

April 17, 2013

Mr. Richard Conforti Environmental Engineer Michigan Department of Environmental Quality Permit and Corrective Action Unit Office of Waste Management and Radiological Protection P.O. Box 30241 Lansing, MI 48909-7741

> RE: RACER Trust Coldwater Road Former WWTP Closure FILE: 15388/50137

Dear Mr. Conforti

On behalf of Revitalizing Auto Communities Environmental Response Trust (RACER Trust), we are submitting one hard copy and one electronic copy of the Addendum to the June 1999 Closure Certification Report for the Former Wastewater Treatment Plant at the Coldwater Road facility in Flint, Michigan (EPA I.D. MID 005 356 860). Since the former wastewater treatment plant is the last area to be closed at the Coldwater Road facility under the Consent Order, RACER Trust requests closure approval for the entire Coldwater Road facility. Currently post-closure activities associated with the landfill are continuing in accordance with the approved Post-Closure Care Plan.

Please contact David Favero with RACER Trust at (217) 741-6235 or Tony Finch with O'Brien & Gere at (248) 477-5701 if you have any questions or comments.

Very truly yours, O'Brien & Gere Engineers, Inc.

Scott Cormier

Vice President

cc: David Favero, RACER Trust, Ypsilanti, MI Joseph Rogers, MDEQ, OWMRP, Lansing, MI (w/out report) John McCabe, MDEQ, OWMRP, Lansing, MI (w/out report)

37000 Grand River Avenue, Suite 260, Farmington Hills, MI 48335 | p 248-477-5701 | f 248-477-5962 | www.obg.com

ADDENDUM TO THE JUNE 1999 CLOSURE CERTIFICATION REPORT FOR THE FORMER WASTEWATER TREATMENT PLANT

> RACER Trust Coldwater Road Facility 6220 Horton Avenue Genesee Township, Michigan (MID 005 356 860)

> > RACER Trust Ypsilanti, Michigan

> > > April 2013

Addendum to the June 1999 Closure Certification Report for the Former Wastewater Treatment Plant

Coldwater Road Facility 6220 Horton Avenue Genesee Township, Michigan (MID 005 356 860)

> Prepared for: RACER Trust Ypsilanti, Michigan

SCOTT L. CORMIER, PE - VICE PRESIDENT O'Brien & Gere Engineers, Inc.

TABLE OF CONTENTS

List of Tables	iii
List of Figures	iii
List of Appendices	iii
List of Attachments	iii
Closure Certification	V
Professional Engineer's Certification	v
Owner's Certification	vi
1 Introduction	1
1.1 Site History	1
1.1.1 Site Description	1
1.1.2 Site Ownership	1
1.1.3 RCRA Closure	1
1.2 Former Wastewater Treatment Plant Background	2
1.2.1 Basin Investigation Report	3
Soil	3
Groundwater	4
1.2.2 2008 Addendum Report	4
Summary of Subsurface Conditions	5
First Quarter Groundwater Sampling Results	5
Second Quarter Groundwater Sampling Results	5
Third Quarter Groundwater Sampling Results	6
Fourth Quarter Groundwater Sampling Results	6
2008 Addendum Report Conclusion	7
1.2.3 Facility Response to MDEQ Comments to the 2008 Addendum Report	7
1.3 Contaminant Distribution	8
1.4 Applicable Closure Criteria	9
2 Summary of Former WWTP Investigation	11
2.1 Monitoring Well Installation	11
2.2 Groundwater Sample Collection and Analysis	11
2.3 Data Validation	12
2.4 Investigation Results	13
2.4.1 Summary of Subsurface Conditions	13
2.4.2 First Quarter Groundwater Sampling Results	13
2.4.3 Second Quarter Groundwater Sampling Results	14
2.4.4 Site-Specific Background Value for Manganese	14
3 Migration Pathway Evaluation	15
3.1 Migration Pathway Evaluation	15

RACER 2013 ADDENDUM TO JUNE 1999 CLOSURE CERTIFICATION REPORT – FORMER WWTP

Conclusions	18
References	19

RACER 2013 ADDENDUM TO JUNE 1999 CLOSURE CERTIFICATION REPORT – FORMER WWTP

LIST OF TABLES

Table 1	Groundwater Analytical Results – November 2011 and April 2012
Table 2	Groundwater Elevation Data

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Monitoring Well Locations
Figure 4	Geologic Cross Section
Figure 5	Groundwater Sampling Exceedances 2011 Investigation
Figure 6	Groundwater Elevations April 5, 2012
Figure 7	Groundwater Delineation Wells

LIST OF APPENDICES

Appendix A	Former Wastewater Treatment Plant Basin Investigation Analytical Results	
Appendix B	Former Wastewater Treatment Plant Addendum to the June 1999 Closure Certification Report Analytical Results	
Appendix C	ProUCL Site-Specific Background Calculations for the Former WWTP	
Appendix D	Soil Boring Logs	
Appendix E	Monitoring Well Construction Details	
Appendix F	Data Validation Report – November 1, 2011	
Appendix G	Data Validation Report – April 5, 2012	

LIST OF ATTACHMENTS

- Attachment A MDEQ Comments on September 12, 2008, Addendum to the June 1999 Closure Certification Report for the Former WWTP at the Coldwater Road Landfill Facility
 Attachment B Response to Comments Addendum to the June Closure Certification Report for the Former Wastewater Treatment Plant
- Attachment C Acceptance of Response to Resource Management Division (RMD) March 24, 2009, letter comments on the Addendum to the June 1999 Closure Certification Report for the Former WWTP at the Coldwater Road Landfill Facility

RACER 2013 ADDENDUM TO JUNE 1999 CLOSURE CERTIFICATION REPORT - FORMER WWTP

List	of Acronym	S
------	------------	---

CACO	Corrective Action Consent Order
CLP	Contract Laboratory Program
COCs	Chemicals of Concern
CRA	Conestoga-Rovers & Associates
fbg	Feet below grade
GC/MS	Gas Chromatograph/Mass Spectrometer
GM	General Motors
GSI	Groundwater-Surface Water Interface
GWNIAA	Groundwater Not In An Aquifer
HSA	Hollow Stem Auger
ICP	Inductively Coupled Plasma
MDEQ	Michigan Department of Environmental Quality
MDL	Method Detection Limit
MLC	Motors Liquidation Corporation
NREPA	Natural Resources and Environmental Protection Act
ppb	Parts per billion
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
RCRA	Resource Conservation and Recovery Act
RMA	Remaining Materials Area
RRD	Remediation and Redevelopment Division
SAP	Sampling and Analysis Plan
SOP	Standard Operating Procedure
SVOCs	Semi-Volatile Organic Compounds
SWMU	Solid Waste Management Unit
TDL	Target Detection Limit
USEPA	United States Environmental Protection Agency
VOCs	Volatile Organic Compounds
WHMD	Waste and Hazardous Material Division
WWTP	Wastewater Treatment Plant

iv | Final: April 2013

CLOSURE CERTIFICATION

This section presents the certification statement as required by 40 CFR 264.115 and Part 111, Hazardous Waste Management, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451), Mich. Admin. Code Rule 299.9613(2).

PROFESSIONAL ENGINEER'S CERTIFICATION

I, Scott L. Cormier, a Professional Engineer in the State of Michigan, certify under penalty of law that this document and attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

O'BRIEN & GERE ENGINEERS, INC.

Scott L. Cormier, PE **Vice** President

OBRIEN 5 GERE

i:\racer-trust.15388\50137.coldwater-landf\docs\reports\wwtp closure rpt\final report files\racer closure final report - final 4-16-

OWNER'S CERTIFICATION

I, David Favero, representing RACER Trust certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

RACER Trust

David Favero

Deputy Cleanup Manager- Michigan

1 INTRODUCTION

This Addendum to the June 1999 Closure Certification Addendum Report for the Former Wastewater Treatment Plant (WWTP) at the Coldwater Road Facility (2013 Addendum Report) documents final closure of the former WWTP at the RACER Trust Coldwater Road Landfill facility in Flint, Michigan.

1.1 SITE HISTORY

1.1.1 Site Description

The RACER Trust Coldwater Road Landfill facility is located north of the RACER Trust former Peregrine U.S., Inc. (RACER Trust former Peregrine property) property as shown on the Site Location Map, Figure 1. The RACER Trust Coldwater Road Landfill facility consists of the wastewater treatment sludge monofill landfill, former WWTP (decommissioned and demolished in 1999), restored wetlands, and leachate accumulation facility. This facility is bordered on the south by the RACER Trust former Peregrine property, which formerly contained several manufacturing buildings and support facilities. The buildings on the RACER Trust former Peregrine property were decommissioned and demolished between 1999 and 2001. A figure depicting the division between the RACER Coldwater Road Landfill facility and the RACER Trust former Peregrine property is included as Figure 2.

1.1.2 Site Ownership

On December 10, 1996, an asset Purchase Agreement for the manufacturing portion of the Coldwater Road site, which is now referred to as the "RACER Trust former Peregrine property, MID 000 020 743", was signed by General Motors (GM) and Peregrine. GM retained ownership of the northern portion, which is now referred to as the "RACER Trust Coldwater Road Landfill facility MID 005 356 860" and sold the manufacturing facility (Former Peregrine Property). In August 1999, REALM (a wholly owned subsidiary of GM) took back ownership of the manufacturing facility from Peregrine. In April 2000 a MDEQ Notification of Regulated Waste Activity form (EQP5150) and United States Environmental Protection Agency (USEPA) Hazardous Waste Permit Application Part A (USEPA form 8700-23) were submitted to document change of ownership of the landfill and the former WWTP property from GM to REALM. REALM, a wholly-owned subsidiary of GM, managed the Resource Conservation and Recovery Act (RCRA) closure program for the REALM Coldwater Road Landfill facility under the 1992 Corrective Action Consent Order (CACO) until REALM filed for bankruptcy in October 2009 at which time Motors Liquidation Company (MLC), which was the former GM, assumed management of the property. The RACER Trust was created on March 31, 2011 by the U.S. Bankruptcy Court to clean up and position for redevelopment properties and facilities owned by the former GM and its subsidiaries. The Coldwater Road Landfill facility (including the former WWTP) and the former Peregrine property were two of the properties assigned to the RACER Trust. The RACER Trust currently manages the RCRA closure program for the Coldwater Road Landfill facility under the 1992 CACO.

1.1.3 RCRA Closure

Several of the RCRA units and Solid Waste Management Units (SWMUs) were closed in accordance with the 1989 Closure Plan during construction of the on-site hazardous waste landfill between 1990 and 1994. Roy F. Weston, Inc. (Weston) provided quality assurance oversight and closure verification during this construction phase. As documented in the Draft Closure Certification Documentation Package (Weston, November 1994), there were several units not closed at the completion of landfill construction. Closure of these remaining units was completed between 1994 and 2003 with oversight provided by O'Brien & Gere. Closure documentation for all units covered under the CACO for the RACER Trust Coldwater Road Landfill facility is provided in the following seven final closure reports:

- Final Closure Certification Documentation Package -Decontamination Pits and Sump, Chromium Reduction Basins at the WWTP, September 1998, Roy F. Weston, Inc. (Weston).
- Subsurface Investigation of Decontamination Pits/Sump and Chromium Reduction Basins Report, June 1999, O'Brien & Gere Engineers, Inc. (O'Brien & Gere).

1 | Final: April 2013

- Final Closure Certification, former Drum Storage Area and Waste Pile Pad, June 1999, Weston.
- Part I Final Closure Certification Documentation, November 2000, O'Brien & Gere and subsequent data submittals.
- Part II Final Closure Certification Documentation, November 2000, Weston and subsequent data submittals.
- Addendum to the June 1999 Closure Certification Report for the Former Drum Storage Area at the Former Peregrine, U.S., Inc. Property at the Coldwater Road Facility. January 2005, O'Brien and Gere.
- Addendum to the June 1999 Closure Certification Report for the Former Drum Storage Area at the Former Peregrine, U.S., Inc. Property at the Coldwater Road Facility. September 2008, O'Brien and Gere.
- The former WWTP was not listed in the 1992 CACO for the Site.

The regulatory background for the WWTP is discussed in Section 1.2.

1.2 FORMER WASTEWATER TREATMENT PLANT BACKGROUND

The former WWTP at the Coldwater Road Landfill facility is located at the southwestern corner of the property as shown on Figure 2 (Site Plan). The WWTP was constructed in the early 1950s to treat plating waste streams as generated by the manufacturing facility. Plating operations ran from 1953 to 1987. Process wastewater from the former manufacturing plant discharged to the former WWTP in force mains. Chemical/physical treatment of the process wastewater was performed at the former WWTP on a batch basis. The chromium, nickel, and acid/alkali wastes were combined and treated for heavy metal removal, whereas the copper-cyanide waste was treated separately.

Use of the WWTP was terminated in December 1996 when the manufacturing plant was sold to Peregrine, Inc. The WWTP building and associated basins were subsequently decontaminated and demolished between December 1998 and May 1999.

Concurrent to WWTP demolition, REALM voluntarily implemented an investigation at the former WWTP to evaluate potential releases from the surrounding basins. The former WWTP basin investigation was performed in accordance with procedures outlined in O'Brien & Gere's January 1999 Quality Assurance Project Plan (QAPP) and Three Basement Basin Sampling and Analysis Plan (SAP) developed for the Coldwater Road facility. The basin investigation was performed between September 1998 and May 1999. It should be noted that during this investigation three soil borings were proposed to be monitoring wells. However, wet subsurface soil conditions were not observed during soil boring installation, therefore no wells were installed.

