$\mathrm{ND}(1)$	$6 \mathrm{~J}^{\text {ca }}$	--	$18^{\text {cid }}$	ND(5)	$35 \mathrm{~J}^{\text {a }}$	$37^{\text {ca }}$
ND(0.033)	ND(0.033)	$\mathrm{ND}(1)$	ND(0.066)	ND(0.033)	ND(0.033)	$\mathrm{ND}(1)$	ND(1)	--	ND(0.066)	ND(5)	ND(10)UJ	ND(0.33)
ND(0.033)	ND(0.033)	$\mathrm{ND}(1)$	ND(0.066)	ND(0.033)	$\mathrm{ND}(0.033)$	$\mathrm{ND}(1)$	$\mathrm{ND}(1)$	--	$\mathrm{ND}(0.066)$	ND(5)	ND(10) UJ	$\mathrm{ND}(0.33)$
---		ND(1)	$22^{\prime \prime}$	---	---	ND(1)	$6{ }^{\circ \times}$	--	18	29°	$89 \times$	73

TABLE 7
SUMMARY OF PCB RESULTS
GENERAL MOTORS CORPORATION
GMPT- WILLOW RUN
YPSILANTI, MICHIGAN

CRA-092M	CRA-096M	CRA-096M	CRA-096M	CRA-102M	CRA-111R	CRA-111R
O-17358-033104-MM-552	$\begin{gathered} \text { O-17358- } \\ 012004-M M- \\ 516 \end{gathered}$	$\begin{gathered} \text { O-17358- } \\ 012004-M M- \\ 517 \end{gathered}$	$\begin{gathered} \text { O-17358- } \\ \text { 012204-MM- } \\ 517 \end{gathered}$	$\begin{gathered} \text { O-17358- } \\ 012004-M M- \\ 519 \end{gathered}$	$\begin{gathered} O-17358- \\ 012004-M M- \\ 514 \end{gathered}$	$\begin{gathered} O-17358- \\ 012004-M M- \\ 515 \end{gathered}$
3/31/2004	1/20/2004	1/20/2004	1/22/2004	1/20/2004	1/20/2004	1/20/2004

$\mathrm{ND}(1.9)$ $\mathrm{ND}(2.2)$ $\mathrm{ND}(1.7)$ $\mathrm{ND}(2.9)$ $\mathrm{ND}(2)$ $12^{\text {al }}$ $\mathrm{ND}(1.3)$ $\mathrm{ND}(0.33)$ $\mathrm{ND}(0.33)$ $12^{\text {"un }}$

$\mathrm{ND}(1)$
ND (1)
$\mathrm{ND}(1)$
ND(1)
$\mathrm{ND}(1)$
$4.7^{\text {a }}$
ND(1)
ND (1)
$\mathrm{ND}(1)$
4.7

---	ND(1)	ND (2)	ND (2)	$\mathrm{ND}(0.38)$
---	ND(1)	ND (2)	ND (2)	$\mathrm{ND}(0.44)$
---	ND(1)	ND (2)	ND (2)	$\mathrm{ND}(0.34)$
---	$\mathrm{ND}(1)$	ND (2)	ND (2)	$\mathrm{ND}(0.58)$
---	$\mathrm{ND}(1)$	ND (2)	ND (2)	$\mathrm{ND}(0.4)$
---	$\mathrm{ND}(1)$	$17{ }^{\text {ca }}$	$18{ }^{\text {a }}$	$15^{\text {ca }}$
---	ND (1)	ND(2)	ND(2)	ND(0.26)
---	ND(1)	ND (2)	ND (2)	$\mathrm{ND}(0.066)$
---	ND (1)	ND(2)	ND (2)	$\mathrm{ND}(0.066)$
---	ND(1)	175	187	15

$\mathrm{ND}(0.0008)$	$\mathrm{ND}(0.0002)$
$\mathrm{ND}(0.0008)$	$\mathrm{ND}(0.0002)$
--	--
--	--

$\operatorname{ND}(1.9)$
$\mathrm{ND}(2.2)$
$\mathrm{ND}(1.7)$
$\mathrm{ND}(2.9)$
$\mathrm{ND}(2)$
$\mathrm{ND}(1.2)$
$\mathrm{ND}(1.3)$
$\mathrm{ND}(0.33)$
$\mathrm{ND}(0.33)$
-
--