The basin investigation included collection of subsurface soil samples underneath and around the former WWTP and surrounding basins, concrete samples from the basins and former WWTP basement floor, rinsate samples, and groundwater samples from two existing monitoring wells (MW-11 and MW12) located southwest of the former WWTP. The former WWTP layout and previous soil sample locations are shown on Figure A-1 in Appendix A. Results of the basin investigation were reported to the MDEQ in the Former WWTP Basin Investigation Report dated November 2000. The analytical results summary tables from the Basin Investigation Report are included in Appendix A. The results supported closure approval and no further action for the former WWTP basins and surrounding area. However, in a letter from the MDEQ Waste and Hazardous Material Division (WHMD) dated March 24, 2005, the MDEQ did not extend the "no further action" determination to the former WWTP. The MDEQ indicated that the no further action did not meet the requirements specified in Parts 111 and 201, specifically, the dissolved lead in groundwater was not delineated. The dissolved lead in groundwater analytical results from the WWTP basin investigation area are included in Appendix A, on page 5 of Table 1. A detailed discussion of the Basin Investigation Report is included in Section 1.2.1.

A Work Plan was prepared and submitted to the MDEQ in April 2006, which addressed the issues raised by the MDEQ in their March 24, 2005 letter. The Work Plan proposed investigating the concentrations of dissolved lead in groundwater at the former WWTP. The MDEQ reviewed the Work Plan and after minor modifications were included, the Work Plan was approved in a letter dated January 26, 2007. Results of the December 2006 Work Plan investigation were reported to the MDEQ in the 2008 Addendum Report dated September 2008. The

2 | Final: April 2013

analytical results summary tables from the 2008 Addendum Report are included in Appendix B. The results supported closure approval and no further action for the former WWTP basins and surrounding area. However, in a letter from the MDEQ WHMD dated March 24, 2009, the MDEQ did not extend the "no further action" determination to the former WWTP. The MDEQ comments to the 2008 Addendum Report indicated that several issues remained unresolved; specifically, that the dissolved iron and manganese in groundwater were not delineated horizontally, and that one of the report's conclusions, that shallow groundwater at the site was not in an aquifer, could not be supported unless that designation is formally approved through submittal of a Groundwater Not In An Aquifer (GWNIAA) Determination. Additionally, in a teleconference call on May 4, 2009, the MDEQ expressed concern that volatile organic compounds (VOCs) in soil were not delineated vertically. A detailed discussion of the 2008 Addendum Report is included in Section 1.2.2.

A response to MDEQ comments on the 2008 Addendum Report was submitted to the MDEQ July 13, 2009 which addressed the GWNIAA issue and two of the three delineation concerns (iron and VOCs) that were raised by the MDEQ. The July 13, 2009 response also proposed an additional investigation to address the third delineation concern (dissolved manganese in groundwater). The MDEQ approved the response to their comments and approved the additional investigation in a letter dated September 26, 2011.

Section 1.2.3 of this 2013 Addendum Report summarizes the MDEQ comments to the 2008 Addendum Report and the response to those comments. Section 2.0 presents the results of the additional investigation. MDEQ comments to the 2008 Addendum Report are included in Attachment A, the July 13, 2009 response to MDEQ comments are included in Attachment B, and the MDEQ's letter accepting the response to comments (dated September 26, 2011) is included as Attachment C.

1.2.1 Basin Investigation Report

The COCs for soil and groundwater at the former WWTP identified through the Basin Investigation Report (November 24, 2000) were as follows:

Soil	Groundwater
Benzene	Lead (dissolved)
Cyanide	
Nickel	
1,2,4- trimethylbenzene	
Trichloroethene	

A summary of the Basin Investigation Report results follow:

Soil

Subsurface soil sample analytical results from the initial Basin Investigation Report indicated semi-volatile organic compounds (SVOCs) below the MDEQ Part 201 Generic Residential and Non-Residential Drinking Water Protection Criteria. The analytical results for the subsurface soil samples indicate concentrations of benzene, trichloroethene, 1,2,4-trimethylbenzene, nickel and cyanide above MDEQ Part 201 Generic Residential and Non-Residential and Non-Residential Drinking Water Protection Criteria.

Benzene was detected at a concentration of 200 parts per billion (ppb) in the soil sample from GB-18, located in the central deionized water basin. Trichloroethene was detected in two soil sample locations: GB-44 (west basement basin) and GB-47 (south of west basement basin), at concentrations of 570 ppb and 770 ppb respectively. Also, 1,2,4-trimethylbenzene was detected in two soil sample locations: GB-20 (east cyanide basin) at 3,120 ppb and GB-21 (west cyanide basin) at 2100 ppb.

3 | Final: April 2013

RACER 2013 ADDENDUM TO JUNE 1999 CLOSURE CERTIFICATION REPORT – FORMER WWTP

Methylene chloride was detected in samples GB-42 through GB-47 above the MDEQ Generic Residential and Non-Residential Drinking Water Protection criteria; however, the results of these samples indicated methylene chloride was detected in the laboratory blanks and should be considered blank contamination. Also, the vinyl chloride detection limit achieved by the laboratory is above the MDEQ Part 201 Generic Residential and Non-Residential Drinking Water Protection criteria; however, these detections are half of the Target Detection Limit (TDL) for method 5035/8260 (methanol preservation) listed in the Environmental Response Division (ERD) former Operational Memorandum #6, revision 5, dated November 16, 1998, the guidance at the time of investigation.

Nickel and cyanide concentrations were detected above the MDEQ Part 201 Generic Residential and Non-Residential Drinking Water Protection criteria in the following samples:

- Nickel GB-39 (WWTP basement floor north)
- Cyanide GB-25 (west alkali basin)

Tables summarizing the soil analytical results from the Basin Investigation Report are included in Appendix A and a figure depicting historical sample locations and MDEQ Part 201 criteria exceedances is included in Appendix A as Figure A-1.

Groundwater

Groundwater samples collected for the Basin Investigation Report were analyzed for VOCs, SVOCs, dissolved metals (cadmium, chromium, copper, lead, nickel, and zinc), and cyanide during the initial basin investigation. The results of the VOCs, SVOCs and cyanide analyses were below detection limits.

The results of the dissolved metals analyses were below Part 201 Generic Residential Drinking Water criteria, except for dissolved lead which was present at concentrations of 8 ppb in OBG MW-1 (duplicate value of 9 ppb), and in OBG MW-2 at 32 ppb.

Tables summarizing the groundwater analytical results from the Basin Investigation Report are included in Appendix A and a figure showing the locations of the monitoring wells and MDEQ Part 201 criteria exceedances is included as Figure A-2 in Appendix A.

Results of the basin investigation were reported to MDEQ in the Former WWTP Basin Investigation Report dated November 2000. However, MDEQ did not extend a 'no further action' determination to the former WWTP on the basis of the Basin Investigation report and previous closure certification submittals. MDEQ indicated that the 'no further action' did not meet the requirements specified in Parts 111 and 201, specifically, the dissolved lead in groundwater was not delineated and that the potential impact of COCs in soil were not completely addressed. Therefore, a work plan was developed (as noted in Section 1.2) and implemented to address MDEQ comments. The results of that investigation are included in the 2008 Addendum Report (Section 1.2.2).

1.2.2 2008 Addendum Report

This section describes results of the groundwater sampling and analysis conducted in the vicinity of the former WWTP. Sampling and analysis was conducted in accordance with procedures outlined in the MDEQ-approved Post-Closure Care Plan (PC Plan) (O'Brien & Gere, 2006), MDEQ-approved December 2006 Work Plan for the former WWTP and February 2006 QAPP developed for the REALM Coldwater Road Landfill facility. The objective of the investigation was to assess the extent of COCs impact to groundwater and assess the potential for previously detected constituents in soil to leach to groundwater.

O'Brien & Gere completed investigation of the former WWTP in a phased approach following MDEQ approval of the Work Plan. Initially the installation of monitoring wells was performed in May 2007 and subsequent groundwater monitoring was performed quarterly for one year (June 19, 2007 through March 18, 2008).

Groundwater samples were collected quarterly for four quarters using low-flow sampling methods per Attachment 5 of the MDEQ Remediation and Redevelopment Division (RRD) Operational Memorandum No. 2, in accordance with the MDEQ-approved PC Plan and December 2006 Work Plan. In accordance with the December

4 | Final: April 2013

2006 Work Plan, notifications to MDEQ were made 2 weeks prior to each groundwater sampling event via the Monthly Progress Reports submitted under the Post-Closure activities at the Site. The following discussions summarize the results of the quarterly groundwater monitoring program.

Summary of Subsurface Conditions

This section describes the subsurface conditions observed based on the installation of the monitoring wells (shown on Figure 3) and previously installed hydraulic probe borings at the former WWTP.

Subsurface soil conditions at the former WWTP consist of a clay unit from the original ground surface to a depth of 30 ft below grade with sand lenses observed ranging in thickness from non-existent (OBG MW-8) to 5 ft (OBG MW-5). The elevations shown on Table 1.1 below indicate that the sand lenses vary in elevation indicating a discontinuous perched zone condition at the former WWTP.

Well Location	Surface Elevation (NAVD 88)	Observed Sand Lens Elevation
OBG MW-1	809.46'	798.46-796.46'
OBG MW-2	812.45'	806.95-805.45' and 799.45-796.45'
OBG MW-3	807.47'	802.97-799.97'
OBG MW-4	810.10'	797.85-797.35'
OBG MW-5	813.05'	809.05-804.05'
OBG MW-6	813.02'	798.44-798.27'
OBG MW-7	810.23'	805.65-805.23' and 795.23-794.23'
OBG MW-8	814.72'	no sand lense observed

Table 1.1 Sand Lens Elevations

Sand lenses were observed in seven of the eight borings (OBG MW-1 – OBG MW-7) completed as monitoring wells under this investigation at the former WWTP. These locations are separated by previously installed borings in which a sand lens of the same elevation was not observed indicating the sand lenses are discontinuous in the vicinity of the former WWTP. A geologic cross section depicting the discontinuous sand lenses in the perched zone at the former WWTP area is included as Figure 4.

Following demolition of the former WWTP, approximately 3-4 ft of sand fill (offsite clean fill deemed inert by the supplier in accordance with NREPA Act 4512, Part 201) was placed over the former WWTP building and basins.

First Quarter Groundwater Sampling Results

Analytical results for the first quarter groundwater sampling event, performed in June 2007 and reported in the 2008 Addendum Report, indicated no detections of VOCs above MDEQ Part 201 Generic Non-Residential Drinking Water criteria. Analytical results for the inorganics indicated a detection of total lead at OBG MW-5 of 0.140 mg/l, which is above the MDEQ Part 201 Generic Non-Residential Drinking Water criterion (.004 mg/l). The analytical result for dissolved lead at this location was below the method detection limit (MDL). Also, at the OBG MW-5 location, there was a detection of cyanide of 0.295 mg/l, which is above the MDEQ Part 201 Generic Non-Residential Drinking Water criterion (0.200 mg/l). A table summarizing the first quarter groundwater analytical results is included as Table 1 in Appendix B.

Second Quarter Groundwater Sampling Results

Analytical results for the second quarter groundwater sampling event (September 2007) indicated no concentrations of VOCs above the MDEQ Part 201 Generic Non-Residential Drinking Water Criteria, comparable to the first quarter sampling results. Analytical results for the inorganics indicate concentrations for total chromium, total nickel and total lead either below MDLs or MDEQ Part 201 Generic Non-Residential Drinking

Water Criteria. No dissolved samples were collected for this sampling event in accordance with the Work Plan since groundwater turbidity did not stabilize above 10 NTU. Analytical results for total cyanide indicate no concentrations above MDEQ Part 201 Generic Non-Residential Drinking Water Criteria.

A table summarizing the 2008 Addendum Report second quarter groundwater analytical results is included as Table 3 in Appendix B.

During the second quarter sampling event, the MDEQ WHMD collected split groundwater samples (at locations OBG MW-5, OBG MW-7 and OBG MW-8) for laboratory analysis. In addition to the parameters approved under the December 2006 Work Plan, MDEQ also ran analysis for the following parameters (totals): antimony, arsenic, barium, beryllium, cadmium, cobalt, copper, manganese, molybdenum, mercury, selenium, silver, thallium, vanadium, zinc and iron. The results of the MDEQ analysis indicated concentrations of total arsenic, iron and manganese above the MDEQ Part 201 Generic Non-Residential Drinking Water Criteria. Therefore, a Work Plan Amendment was prepared and submitted to MDEQ on January 8, 2008 which included adding these parameters to the analytical list for the remaining third and fourth quarter groundwater sampling events.

Third Quarter Groundwater Sampling Results

Based on the results of the MDEQ split groundwater sampling during the second quarterly sampling event, additional parameters (arsenic, iron and manganese) were added to the third quarter sampling parameter list in accordance with the MDEQ-approved January 8, 2008 Amendment to the Work Plan.

Analytical results for the third quarter groundwater sampling event (December 2007) indicate no concentrations of VOCs above the MDEQ Part 201 Generic Non-Residential Drinking Water Criteria, comparable to the first and second quarterly sampling results. Analytical results for the inorganics indicate concentrations for total arsenic, total chromium, total nickel and total lead either below MDLs or MDEQ Part 201 Generic Non-Residential Drinking Water Criteria.

Groundwater analytical results indicated concentrations above the MDEQ Part 201 Non-Residential Drinking Water Criteria as follows:

- Total iron for the monitoring wells sampled during this event (OBG MW-1 through OBG MW-8)
- Total manganese for the groundwater monitoring well groundwater samples analyzed, except for OBG MW-7.

In addition to a groundwater sample collected for total analysis, a dissolved groundwater sample was collected from OBG MW-5 due to the groundwater turbidity not stabilizing above 10 NTU. Analytical results for the dissolved metals analysis indicate concentrations of dissolved chromium, dissolved lead and dissolved nickel either below MDLs or MDEQ Part 201 Generic Non-Residential Drinking Water Criteria. Analytical results for dissolved arsenic, dissolved iron and dissolved manganese indicate concentrations above MDEQ Part 201 Generic Non-Residential Drinking Vater Criteria. Analytical results for total cyanide indicate no concentrations above MDEQ Part 201 Generic Non-Residential Drinking Water Criteria.

A summary of the 2008 Addendum Report third quarter groundwater analytical results is included as Table 4 in Appendix B.

Fourth Quarter Groundwater Sampling Results

6 | Final: April 2013

Analytical results for the fourth quarter groundwater sampling event (March 2008) indicate no concentrations of VOCs above MDEQ Part 201 Generic Non-Residential Drinking Water Criteria. Fourth quarter groundwater sample results are comparable to the previous three quarterly sampling results. Analytical results for the inorganics indicate concentrations for total arsenic, total chromium, total nickel, total lead and cyanide either below MDLs or MDEQ Part 201 Generic Non-Residential Drinking Water Criteria. Groundwater analytical results also indicate concentrations above MDEQ Part 201 Non-Residential Drinking Water Criteria as follows:

- Total iron for monitoring well groundwater samples from OBG MW-3, OBG MW-5, OBG MW-6 and OBG MW-7
- Total manganese for the monitoring wells sampled during this event.

A dissolved groundwater sample was also collected from OBG MW-5 due to the groundwater turbidity stabilizing above 10 NTU. Analytical results for the dissolved metals analysis indicate concentrations of dissolved arsenic, chromium, dissolved iron, dissolved lead and dissolved nickel either below MDLs or MDEQ Part 201 Generic Non-Residential Drinking Water Criteria. Analytical results for dissolved manganese indicate concentrations above MDEQ Part 201 Generic Non-Residential Drinking Water Criteria.

Analytical results for total cyanide indicate no concentrations above MDEQ Part 201 Generic Non-Residential Drinking Water Criteria.

A table summarizing the 2008 Addendum Report fourth quarter groundwater analytical results is included as Table 5 in Appendix B.

2008 Addendum Report Conclusion

Based on the previous soil analytical results and the quarterly groundwater sampling results included in the 2008 Addendum Report indicating concentrations of arsenic, iron, lead, manganese and cyanide above Part 201 Generic Non-Residential Drinking Water Criteria, a migration pathway analysis was performed. Since the migration pathways applicable to the soil impacts at the former WWTP were addressed in the November 2000 Basin Investigation Report, the 2008 Addendum Report addressed the pertinent groundwater migration pathways.

Based on the evaluation of the pertinent groundwater migration pathways for the former WWTP and closure activities presented previously for the former WWTP, the 2008 Addendum Report concluded that closure of the former WWTP pursuant to the NREPA Part 111 had been achieved. MDEQ provided comments on the 2008 Addendum Report in a letter dated March 24, 2009 (Attachment A). MDEQ comments noted that the report did not demonstrate that closure had been achieved. MDEQ indicated that final closure of the area could not occur until it was documented that the extent of impact on-site was assessed. Specifically the letter noted that the dissolved iron and manganese in groundwater was not delineated horizontally, and that one of the report's conclusions, that shallow groundwater at the site was not in a aquifer, could not be supported unless that designation is formally approved through submittal of a GWNIAA Determination. Additionally, in a teleconference call on May 4, 2009, MDEQ expressed concern that VOCs in soil were not delineated vertically. MDEQ comments to the 2008 Addendum Report are included as Attachment A.

REALM responded to the MDEQ comments in a submittal dated July 13, 2009. The response to MDEQ comments are summarized below in Section 1.2.3 and are also included as Attachment B.

1.2.3 Facility Response to MDEQ Comments to the 2008 Addendum Report

MDEQ provided comments to the 2008 Addendum Report in a letter dated March 24, 2009 (Attachment A) and also in a teleconference call conducted on May 4, 2009. MDEQ indicated that the dissolved iron and manganese in groundwater were not delineated horizontally, and that one of the report's conclusions, that shallow groundwater at the site was not in an aquifer, could not be supported unless that designation is formally approved through submittal of a GWNIAA Determination. Additionally, in the teleconference call on May 4, 2009 MDEQ expressed concern that VOCs in soil were not delineated vertically. A response to the MDEQ comments on the 2008 Addendum Report was submitted to MDEQ in a letter dated July 13, 2009 (Attachment B).

The following summarize the response to the MDEQ comments:

7 | Final: April 2013

Iron in Groundwater. Section R 299.5707, R299.5706a(5)(b) of the MI Part 201 regulations allows for a background concentration to be substituted for the generic cleanup criterion when the cleanup criterion is less than background. Therefore, background values were calculated for iron in groundwater at the former WWTP area. The background groundwater quality for iron was determined from the historical Coldwater Road Landfill Site (on-site) monitoring well data (dissolved concentrations). The background groundwater quality for iron was determined in accordance with MDEQ Sampling Strategies and Statistics Training Materials for Part 201 Cleanup Criteria 2002 (S³TM). The background threshold value for iron was calculated as 1.73 mg/l (Exhibit A to the July 13, 2009 response to comments in Attachment B of this report).

A table included in the response to comments summarized the iron groundwater results from the last two quarters of the quarterly sampling program (December 2007 and March 2008) compared to the site-specific background values and MDEQ Residential Health-Based Drinking Water criteria. The comparison that the results of the quarterly groundwater sampling program at the former WWTP are below the site-specific background concentration for iron, except for one sample collected during the December 2007 sampling event at well OBG MW-3 (1.78 mg/l). However, this detection of iron is below the Health-Based Drinking Water criterion (2.0 mg/l). Therefore, no additional sampling or investigation was necessary to assess the extent of iron detected in groundwater at the former WWTP area.

Manganese in Groundwater. Background values were calculated for manganese in groundwater at the former WWTP area in accordance with the rationale for iron. The background threshold value for manganese was calculated as 1.31 mg/l (Exhibit B to the July 13, 2009 response to comments in Attachment B).

One well location (OBG MW-3) exhibited concentrations of manganese above the calculated background concentration for the last two quarterly sampling events included in the 2008 Addendum Report. The July 13, 2009 response to comments proposed that potential off-site exposure would be addressed through the installation and sampling of two monitoring wells at the west property boundary to determine the concentrations of manganese in groundwater.

It was further noted that if the results indicate manganese concentrations were below the site-specific background thus indicating that off-site migration was not occurring, closure of the area would be pursued through an Addendum to the Closure Certification Report. The site deed restriction would be expanded to prohibit use of the groundwater at the entire site, including the former WWTP area. The current Declaration of Restrictive Covenant prohibits the construction of wells or other devices to extract groundwater for consumption, irrigation, dewatering or any other use at two areas of the Coldwater Road Landfill Site: the Remaining Materials Area (RMA) and the landfill.

Groundwater Not in an Aquifer. As noted in the July 13, 2009 response to comments, the facility will not rely on a GWNIAA determination for Site closure, but instead document that there are no exceedances of the Residential Health-Based Drinking Water Criteria or site-specific background values at the western property boundary, thus demonstrating no off-site exposure (i.e., drinking contaminated groundwater) issues.

Volatile Organic Compounds at Well OBG MW-5. MDEQ recommended a deep monitoring well be installed at the site to assess the potential vertical extent of VOC impact to groundwater. The Natural Resources and Environmental Protection Act (NREPA), 1994 PA 451 R299.5528 states that a remedial investigation shall define the nature and extent of contamination in excess of the applicable generic residential cleanup criteria. No VOCs were detected at OBG MW-5 (or at adjacent wells OBG MW-6 or OBG MW-8) above the Generic Residential Drinking Water criteria during four rounds of quarterly sampling. Therefore, no further investigation is required under NREPA R299.5528.

In a letter dated September 26, 2011, MDEQ indicated they reviewed the July 13, 2009 response to comments regarding the 2008 Addendum Report for compliance with applicable regulations and the response to comments were acceptable and the additional investigation work could proceed.

1.3 CONTAMINANT DISTRIBUTION

The chemicals of concern (COCs) at the former WWTP were identified through the Basin Investigation Report (November 24, 2000) and the 2008 Addendum Report. The COCs were defined as those chemicals in which analytical results exceed MDEQ Part 201 Generic Non-Residential Drinking Water Protection Criteria for soil and the Part 201 Generic Non-Residential Drinking Water. The following is a list of the COCs at the former WWTP:

O'BRIEN & GERE

Soil	Groundwater
Benzene	Iron (total and dissolved)
Cyanide	Lead (dissolved)
Nickel	Manganese (total and dissolved)
1,2,4- trimethylbenzene	
Trichloroethene	

Sections describing the specific distribution of impact in soil and groundwater at the former WWTP are included in Section 1.2.1 (Former Basin Investigation) and Section 1.2.2 (2008 Addendum Report).

Results from the previous investigations are included as appendices to this report. Tables summarizing the soil and groundwater analytical results from the Basin Investigation Report are included in Appendix A and a figure depicting historical soil sample locations and MDEQ Part 201 criteria exceedances from the Basin Investigation Report is included in Appendix A as Figure A-1. A figure depicting groundwater locations and MDEQ Part 201 criteria exceedances from the Basin Investigation Report is included in Appendix A as Figure A-2.

Tables summarizing the analytical results for the 2008 Addendum Report are included in Appendix B. A figure depicting groundwater locations and MDEQ Part 201 criteria exceedances from the 2008 Addendum Report is included in Appendix B as Figure B-1.

1.4 APPLICABLE CLOSURE CRITERIA

Under the October 1992 CACO, the Coldwater Road Landfill facility had interim status pursuant to RCRA and was subject to the regulations and environmental protection standards of the Michigan Hazardous Waste Management Act, 1979 PA 64, as amended. However, following removal of a substantial volume of delisted non-hazardous soils from the Coldwater Road landfill facility, verification soil samples still exceeded the background cleanup criteria established in the 1989 Closure Plan. Therefore, GM requested modification to the 1989 Closure Plan in a letter dated April 23, 1997. The letter requested changing the 1989 Closure Plan cleanup criteria (site-specific background concentrations) to MDEQ Type B health-based cleanup criteria specified in the administrative rules promulgated pursuant to Part 201 of the NREPA, 1994, PA, as amended. This modification to the 1989 Closure Plan was approved by MDEQ in a letter dated June 26, 1998. Therefore, on-going activities at the Coldwater Road Landfill facility under the CACO follow MDEQ Part 201 cleanup criteria. Groundwater analytical results are compared to MDEQ Generic Non-Residential criteria or site-specific background values for this 2013 Addendum Report.

In a March 24, 2009 letter, MDEQ provided comments on the Addendum to the June 1999 Closure Certification Report for the Former Wastewater Treatment Plant submitted in September 2008. One of MDEQ's comments stated the Closure Certification Report does not demonstrate the extent of manganese concentrations detected in groundwater above the drinking water criterion has been delineated. O'Brien & Gere, on behalf of REALM, submitted a response to the March 24, 2009 MDEQ letter dated July 13, 2009. This letter proposed establishing a site-specific background value for dissolved manganese using the mean plus three standard deviations with a 95% Upper Confidence Level (UCL) for log-normally distributed data following MDEQ S³TM guidance. The data set included analytical data from monitoring wells B-7, B-9, B-18A, B-19AR, B-24R and B-28 for the time period of 1998 through 2008. MDEQ approved the calculated site-specific background for dissolved manganese in a letter from MDEQ dated September 26, 2011 (Attachment C).

During the preparation of this report, the method for calculating the site-specific background for dissolved manganese was revisited based upon a request by MDEQ regarding an adjacent RACER Trust property (former Peregrine property) and the site-specific background value proposed for inorganic constituents observed in

RACER 2013 ADDENDUM TO JUNE 1999 CLOSURE CERTIFICATION REPORT – FORMER WWTP

groundwater at that Site. MDEQ requested the use of Upper Tolerance Limits (UTLs) with 95% confidence and 95% coverage and using the ProUCL software program for calculating background values at the former Peregrine Site. In review of the data set used for the 2009 background calculation at the former WWTP, it was noted that well location B-9 data was used in the data set for the site-specific background calculation. In accordance with MDEQ S³TM guidance, the B-9 well location (located on the former Peregrine property) does not meet the criteria for a background location. Therefore, a recalculation of the site-specific background for dissolved manganese, with the removal of the B-9 data and in accordance with the MDEQ request of 95% UTL with 95% coverage, was proposed to MDEQ on January 22, 2013 via email transmission. MDEQ approved the recalculation method via email transmission on January 22, 2013. The new background calculation using the MDEQ requested method yields a background value of 0.708 mg/l for dissolved manganese at the former WWTP. A copy of the ProUCL output and data set used for the background calculation for dissolved manganese is included in Appendix C.

Total manganese concentrations in groundwater will be compared to this background value due to an insufficient data set to develop a separate a background value for total manganese. MDEQ RRD Operational Memorandum No. 2- Attachment 5 (Collection of Samples for Comparison to Generic Criteria) indicates groundwater inorganic constituents must be measured as totals for site investigation under Part 201. Therefore, as a conservative measure, the total manganese concentrations were compared to the dissolved manganese site-specific background values for delineation purposes.

This new background value will be the criterion for dissolved and total manganese in groundwater for delineating the extent of impact pursuant to Part 201 regulations.