ND (2) ND(2)	
	$\mathrm{ND}(2)$
	$\mathrm{ND}(2)$
	ND(2)
	$2.4{ }^{\text {ca }}$
	ND(2)
	$\mathrm{ND}(2)$
	$\mathrm{ND}(2)$
	2.4"

CRA

CRA-138M	CRA-202M	CRA-202M
	O-17358-	
	$012004-M M-$	
O-17358-033104-MM-560	512	O-17358-033004-MM-542
3/31/2004	$1 / 20 / 2004$	$3 / 30 / 2004$

PRIVILEGED AND CONFIDENTIAL PREPARED AT THE REQUEST OF COUNSEL

CRA-202M	CRA-210M-B
	$0-17358-$
	$012004-M M-$
O-17358-033004-MM-543	513
$3 / 30 / 2004$	$1 / 20 / 2004$

CRA-215M-B	CRA-229M	CRA-235RB	CRA-241M	CRA-244R	CRA-300M	CRA-301M	CRA-408M-S	CRA-408M-S
O-17358-033004-MM-540	$\begin{gathered} O-17358- \\ 012004-M M- \\ 525 \end{gathered}$	O-17358-033004-MM-545	$\begin{gathered} O-17358- \\ 012004-M M- \\ 521 \end{gathered}$	$\begin{gathered} O-17358- \\ 012004-M M- \\ 526 \end{gathered}$	O-17358-033104-MM-558	O-17358-033104-MM-557	$\begin{gathered} O-17358- \\ \text { 012104-MM- } \\ 524 \end{gathered}$	$\begin{gathered} O-17358- \\ 012304-M M- \\ 524 \end{gathered}$
3/30/2004	1/20/2004	3/30/2004	1/20/2004	1/20/2004	3/31/2004	3/31/2004	1/21/2004	1/23/2004
$\mathrm{ND}(0.19)$	ND(10)	$\mathrm{ND}(0.19)$	ND(10)	ND(1)	$\mathrm{ND}(1.9)$	$\mathrm{ND}(0.19)$	ND(10)	---
$\mathrm{ND}(0.22)$	ND(10)	$\mathrm{ND}(0.22)$	ND(10)	ND(1)	$\mathrm{ND}(2.2)$	$\mathrm{ND}(0.22)$	ND(10)	---
$\mathrm{ND}(0.17)$	$\mathrm{ND}(10)$	$\mathrm{ND}(0.17)$	$\mathrm{ND}(10)$	$\mathrm{ND}(1)$	$\mathrm{ND}(1.7)$	$\mathrm{ND}(0.17)$	$\mathrm{ND}(10)$	--
$\mathrm{ND}(0.29)$	$\mathrm{ND}(10)$	$\mathrm{ND}(0.29)$	$\mathrm{ND}(10)$	$\mathrm{ND}(1)$	$\mathrm{ND}(2.9)$	$\mathrm{ND}(0.29)$	$\mathrm{ND}(10)$	---
$\mathrm{ND}(0.2)$	$\mathrm{ND}(10)$	$\mathrm{ND}(0.2)$	$\mathrm{ND}(10)$	ND(1)	$\mathrm{ND}(2)$	$\mathrm{ND}(0.2)$	ND(10)	---
$\mathrm{ND}(0.12)$	ND(10)	$\mathrm{ND}(0.12)$	ND(10)	ND(1)	$\mathrm{ND}(1.2)$	$\mathrm{ND}(0.12)$	ND(10)	---
$\mathrm{ND}(0.13)$	$\mathrm{ND}(10)$	$\mathrm{ND}(0.13)$	$\mathrm{ND}(10)$	$\mathrm{ND}(1)$	$\mathrm{ND}(1.3)$	$12^{\text {c/ }}$	$\mathrm{ND}(10)$	---
ND(0.033)	ND(10)	ND(0.033)	$\mathrm{ND}(10)$	$\mathrm{ND}(1)$	$\mathrm{ND}(0.33)$	ND(0.033)	ND(10)	---
ND(0.033)	ND(10)	ND(0.033)	ND(10)	ND(1)	$\mathrm{ND}(0.33)$	ND(0.033)	$\mathrm{ND}(10)$	---
---	$\mathrm{ND}(10)$	---	ND(10)	$\mathrm{ND}(1)$	---	${ }^{12 \times}$	$\mathrm{ND}(10)$	---