A discussion on the groundwater analytical results compared to the applicable criteria is included in Section 2.

2 SUMMARY OF FORMER WWTP INVESTIGATION

This section describes the methods for investigation, sample collection, results of the groundwater sampling, and analysis conducted in the vicinity of the former WWTP. Sampling and analysis was conducted in accordance with procedures outlined in the MDEQ approved PC Plan (O'Brien & Gere, 2006), MDEQ-approved July 13, 2009 Work Plan for the former WWTP and February 2006 QAPP developed for the RACER Trust Coldwater Road Landfill facility. The objective of the investigation was to assess the extent of total and dissolved manganese in groundwater at two off-site monitoring wells.

O'Brien & Gere completed investigation of the former WWTP in a phased approach following MDEQ approval of the July 13, 2009 Work Plan. The installation of monitoring wells was performed on October 10, 2011 and two subsequent groundwater sampling events were performed on November 4, 2011 and April 5, 2012.

2.1 MONITORING WELL INSTALLATION

Two monitoring wells (OBG MW-9 and OBG MW-10) were installed in accordance with the PC Plan and MDEQapproved Work Plan, dated July 13, 2009 at the locations depicted on Figure 3. The wells were installed to assess the potential extent of total and dissolved manganese in groundwater south of the former WWTP building and surrounding basins.

The two wells were installed to an approximate depth of 15 ft below grade (fbg). This well depth was estimated based on the bottom of the former basins and basement of the former WWTP building (approximately 15 fbg), the depth of previously installed groundwater monitoring wells (15 to 20 fbg) and the stratigraphy (specifically the depth of water bearing units) at the new well locations.

Prior to well installation, the drill rig and drillers' tools were decontaminated using a portable steam cleaner. Drilling and sampling was completed utilizing the hollow stem auger (HSA) drilling method. Soil samples were collected using a 5-ft macrocore split barrel through the 4.25-inch HSAs. The soils were visually logged using the USCS soil classification system. Soil boring logs are included in Appendix D. Cuttings were spread on the ground surface at the Coldwater Road landfill Site.

Monitoring wells were constructed using 2-inch diameter, flush-threaded PVC casing. The screen length for the wells was 10 ft with slot openings of 0.010 inches and a PVC plug on the bottom of the screen. The annular space around the screen was back-filled with silt free silica sand (WB 40 grade) to a height no more than 2 ft above the top of the screen. A minimum 2-ft thick seal of hydrated bentonite was placed above the sand pack. The remaining annular space was filled with a cement bentonite grout placed with a tremie pipe. The PVC risers were covered with a lockable, watertight PVC cap. A 4-inch diameter steel, locking, protective casing was installed at the surface with a concrete anchor and runoff diversion apron. Monitoring well construction details are included in Appendix E.

Once installed, the grout was allowed a minimum of 24 hours to cure, after which time the well was developed. Well development was performed using the pump and surge method. A minimum of five casing volumes were removed from the well or until the well was pumped to dryness. Development fluids were discharged to the ground surface near each well.

Subsequent to installation of the newly installed monitoring wells, the well locations were surveyed to establish top-of-casing, grade elevations, and horizontal locations referenced to existing State Plane datum.

2.2 GROUNDWATER SAMPLE COLLECTION AND ANALYSIS

Subsequent to new well installation, groundwater samples were collected quarterly for two quarters (November 4, 2011 and April 5, 2012) using low-flow sampling methods per Attachment 5 of RRD Operational Memorandum No. 2, and in accordance with the MDEQ-approved PC Plan and December 2006 Work Plan. Groundwater samples were collected from the two newly installed wells (OBG MW-9 and OBG MW-10) for the two quarters of sampling.

Samples collected from the two newly installed wells were analyzed for total and dissolved manganese. Prior to

sampling, water within the well was purged using a submersible pump with dedicated tubing and physical parameters were monitored. During purging, specific conductivity, pH and temperature measurements were recorded to document stable conditions.

Subsequent to purging and immediately upon physical parameter stabilization within 10%, a groundwater sample was collected for total manganese analysis. Samples for dissolved metals analysis were filtered through a disposable 0.45-micron filter in the field. Pre-preserved (with HNO3) sample containers were provided by the laboratory for dissolved and total manganese analysis by Method 200.8. Quality assurance/quality control (QA/QC) samples were collected and analyzed in accordance with the QAPP for this site. QA/QC samples included an equipment blank, field blank, replicate sample, collected sample, matrix spike, and matrix spike duplicate. A Level III data package was requested from the laboratory.

2.3 DATA VALIDATION

Validation of the analytical data was performed by an independent consultant utilizing the "USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Inorganic Data Review", USEPA 540-R 04 004, October 2004 (CLP National Functional Guidelines) and "USEPA CLP National Function Guidelines for Organic Data Review", USEPA-540/R-94-012 as a basis for data review establishing the specific objectives, defining the evaluation process and identifying the actions while incorporating the specific quality control limits presented in the QAPP and the laboratory standard operating procedures (SOP)s. The specific data qualifiers were used as presented and defined in the CLP National Functional Guidelines.

The following deliverables were evaluated in the data validation:

- i. Technical holding times
- **ii.** Gas chromatograph/Mass spectrometer (GC/MS) instrument performance check (for organics analysis)
- iii. Initial calibration
- iv. Initial and continuing calibration
- v. Blanks
- vi. Interference check samples
- vii. Laboratory control samples
- viii. Matrix duplicate sample analysis
 - ix. Matrix spike sample analysis
 - x. Inductively Coupled Plasma (ICP) serial dilution
- xi. ICP/MS internal standard performance
- **xii.** Sample result verification
- **xiii.** Field duplicates.

The Data Validator also evaluated the overall completeness of the data package. Completeness checks were administered on all data to determine whether deliverables specified in the QAPP were present. At a minimum, deliverables included sample chain of custody forms, analytical results, and QC summaries. Data validation results are discussed in Section 2.4.

12 | Final: April 2013

2.4 INVESTIGATION RESULTS

Groundwater samples were collected quarterly for two quarters using low-flow sampling methods per Attachment 5 of RRD Operational Memorandum No. 2, in accordance with the MDEQ-approved PC Plan and December 2006 Work Plan. In accordance with the December 2006 Work Plan, notifications to the MDEQ were made 2 weeks prior to each groundwater sampling event via the Monthly Progress Reports submitted under the Post-Closure activities at the Site. The following discussions summarize the results of the groundwater investigation.

2.4.1 Summary of Subsurface Conditions

This section describes the subsurface conditions observed based on the installation of the monitoring wells (shown on Figure 3) and previously installed borings at the former WWTP.

Generalized subsurface soil conditions at the former WWTP consist of a clay unit from the original ground surface to a depth of 30 ft below grade with sand lenses observed ranging in thickness from non-existent (OBG MW-8) to 5 ft (OBG MW-5). The elevations shown on Table 2.1 are from the 2008 Addendum Report. The current investigation indicates that the sand lenses are highly variable in elevation and thickness, signifying a discontinuous perched zone condition at the former WWTP.

Well Location	Surface Elevation (NAVD 88)	Observed Sand Lens Elevation
OBG MW-1	809.46'	798.46-796.46'
OBG MW-2	812.45'	806.95-805.45' and 799.45-796.45'
OBG MW-3	807.47'	802.97-799.97'
OBG MW-4	810.10'	797.85-797.35'
OBG MW-5	813.05'	809.05-804.05'
OBG MW-6	813.02'	798.44-798.27'
OBG MW-7	810.23'	805.65-805.23' and 795.23-794.23'
OBG MW-8	814.72'	no sand lens observed
OBG MW-9	806.94'	800.94'-799.94'
OBG MW-10	808.70'	808.20'-796.20'

Table 2.1 Sand Lens Elevations (sources 2008 Addendum Report and current investigation)

Sand lenses were observed in nine of the ten borings (OBG MW-1 through OBG MW-10) completed as monitoring wells under the May 2007 investigation and the recent current investigation at the former WWTP. These locations are separated by previously installed borings in which a sand lens of the same elevation was not observed indicating the sand lenses are discontinuous in the vicinity of the former WWTP. A geologic cross section depicting the discontinuous sand lenses in the perched zone at the former WWTP area is included as Figure 4.

Following demolition of the former manufacturing building, approximately 3-4 ft of sand fill was placed over the former WWTP building and basins.

2.4.2 First Quarter Groundwater Sampling Results

Analytical results for the first quarter groundwater sampling event (November 4, 2011) indicated detections of total and dissolved manganese at OBG MW-9 of 0.565 mg/l and 0.570 mg/l, respectively, which are below the site-specific background values for dissolved manganese (0.708 mg/l). Also, analytical results for OBG MW-10 indicated detections of total and dissolved manganese of 3.56 mg/l and 3.69 mg/L, respectively, which are above

Part 201 Health Based Drinking Water Criterion (2.50 mg/l). A figure depicting exceedances of site-specific background values and/or Part 201 Non-Residential Drinking Water values for the first quarter groundwater sampling event is included as Figure 5.

Table 1 summarizes the first quarter groundwater analytical results. The first quarter groundwater analytical results were validated and the overall data usability was found to be 100%. The data validation report (including analytical data sheets) for this sampling event is included in Appendix F.

Groundwater level data were collected from the wells sampled during the first quarter groundwater sampling event. A table with the water levels and groundwater elevations is included as Table 2.

2.4.3 Second Quarter Groundwater Sampling Results

Analytical results for the second quarter groundwater sampling event (April 5, 2012) indicated detections of total and dissolved manganese at OBG MW-9 of 0.591 mg/l and 0.562 mg/l, respectively, which are below the site-specific background values for dissolved manganese (0.708 mg/l). Also, analytical results for OBG MW-10 indicated detections of total and dissolved manganese of 2.62 mg/l and 2.57 mg/l, respectively, which are above Part 201 Health Based Drinking Water criterion (2.50 mg/l). A figure depicting exceedances of Site-Specific Background values and/or Part 201 Non-Residential Drinking Water values for the second quarter groundwater sampling event is included as Figure 5.

Table 1 summarizes the second quarter groundwater analytical results. The second quarter groundwater analytical results were validated and the overall data usability was found to be 100%. The data validation report (including analytical data sheets) for this sampling event is included in Appendix G.

Groundwater level data were collected from the wells sampled during the second quarter groundwater sampling event. Groundwater level data were also collected from the eight previously installed wells (OBG MW-1 through OBG MW-8) as part of the second quarter groundwater sampling event. Table 2 lists water levels and groundwater elevations. Figure 6 depicts the groundwater elevations.

2.4.4 Site-Specific Background Value for Manganese

14 | Final: April 2013

As noted in Section 1.5 of this Report, a new site-specific background value for manganese was calculated in accordance with MDEQ's request of 95% UTL with 95% coverage using the ProUCL program with the removal of the B-9 well data. The new background calculation using the MDEQ requested method yields a background value of 0.708 mg/l for dissolved manganese at the former WWTP. A copy of the ProUCL output and data set used for the background calculation for dissolved manganese is included in Appendix C. This new background value is the criterion in which the concentrations of dissolved and total manganese detected in groundwater will be compared to for delineating the extent of manganese impact at the former WWTP pursuant to Part 201 regulations. Total recoverable manganese concentrations in groundwater will be compared to this background value due to an insufficient data set to develop a separate background value for total manganese. MDEQ RRD Operational Memorandum No. 2- Attachment 5 (Collection of Samples for Comparison to Generic Criteria) indicates groundwater inorganic constituents must be measured as totals for site investigation under Part 201. Therefore, as a conservative measure, the total manganese concentrations will be compared to the dissolved manganese is included as totals for site investigation under Part 201.

Groundwater analytical results from two quarters of groundwater sampling, along with previous groundwater analytical results, document that the manganese impact at the former WWTP has been assessed to the newly developed site-specific background value. Figure 7 depicts the highest concentrations of total and dissolved manganese concentrations detected in groundwater at the former WWTP and the well locations (OBG MW-4, OBG MW-5, OBG MW-6, OBG MW-7 and OBG MW-9) which delineate the manganese impact at the former WWTP.

3 MIGRATION PATHWAY EVALUATION

Based on the benzene, 1,2,4-trimethylbenzene, trichloroethene, nickel and cyanide exceedances of the MDEQ Part 201 Generic Non-Residential Drinking Water Protection Criteria and the arsenic, iron, lead, manganese and cyanide exceedances of the Part 201 Generic Non-Residential Drinking Water Criteria, a migration pathway analysis was performed.

In accordance with the NREPA, 1994 PA 451, as amended Part 201 (Environmental Remediation), Mich. Admin. Code Rule 299, compliance for Generic site closures are attained when chemical concentrations in soil and groundwater are below applicable values for migration pathways pertinent to the site. The following sections summarize pertinent migration pathways at the former WWTP. The COCs (defined as those compounds above appropriate Part 201 Generic Residential criteria) at the former WWTP are:

Soil	Groundwater
Benzene	Arsenic
Cyanide	Cyanide
Nickel	Lead
1,2,4- trimethylbenzene	Iron
Trichloroethene	Manganese

3.1 MIGRATION PATHWAY EVALUATION

The migration pathways applicable to soil impact at the former WWTP were addressed in the November 2000 Basin Investigation Report; the migration pathways applicable to groundwater impacts for arsenic, cyanide, and lead, were addressed in the 2008 Addendum Report; and delineation of iron in groundwater was addressed in the July 13, 2009 response to comments. Therefore, the following evaluation addresses the pertinent groundwater remaining migration pathways for manganese.

The pertinent migration pathways associated with the former WWTP are:

- Migration to groundwater in an aquifer based on ingestion
- Soil leaching of hazardous substances into groundwater
- Migration from groundwater to surface water
- Discharge to surface water from storm sewers
- Dermal contact with groundwater (utility worker exposure).

Each pertinent migration pathway evaluation for the former WWTP is discussed below:

Migration to groundwater in an aquifer based on ingestion. In accordance with Mich. Admin. Code Rule 299.5710, exposure to groundwater by ingestion may be considered a relevant pathway for groundwater that satisfies either of the following conditions: 1) The groundwater is in an aquifer. 2) The groundwater is not in an aquifer, but can reasonably be expected to transport a hazardous substance into an aquifer in a concentration that exceeds the generic residential criteria.

Based on the investigation results, the water observed in the sand lenses at the former WWTP in the perched zone is likely not contained within in an aquifer. Permeability tests of wells installed at the Coldwater Road site have indicated permeabilities within the shallow perched zone of 10⁻⁷ to 10⁻⁶ cm/sec. It is estimated that a well tapping the perched zone would have a yield ranging from 6 to 60 gallons per day. This range in well yield for the perched zone has been verified by the permeability tests conducted on the soil samples from the proposed

landfill. Furthermore, vertical permeabilities for the perched zone ranged from 3.5 x 10⁻⁷ cm/sec to 2.1 x 10⁻⁸ cm/sec (The Chester Engineers, 1986). Based on this information the perched zone is not capable of producing usable quantities of water analogous with an aquifer.

Deep soil borings installed on site near the landfill indicate the subsurface geology includes a clay till aquitard approximately 47.5 ft thick (former MW-23D located south of the landfill). This aquitard appears to be continuous across the Coldwater Road Landfill Site, and was observed at the former WWTP area.

Also, the differences in the flow direction, gradients, and water levels between the perched zone and drift aquifer make it apparent that there is little, if any, connectivity between the perched zone and drift aquifer (Dames & Moore, June 1980).

These conclusions suggest that movement of water from the perched zone to the drift aquifer is unlikely. It is also unlikely that chemical concentrations detected in the groundwater at the former WWTP could migrate vertically to the usable aquifer in concentrations exceeding Part 201 Generic Residential Drinking Water Criteria.

The results of groundwater sampling at the former WWTP indicate manganese concentrations are below Part 201 Health Based Drinking Water Criterion of 2.5 mg/l except for well OBG MW-3, which previously exhibited concentrations of total manganese of 5.08 mg/l (December 11, 2007) and 5.05 mg/l (March 18, 2008) mg/l. Therefore, the site deed restriction will be expanded to prohibit use of the groundwater at the entire Coldwater Road Landfill Site, including the former WWTP area. The current Declaration of Restrictive Covenant prohibits the construction of wells or other devices to extract groundwater for consumption, irrigation, dewatering or any other use at two areas of the Coldwater Road Landfill Site: the RMA and the landfill.

With the filing of the Declaration of Restrictive Covenant, the former WWTP is in compliance with Part 201 Generic Non-Residential standards for the migration of groundwater to an aquifer based on the ingestion exposure pathway.

Soil leaching of hazardous substances into groundwater. In accordance with Mich. Admin. Code Rule 299.5722, to assure that soils do not pose a threat of aquifer contamination, the concentration of the hazardous substance in soil shall be below that which produces a concentration in leachate that is equal to the least restrictive of the applicable groundwater criteria. The cleanup criteria protective of groundwater may be determined by; soil leachate analysis, comparing the concentration in soil to Part 201 Generic Non-residential Drinking Water Protection Criteria, or by other methods that demonstrate impact to soil will not result in applicable groundwater criteria being exceeded (e.g., groundwater data comparisons to criteria).

Since the former WWTP soil impacts could not be investigated through soil sample collection and analysis, MDEQ permitted monitoring wells to be installed in close proximity to soil impacts and collection and analysis of groundwater to assess the potential for soil impacts leaching to groundwater as an acceptable method for assessing this migration pathway. A previous investigation (2008 Addendum Report) indicated manganese levels near the property boundary (OBG MW-3) exceeded the site-specific background level and Part 201 Health Based Drinking Water Criterion. The results of the quarterly groundwater sampling indicated that concentrations of total and dissolved manganese are below both the site-specific background value and Part 201 Non-Residential Health Based Drinking Water Criterion at OBG MW-9 (south of OBG MW-3), delineating this impact.

Groundwater at the site is not used for drinking water. Additionally, upon approval of this 2013 Addendum Report, RACER will supplement the Declaration of Restrictive Covenant for the site and file the supplement with the Genesee County Register of Deeds, restricting potential future groundwater use for the entire Coldwater Road Landfill Site.

Currently institutional controls (Declaration of Restrictive Covenant form recorded on June 24, 2005) at the site restrict the installation of wells at a limited area of the site for drinking water purposes. Therefore, potential exposure associated with the soil leaching to groundwater pathway will be mitigated based on supplementing the Declaration of Restrictive Covenant restricting use of groundwater at the entire site for drinking water. With

16 | Final: April 2013

the filing of the Declaration of Restrictive Covenant supplement, the former WWTP will be in compliance with Generic Non-Residential standards for the soil leaching of hazardous substances into groundwater pathway.

Groundwater to surface water. In accordance with Mich. Admin. Code Rule 299.5716, COCs in groundwater at the surface water interface must be no greater than the Part 201 Generic Non-Residential Groundwater-Surface Water Interface (GSI) Criteria. The surface water receptor (wetlands) on the property (the nearest surface water body- depicted on Figure 2) is located approximately 2,000 ft north of the former WWTP. The onsite wetlands are not used as a human drinking water source, thus, the criteria for the GSI Human Non-Drinking Water Value is applicable.

Total and dissolved manganese concentrations in groundwater are below Part 201 GSI Human Non-Drinking Water value. Based on the chemical characteristics for inorganics (low mobility), the unlikely transport mechanism for groundwater (non-continuous perched zone) and the potential for considerable dilution before groundwater reaches the nearest surface water body, it is unlikely the detected compounds would reach the nearest surface body of water in concentrations above GSI criteria. Therefore, the site is in compliance with Generic Non-Residential standards for the migration to surface water pathway.

Discharge to surface water from storm sewers. MDEQ regulations require that storm sewers must be addressed as a potential preferential pathway when evaluating the GSI migration pathway (GSI). The nearest storm sewer underground utility line (shown on Figure 5) is located approximately 80 ft east of the former WWTP. Based on the subsurface geology in this area, the chemical characteristics for the inorganics (low mobility) and the distance to the nearest storm sewer line, it is unlikely the discontinuous sand lenses containing water are connected to the sewer line corridor. Thus there does not appear to be a migration pathway from the sand lenses at the former WWTP to the nearest storm sewer line.

Therefore, the former WWTP is in compliance with Generic Non-Residential standards for the GSI migration pathway via storm sewers.

Dermal contact with groundwater (utility worker exposure). In accordance with Mich. Admin. Code Rule 299.5712, exposure to dermal contact shall apply when contaminated groundwater is, or will be as a result of migration of groundwater contamination, encountered at a depth where construction or maintenance of utilities or other subsurface activities may reasonably be expected to result in persons coming into contact with the groundwater.

The analytical results for the groundwater samples collected at the former WWTP indicate concentrations of manganese are below Part 201 Generic Non-Residential Contact criteria. Therefore, the former WWTP is in compliance with the Generic Non-Residential standards for the dermal contact with groundwater pathway.

Based on the above summary, and upon supplementing the MDEQ-approved Declaration of Restrictive Covenant restricting resource use at the entire site, Limited Non-Residential compliance is achieved for the former WWTP.

4 CONCLUSIONS

This Addendum Report supplements the June 1999 Final Certification Closure Report and the 2008 Addendum Report for the former WWTP at the RACER Coldwater Road Landfill facility in Flint, Michigan. The former WWTP falls under the CACO for the RACER Coldwater Road Landfill facility pursuant to NREPA Part 111 as a contiguous facility.

At the request of MDEQ, an additional groundwater investigation was performed at the former WWTP to evaluate the detected concentrations of manganese in groundwater at the former WWTP. A Work Plan with proposed groundwater sampling methodology, monitoring well investigation locations and site-specific background values developed for iron and manganese, was submitted to the MDEQ on July 13, 2000. This Work Plan was approved by MDEQ in a letter dated September 26, 2011. The Work Plan was implemented from October 10, 2011 through May 2012. Implementation of the Work Plan supported the demonstration of manganese impacts to groundwater was delineated.

An evaluation of pertinent migration pathways at the former WWTP concluded that compliance with Generic Non-Residential cleanup criteria is achieved for this area following supplementing the current Declaration of Restrictive Covenant to restricting groundwater use at the entire site. Based on the results of investigation activities and the migration pathway evaluation presented herein, closure of the former WWTP pursuant to NREPA Part 111 is achieved.

Post-closure activities associated with the landfill are continuing in accordance with the Post-Closure Plan. Following MDEQ approval of closure, RACER anticipates implementing a supplemental Declaration of Restrictive Covenant and establishing a post-closure operating license for the RACER Coldwater Road Landfill facility. Once the post closure operating license is established, RACER will request termination of the CACO.

5 REFERENCES

Conestoga-Rovers & Associates, November 30, 2000, RCRA Facility Investigation (RFI) Report Former Peregrine (US), Inc. Coldwater Road Facility Genessee Township, Michigan (USEPA ID# MIR000020743).

Conestoga-Rovers & Associates, April 24, 2003, Groundwater Not In An Aquifer (GWNIAA) Evaluation Report Former Peregrine (US), Inc. Coldwater Road Facility Genessee Township, Michigan (USEPA ID# MIR000020743).

Conestoga-Rovers & Associates, March 31, 2000, Description of Current Conditions Report Former Peregrine (US), Inc. Coldwater Road Facility Genessee Township, Michigan (USEPA ID# MIR000020743).

Dames & Moore, 1980. Hydrogeological Investigation-Coldwater Road Plant Waste Management Area., Flint, Michigan.

General Motors Corporation, March 1992, Corrective Measures Study.

Michigan Department of Environmental Quality, February 7, 1996, Redesignation Approval for General Motors Corporation, Delphi Interior & Lighting Systems.

Michigan Department of Environmental Quality, September 23, 1997, Closure Plan Modification Request, General Motors Corporation, Coldwater Road Facility, Flint, Michigan MID 005 356 860.

Michigan Department of Environmental Quality, March 26, 1998, Letter of Warning, Financial Capability and Closure of former Drum Storage Area, Peregrine U.S., Inc. Flint Plant; MIR 000 020 743.

Michigan Department of Environmental Quality, June 27, 2000, Closure Plan Amendment Approval, General Motors/REALM, Coldwater Road facility, Flint, Michigan.

Michigan Department of Environmental Quality, April 19, 2002, Sampling Plan for former Drum Storage Area and Waste Pile Pad, REALM Coldwater Road Landfill, MIR 000 020 743.

Michigan Department of Environmental Quality, March 24, 2005, Final Closure Certification Documentation REALM Coldwater Road Landfill; MID 005 356 860.

O'Brien & Gere Engineers, Inc., August 1989, Closure Plan and Post-Closure Plan, General Motors Corporation, Fisher Guide Division, Flint, Michigan.

O'Brien & Gere Engineers, Inc., October 1994, Delisting Petition Work Plan, Inland Fisher Guide Division of General Motors Corporation, Flint Coldwater Plant, Flint, Michigan.

O'Brien & Gere Engineers, Inc., January 1995, Delisting Petition, Inland Fisher Guide Division, General Motors Corporation, Flint Coldwater Road Plant, Flint, Michigan.

O'Brien & Gere Engineers, Inc., April 1997, Closure Plan Modification Request, Coldwater Road, Flint, Michigan.

O'Brien & Gere Engineers, Inc., June 1999, Subsurface Investigation of Decontamination Pits/Sump and Chromium Reduction Basins Coldwater Road, Flint, Michigan.

O'Brien & Gere Engineers, Inc., February 16, 2000, former Drum Storage Area Closure Plan and Closure Plan Amendment, GM/REALM Coldwater Road Facility, Flint, Michigan- EPA MIR 000 020 743.

O'Brien & Gere Engineers, Inc., November 2000, Part I Final Closure Certification Documentation, REALM Coldwater Road Facility, 6220 Horton Street Flint, Michigan (MID 005356860).

O'Brien & Gere Engineers, Inc., November 2000, Former Wastewater Treatment Plant Basin Investigation, Coldwater Road Facility, Flint, Michigan.

O'Brien & Gere Engineers, Inc., February 2004, Former Drum Storage Area Work Plan, Coldwater Road facility, Flint, Michigan- EPA I.D. No. MIR 000 020 743.

O'Brien & Gere Engineers, Inc., January 2005, Addendum to the June 1999 Closure Certification Report for the Former Drum Storage Area at the Former Peregrine, U.S., Inc. Property at the Coldwater Road Facility.

O'Brien & Gere Engineers, Inc., December 2006, Former Wastewater Treatment Plant Work Plan, Coldwater Road facility, Flint, Michigan- EPA I.D. No. MID 005 356 860.

O'Brien & Gere Engineers, Inc., Quality Assurance Project Plan, Former Wastewater Treatment Plant, May 2007, Coldwater Road Landfill, Flint, Michigan- EPA I.D. No. MID 005 356 860.

O'Brien & Gere Engineers, Inc., September 2008, Addendum to the June 1999 Closure Certification Report for the Former Wastewater Treatment Plant at the Coldwater Road Facility.

ProUCL 4.1.01. A Statistical Software for Environmental Applications for Data Sets with and without nondetect observations. National Exposure Research Lab, EPA, Las Vegas, Nevada, May 2010.

State of Michigan, Department of Natural Resources, September 7, 1989, GMC Fisher Guide, Coldwater Road Closure Plan, MID 005 356 860.

State of Michigan, Department of Natural Resources, Waste Management Division, October 29, 1992, Corrective Action Consent Order General Motors Corporation, Inland Fisher Guide Division, G1245 East Coldwater Road, City of Flint, County of Genessee, State of Michigan.

Roy F. Weston, Inc., November 1994, Draft Closure Certification Documentation Package, Inland Fisher Guide Division, General Motors Corporation Surface Remediation Project Coldwater Road Plant, Flint, Michigan (EPA ID No. MID 005356860).

Roy F. Weston, Inc., September 1998, Final Closure Certification Documentation Package, Decontamination Pits and Sump, Chromium Reduction Basins at the WWTP, Surface Remediation Project, Coldwater Road Plant, Flint, Michigan (EPA I.D. No. MID 005356860).

Roy F. Weston, Inc., June 1999, Closure Certification Documentation Package for the former Drum Storage Area and Waste Pile Pad, Former GMC Inland Fisher Guide Coldwater Road Plant, Flint, Michigan (EPA ID No. MID 005356860).

Roy F. Weston, Inc., November 2000, Part II Final Closure Certification Documentation, Surface Remediation Project, Coldwater Road Plant, Flint, Michigan (EPA I.D. No. MID 005356860).

USEPA 2010, ProUCL Version 4.1.00 Technical Guide, Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations.

RACER 2013 ADDENDUM TO JUNE 199 CLOSURE CERTIFICATION REPORT – FORMER WWTP

Tables

Table 1 RACER Trust Coldwater Road Facility - Former WWTP Groundwater Analytical Results - November 2011 April 2012 Manganese - Method 200.8

Sample Location	1 st Qu OBG MW-9	arter OBG MW-10	2 nd Qu OBG MW-9	MDEQ Part 201 Residential/Nonresidential Health-Based	WWTP- Site Specific Background	
Date Collected Parameter	11/4/2011	11/4/2011	4/5/2012	4/5/2012	Drinking Water Criteria	
Total Manganese	0.565	3.56	0.591	2.62	2.5	0.708 6
Dissolved Manganese	0.57	3.69	0.562	2.57	2.5	0.708

Notes:

1) Results and criteria are shown in mg/l (ppM).

2) Samples analyzed by Merit Laboratories, Inc. of East Lansing, Michigan.

3) MDEQ Part 201 Residential Health-Based Drinking Water Criteria as listed in Operational Memorandum #1, dated September 28, 2012.

4) Bold type indicates concentration above Site-Specifc Background and Part 201 Residential Health-Based Drinking Water criteria.

- 5) Site-specific background calculated in accordance with MDEQ Sampling Strategies and Statistical Training Materials for Part 201 Cleanup Criteria dated 2002 and USEPA ProUCL Technical Guide (USEPA 2010).
- 6) Adequate data to calculate a site-specific background for total manganese is not available, therefore, as a conservative measure total manganese concentrations will be compared to site-specific background concentrations for dissolved manganese.

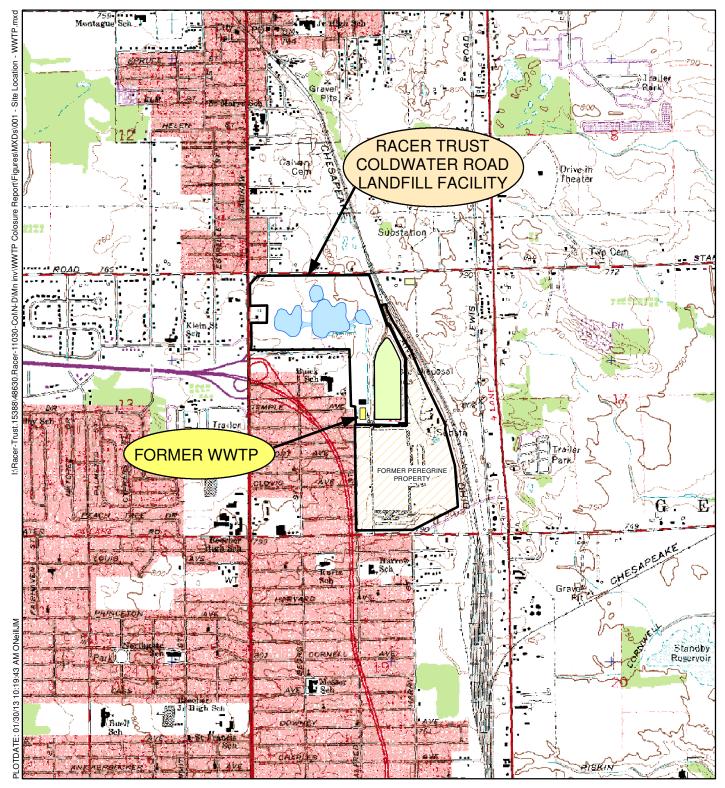
Table 2 RACER Trust Coldwater Road Facility - Former WWTP Groundwater Elevation Data

	_		Depth to Water		Groundwater Elevation	
		Surface	1st Quarter	2nd Quarter	1st Quarter	2nd Quarter
Monitoring Well	Top of Casing	Elevation	4-Nov-11	5-Apr-12	4-Nov-11	5-Apr-12
OBG MW - 1	811.56	809.46		6.73		804.83
0BG MW - 2	813.77	812.45		7.01		806.76
OBG MW - 3	810.09	807.47		7.20		802.89
OBG MW - 4	812.66	810.10		12.19		800.47
OBG MW - 5	816.04	813.05		8.03		808.01
OBG MW - 6	815.75	813.02		11.55		804.20
OBG MW - 7	813.47	810.23		6.72		806.75
OBG MW - 8	817.50	814.72		8.56		808.94
OBG MW - 9	809.97	806.94	5.25	5.24	804.72	804.73
OBG MW - 10	811.54	808.70	5.58	6.20	805.96	805.34

Notes:

1) Measurements are in feet (ft).

2) Elevations referenced to NAVD 88 PID 0J0381=760.17 ft held record bearings.


3) "---' denotes that the depth to water was not measured.

RACER 2013 ADDENDUM TO JUNE 199 CLOSURE CERTIFICATION REPORT – FORMER WWTP

Figures

FIGURE 1

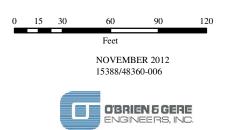
RACER TRUST COLDWATER ROAD FACILITY FORMER WASTEWATER TREATMENT PLANT FLINT, MICHIGAN

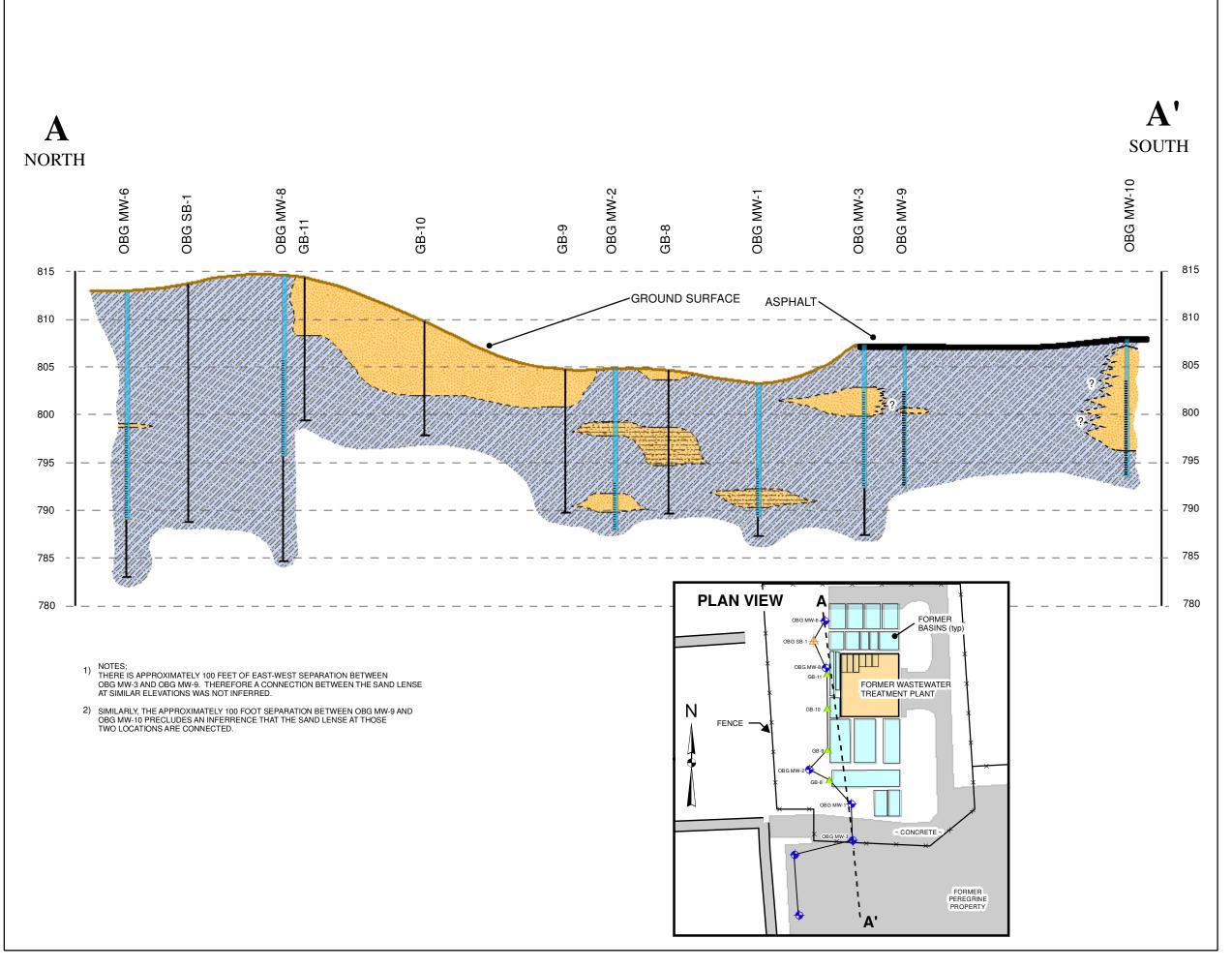
SITE LOCATION MAP

Ν

DATE: 11/1/12 FILE: 15388/48630-001.MXD

FIGURE 3 Ν LEGEND FORMER WWTP BUILDING FORMER WWTP BASIN PREVIOUSLY INSTALLED \oplus MONITORING WELL MONITORING WELL **INSTALLED OCTOBER 2011**


2


LANDFILL

2

RACER TRUST COLDWATER ROAD FORMER WWTP FLINT, MICHIGAN

MONITORING WELL LOCATIONS

PLOTDATE: 01/30/13 2:30:55 PM ONeillJM

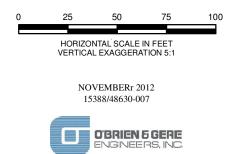
FIGURE 4

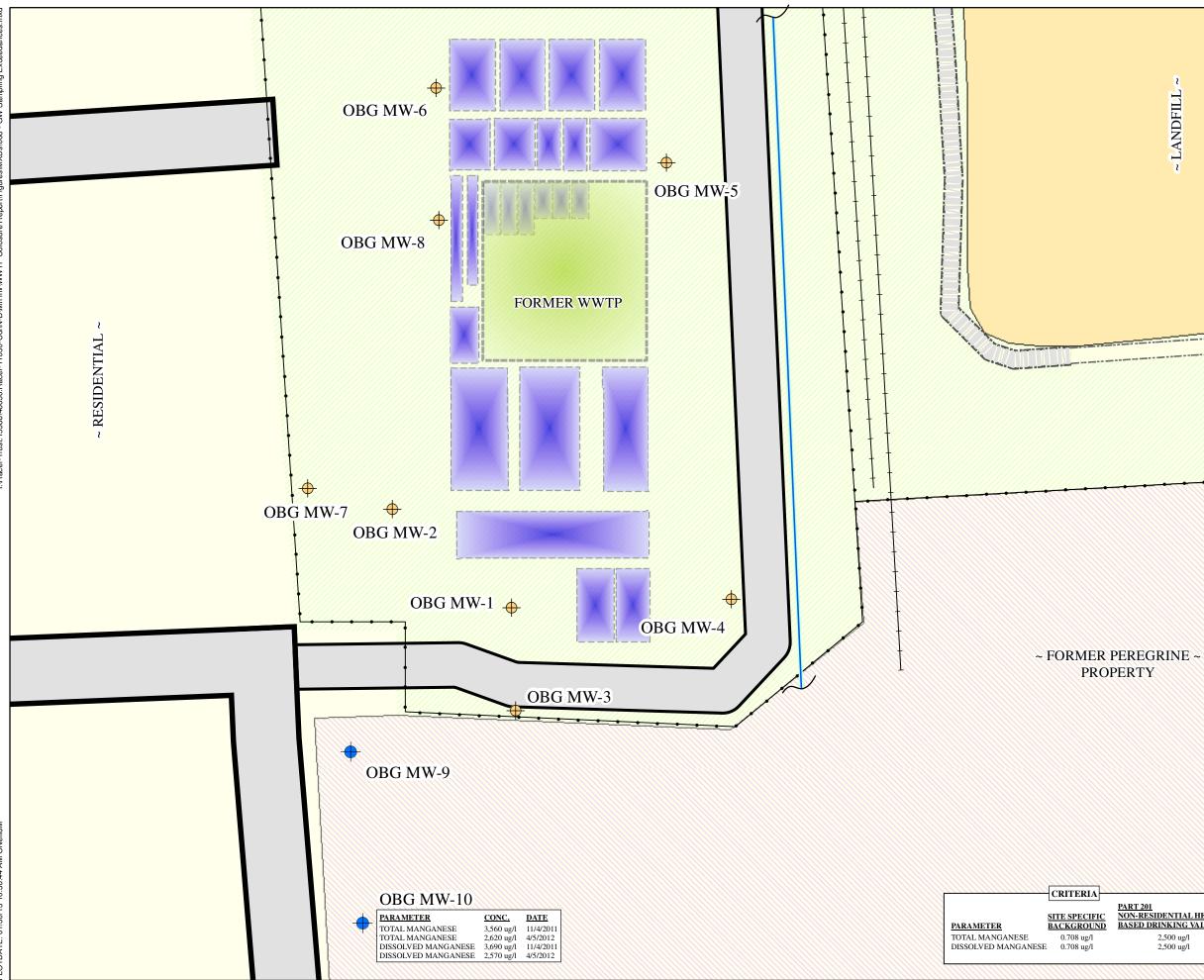
SAND

LEGEND

SAND AND SILT

CLAY


MONITORING WELL



SOIL BORING

RACER TRUST COLDWATER ROAD FORMER WWTP FLINT, MICHIGAN

GEOLOGIC CROSS SECTION

FIGURE 5

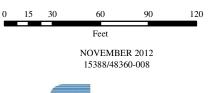
Ν

LEGEND

 \oplus

FORMER WWTP BUILDING

FORMER WWTP BASIN

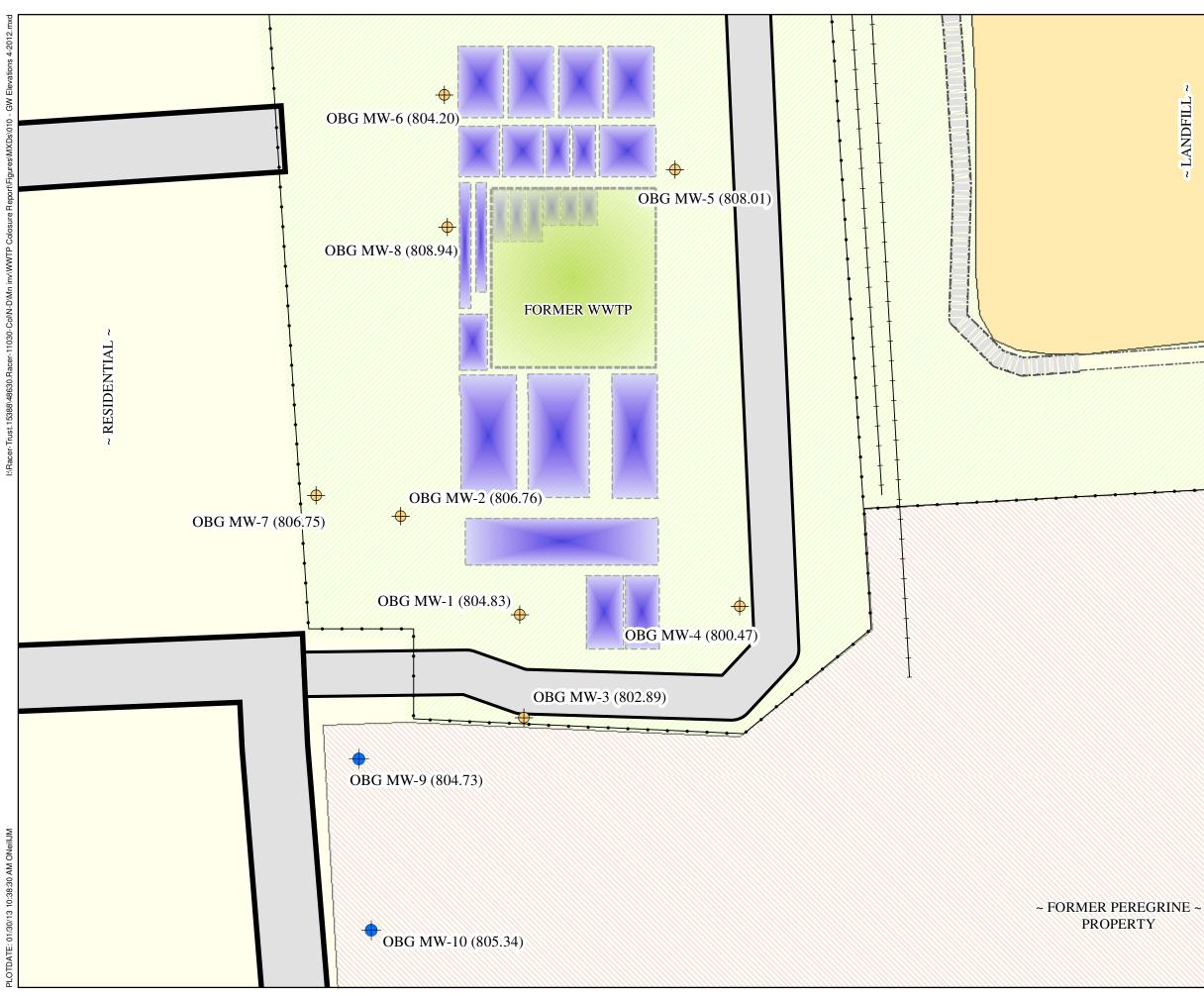

PREVIOUSLY INSTALLED MONITORING WELL MONITORING WELL

INSTALLED OCTOBER 2011

APPROXIMATE LOCATION OF UNDERGROUND STORM SEWER LINE

RACER TRUST COLDWATER ROAD FORMER WWTP FLINT, MICHIGAN

GROUNDWATER SAMPLING EXCEEDANCES **2011 INVESTIGATION**


O'BRIEN 5 GERE NGINEERS, INC

2

LANDFILL

2

<u>PART 201</u> NON-RESIDENTIAL HEALTH BASED DRINKING VALUE 2,500 ug/l 2,500 ug/l

LEGEND

FORMER WWTP BUILDING

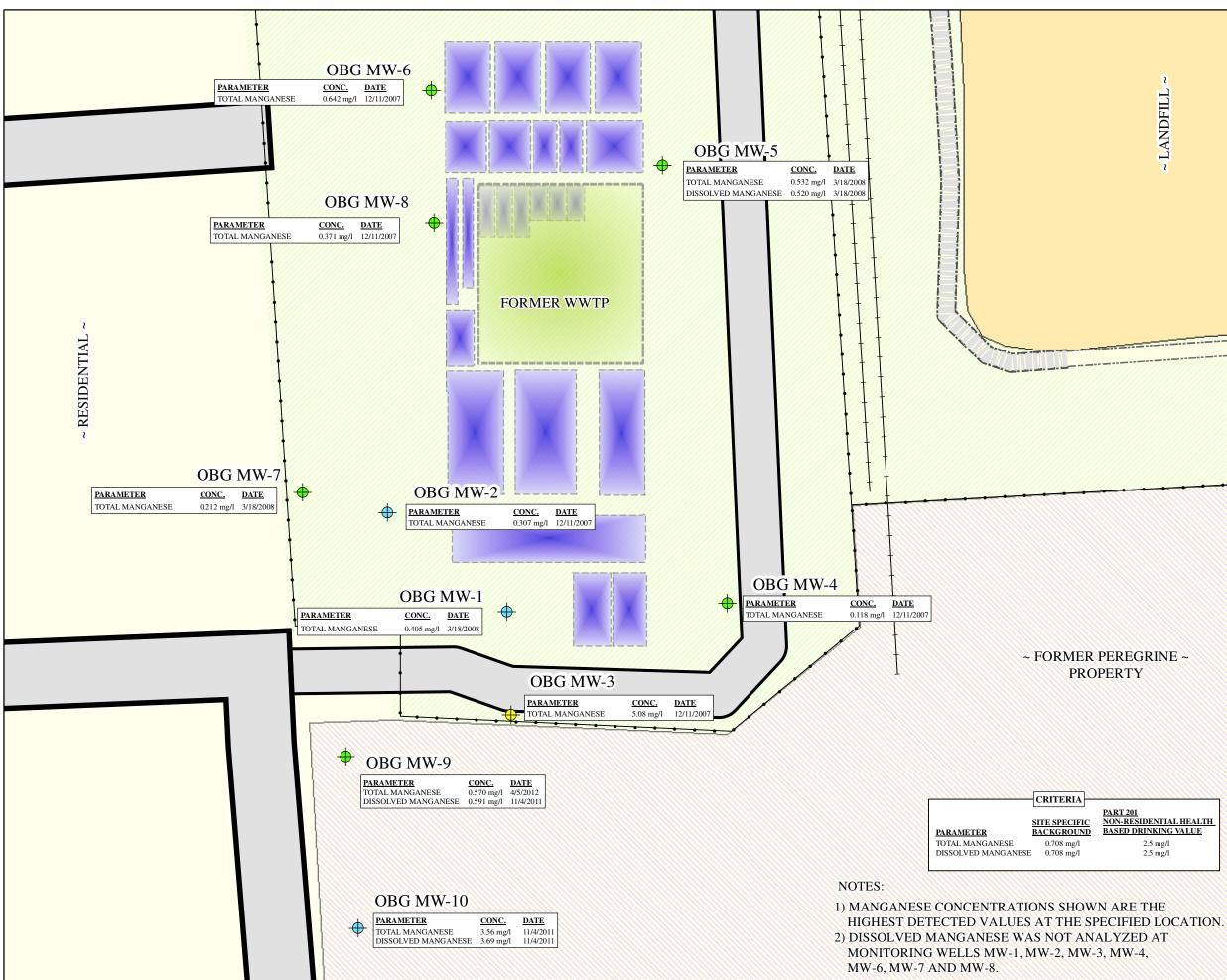
FIGURE 6

Ν

- FORMER WWTP BASIN
- PREVIOUSLY INSTALLED \oplus MONITORING WELL MONITORING WELL
- **INSTALLED OCTOBER 2011**

2

LANDFILL


2

- NOTES:
- 1) MEASUREMENTS ARE IN FEET
- 2) ELEVATIONS ARE REFERENCED TO NAVD 88

RACER TRUST COLDWATER ROAD FORMER WWTP FLINT, MICHIGAN

GROUNDWATER **ELEVATIONS APRIL 5, 2012**

FIGURE 7

Ν

LEGEND

-

FORMER WWTP BUILDING

FORMER WWTP BASIN

MONITORING WELL THAT DELINEATES MANGANESE BELOW THE SITE SPECIFIC BACKGROUNG VALUE

ON-SITE MONITORING WELL WITH MANGANESE CONCENTRATION ABOVE CLEANUP CRITERIA

MONITORING WELL

RACER TRUST COLDWATER ROAD FORMER WWTP FLINT, MICHIGAN

GROUNDWATER DELINEATION WELLS

0	15	30	60	90	120
			Feet		
			NOVEMBE 15388/483		
				EN 5 GER Neers, in	

2

LANDFILL

2

<u>PART 201</u> NON-RESIDENTIAL HEALTH BASED DRINKING VALUE 2.5 mg/l 2.5 mg/l

RACER 2013 ADDENDUM TO JUNE 199 CLOSURE CERTIFICATION REPORT – FORMER WWTP

Appendices

Appendix A Former WWTP Basin Investigation Analytical Results

REALM **Coldwater Road facility** Soil Analytical Results Volatile Organic Compounds method 8260

Sample Location	GB-2	GB-3	GB-7	GB-8	GB-9	G8-10	GB-11	GB-17	GB-18	GB-19	G8-20	GB-21	GB-22	GB-23	GB-24	GB-25	GB-26	GB-27	GB-28	GB-29	į I
Sample Depth	(12-14')	(13-15')	(13-15')	(12-14')	(13-15')	(10-12')	(7-9')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	1
Date Collected	08/24/98	<u>`</u> ,	08/24/98	08/24/98	08/24/98	08/24/98	08/25/98	08/25/98	08/25/98	08/25/98	08/25/98	08/25/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/27/98	L
Parameter				1																	_
Benzene	50U	50U	50U	50U	50U	50U	50U	50U	200	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	ì
Bromobenzene	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	
Bromochloromethane	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	
Bromodichloromethane	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	
Bromoform	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	
Bromomethane	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	· 50U	50U	
n-Butylbenzene	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	1,220	550	50U	50U	500	50U	330J	500	100	500	
sec-Butylbenzene	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	380	220	50U	50U	50U	50U	150J	50U	50U	50U	
tert-Butylbenzene	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	350	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	
Carbon tetrachloride	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	
Chlorobenzene	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	
Chloroethane	50U	50U	50U	50U	50U	. 50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	500	
Chloroform	50U	50U	50U	50U	50U	50U	50Ų	50U	50U	50U	50U	190	50U	50U	50U	50U	50UJ	50U	50U	50U	
Chloromethane	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U 50U	50U 50U	
2-Chlorotoluene	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	500		500	
4-Chlorotoluene	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	500	50U	500	50UJ	50U 50U	50U 50U	500	
Dibromochloromethane	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	500	50U	500	50U	50U	50UJ 50UJ	50U	50U 50U	500	
1,2-Dibromo-3-chloropropane	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	500	500	50U 50U	50U 50U	50UJ	 50U	500		
1,2-Dibromoethane	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U		500	500J	500	500	500	
Dibromomethane	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U 50U	500	50UJ	50U	320	500	
1,2-Dichlorobenzene	50U	50U	50U	50U	50U	50U	500	50U	50U	50U	500	50U 50U	50U 50U	50U 50U	50U	50U	50UJ	500	50U	500	
1,3-Dichlorobenzene	50U	50U	50U	50U	50U	50U	50U	500	50U	50U	500	50U	50U	500	50U	50U	50UJ	500	50U	500	
1,4-Dichlorobenzene	50U	50U	500	50U	50U	50U	50U	50U	50U	50U 50U		50U 50U	50U		50U	50U	50UJ	50U	50U	50U	_
Dichlorodifluoromethane	50U	50U	50U	500	50U	500	50U 50U	50U 50U	50U 50U	50U 50U	500	50U	50U	500	50U	50U	50UJ	50U	50U	50U	
1,1-Dichloroethane	50U	50U	50U	500	50U 50U	50U 50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	
1,2-Dichloroethane	500	50U	50U 50U	50U 50U	50U	50U	50U 50U	50U	500	500	50U	500	50U	500	50U	50U	50UJ	50U	50U	50U	
1,1-Dichloroethene	500	50U 50U	50U	500	500	500	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50ŲJ	50U	50U	50U	
cis-1,2-Dichloroethene	50U 50U	50U	500	500	500	500	500	50U	500	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	
trans-1,2-Dichloroethene	50U	50U	500	500	500	500	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	
1,2-Dichloropropane 1,3-Dichloropropane	500	500	500	500	500	500	500	500	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	
2,2-Dichloropropane	500	50U	500	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	
1,1-Dichloropropene	500	500	50U	500	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	
Ethylbenzene	50U	500	50U	50U	50U	50U	50U	50U	50U	50U	260	180	50U	50U	50U	50U	210J	50U	210	50U	
Hexachlorobutadiene	500	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	50U	
Isopropylbenzene	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	150	140	50U	50U	50U	500	60J	50U	50U	50U	
p-Isopropyitoluene	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	690	780	50U	50U	50U	50U	390J	50U	270	500	
Methylene chloride	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ	50U	50U	500	
Naphthalene	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	3,430	1,140	50U	50U	50U	500	650J	50U	230 50U	50U 50U	
n-Propylbenzene	50U	50U	50U	500	50U	50U	50U	50U	50U	50U	340	390	50U	50U	50U	50U	130J 50UJ	50U 50U	500	500	—
Styrene	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50UJ 50UJ	50U	500	50U	
1,1,1,2-Tetrachloroethane	50U	50U	50U	50U	50U	50U	50U	50U	50U	500	50U	50U	50U	50U	50U	50U 50U	50UJ 50UJ	50U 50U	500	500	
1,1,2,2-Tetrachloroethane	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U 50U	50U 50U	50UJ	500	500	500	
Tetrachloroethene	50U	50U	50U	50U	50U	50U	50U	500	50U	50U	500	50U	50U	50U	50U	50U	140J	500	50U	1,370	
Toluene	50U	50U	50U	50U	50U	50U	50U	50U	480	80	80	100	500	50U 50U	50U 50U	50U	50UJ	50U	50U	500	
1.2.3-Trichlorobenzene	50U	50U	50U	50U	50U	50U	50U	50U	50U	500	500	50U 50U	50U 50U	500	50U	50U	50UJ	50U	500	50U	
1,2,4-Trichlorobenzene	50U	50U	50U	50U	500	500	50U	50U	50U	50U 50U	50U 50U	50U 50U	500	50U	500	50U	50UJ	50U	500	50U	-
1,1,1-Trichloroethane	50U	50U	50U	50U	50U	500	50U	50U	50U	500	50U 50U	50U 50U	50U 50U	500	50U	50U	50UJ	50U	500	50U	
1,1,2-Trichloroethane	50U	500	50U	50U	50U	500	50U	50U	50U	50U 50U	50U 50U	50U	500	500	50 <u>0</u> 50U	50U	50UJ	50U	500	50U	
		50U	50U	50U	50U	50U	50U	50U	50U	50U 50U	<u>50U</u>	00 50U	500	500	50U	500	50UJ	500	500	50U	
Trichloroethene	50U				i 50U	50U	50U	50U	50U		50U	50U 50U	500	500	50U	50U	50UJ	50U	500	50U	
Trichloroethene Trichlorofluoromethane	50U	50U	50U	50U			6011	6011											300 /	000 1	
Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane	50U 50U	50U 50U	50U	50U	50U	50U	50U	50U	50U	50U									320	500	
Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	50U 50U 50U	50U 50U 50U	50U 50U	50U 50U	50U 50U	50U	50U	50U	50U	50U	3,120	2,100	50U	50U	50U	50U	960J	50U			
Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	50U 50U 50U 50U	50U 50U 50U 50U	50U 50U 50U	50U 50U 50U	50U 50U 50U	50U 50U	50U 50U	50U 50U	50U 50U	50U 50U	3,120 1,600	2,100 1,620	50U 50U	50U 50U	50U 50U	50U 50U	960J 620J	50U 50U	320	50U	
Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride	50U 50U 50U 50U 50U	50U 50U 50U 50U 50U 50U	50U 50U 50U 50U	50U 50U 50U 50U	50U 50U 50U 50U	50U 50U 50U	50U 50U 50U	50U 50U 50U	50U 50U 50U	50U 50U 50U	3,120 1,600 50U	2,100 1,620 50U	50U 50U 50U	50U 50U 50U	50U 50U 50U	50U 50U 50U	960J 620J 50UJ	50U	320 250	50U 50U	
Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride o-Xylene	50U 50U 50U 50U 50U 50U	50U 50U 50U 50U 50U 50U	50U 50U 50U 50U 50U	50U 50U 50U 50U 50U	50U 50U 50U 50U 50U	50U 50U 50U 50U	50U 50U 50U 50U	50U 50U 50U 50U	50U 50U 50U 50U	50U 50U 50U 50U	3,120 1,600 50U 340	2,100 1,620 50U 170	50U 50U 50U 50U	50U 50U 50U 50U 50U	50U 50U 50U 50U	50U 50U 50U 50U 50U	960J 620J 50UJ 180J	50U 50U 50U	320 250 50U	50U 50U 50U	
Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride	50U 50U 50U 50U 50U	50U 50U 50U 50U 50U 50U	50U 50U 50U 50U	50U 50U 50U 50U	50U 50U 50U 50U	50U 50U 50U	50U 50U 50U	50U 50U 50U	50U 50U 50U	50U 50U 50U	3,120 1,600 50U	2,100 1,620 50U	50U 50U 50U	50U 50U 50U	50U 50U 50U	50U 50U 50U	960J 620J 50UJ	50U 50U 50U 50U	320 250 50U 170	50U 50U 50U 50U	

notes:

1) Results and criteria are shown in ug/kg (ppb).

2) MDEQ Part 201 Industrial Drinking Water Protection Criteria as listed in the Interim Environmental Response Division Operational Memorandum #18, dated June 7, 2000.

3) "W" denotes Concentrations of trihalomethanes in groundwater must be added together to determine compliance with the State of Michigan Drinking Water Standard of 100 ug/l. Concentrations of trihalomethanes

in soil must be added together to determine compliance with the drinking water protection criterion of 2,000 ug/kg. 4) Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan.

5) Bold type denotes exceedance of Part 201 Industrial Drinking Water Protection criteria.

6) "-" denotes no criteria established.

7) "U" denotes the analyte was analyzed for, but was not detected.

8) "UJ" denotes that the sample specific reporting limit for the analyte in this sample should be considered approximate.

9) "J" denotes that the concentration should be considered approximate.

Table 1

MDEQ
Part 201 Generic
Cleanup Criteria
Industrial Drinking
Water Protection
Criteria
100
1,500
2,000(W)
2,000(W)
580
4,600
4,600
4,600
100
2,000
34,000
2,000(W)
22,000
2,000(W)
2,000(11)
4,600
14,000
480
1,700
270,000
50,000
100
140
1,400
2,000
100
-
•
1,500
72,000
260,000
•
100
100,000
4,600
2,700
6,400
700
100
16,000
-
-
4,000
100
100
150,000
2,400
2,100
1,800
40
5,600
5,600

rable in (cosc.)

MOEQ

Coldwater Road facility Soil Analytical Results Stat-Alla C unde method 9250

			Soil Ana	alytical F	Results										MOEQ
			Volatile	Organic	Compo	unds me	ethod 82	60							Part 201 Generic
															Cleanup Criteria
Sample Location	GB-30	GB-J1	GB-32	GB-33	G8-39	GB-40	08-41	GB-42		GB-44	08-45	GB-46		Soll Du	Industrial Drinking
Sample Depth	(D-Z')	(0-2)	(0-2)	(0-Z)	(0-2)	(0-2)	(8-27)	(0-2)	(0-27)	1 (0-2')	(0-21)	(0-2')	(0-2')	(0-2')	Water Protection
Date Collected	08/27/98	08/26/98	08/26/98	08/26/98	08/27/98	06/27/98	08/27/98	05/03/99	05/03/8	05/03/9	05/03/99	105/03/99	05/03/99	05/03/99	Criteria
Parameter									ļ	!		<u> </u>			
Benzene	50U	500	50U	50U	50U	500	50U	50U	500	50U	50U	50U	50U	50U	100
Bromobenzene**	50U		50U	50U	50U	50U	500	NA	NA	NA	NA	NA	NA	NA	1.500
Bromochloromethane**	50U	500	50U	500	50U	50U	50Ú	NA	NA	NA	NA	NĂ	NA	NA	-
Bromodichloromethane	50U	50U	50U	50U	50U	50U	50U	50U	50U	<u>50U</u>	50U	50U	50U	500	2.000(77
Bromoform		50U	50U	5CU	50U	50U	500	50U	5CU	50U	50Ü	50U	50U	50U	2.000(77)
Bromomethane	50Ú	50U	50U	50U	50U	500	50U	50U	5CU	<u>50U</u>	50U	500	500	500	580
n-Butylbenzene	50U	50U	50U	50U	50U	50U	50U	50U	500	50U	50U	500	50U	50U	4,600
sec-Butylbenzene	50U	500	50U	50U	50U	50U	50U	50U	500	50U	500	50U	50U	500	4 6CC
tert-Buty/benzene	50U	50U	50U	50U	500	500	500	50U	500	50U	50U	50U	50U	50U	4,600
Carbon tetrachloride	50U	500	50U	50U	500	50U	50U	50U	500	500	500	50U	50U	50U 50U	10C 2.0CC
Chlorobenzene	50U	SOU	50U	50U	500	50U	500	500	500	50U	50U	500	500		34.000
Chloroethane	500	500	50U	500	50U	50U	50U	50U	500	500	50U	500	500	50U	
Chloroform	50U	500	500	500	500	500	50U	500	50U	50U 50U	50U 50U	50U 50U	50U 50U	50U 50U	2,000(V/) 22,000
Chloromethane	500	50U	500	50U	500	500	50U 50U	500	500	NA	NA	<u>. 500</u> NA	NA NA	NA	22,WS
2-Chlorotoluene**	500	500	50U	500	500	50U 50U	50U 50U	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	· · ·
4-Chlorotoluene**	500	500	50U 50U	50U 50U	50U 50U	500	50U 50U	50U	50U	500	500	500	500	50U	2,000(77)
Dibromochloromethane	50U	50U	50U 50U	50U 50U	50U	500 500	500	500 NA	NA	NA NA	NA	NA	NA NA	NA	2,000(77)
1,2-Dibromo-3-chloropropane**	50U 50U	50U 50U	50U 50U	50U 50U	50U 50U	50U 50U	500 500	NA NA	NA NA	NA	NA	NA NA	NA	NA	
1.2-Dibromoethane**	500 500	500 50U	50U	500	500	50U	500	NA NA	NA NA	NA	NA	NA	NA	NA	4,600
Dibromomethane**	500	500	50U	500	630	50U	500	500	500	500	500	500	500	500	14 000
1.2-Dichlorobenzene 1.3-Dichlorobenzene	50U	500	500	500	110	500	500	500	500	500	500	500	500	500	48C
	50U	500	500	500	130	500	500	500	500	50U	50U	50U	500	500	1.70C
1.4-Dichlorobenzene Dichlorodifluoromethane**	50U	500	500	500	500	500	500	NA	NA	NA	NA	NA	NA	NA	270.00C
1,1-Dichloroethane	50U	500	500	500	50U	500	500	500	500	50U	50U	50U	50U	50U	50 OCC
1,2-Dichloroethane	50U	500	50U	500	500	50U	500	500	500	50U	50U	50U	50U	50U	100
1.1-Dichloroethene	50U	50U	50U	500	50U	50U	50U	500	50U	50U	50U	50U	50U	50U	14C
cis-1.2-Dichloroethene	500	50U	500	50U	50U	50U	50U	50U	50U	50U	50U i	50U	500	50U	1 40C
trans-1,2-Dichloroethene	50U	50U	50U	50U	50U	500	50U	50U	50U	60	50U	50U	50U	50U	2,000
1,2-Dichloropropane	50U	50U	50U	500	50U	50U	50U	50U	50U	50U	50U	50Ú	50U	50U	100
1,3-Dichloropropane**	50U	50U	50U	50U	50U	50U	50Ú	NA	NA	NA	NA i	NA	NA	NA	- · · ·
2.2-Dichloropropane**	50U	50U	50U	50U	50U	50U	500	NA	NA	NA	NA	NA	NA	NA	•
1,1-Dichloropropene**	50U	50U	50U	50U	50U	50U	50U	NA	NA	NA	NA	NA	NA	NA	
Ethylbenzene	50U	50U	50U	50U	100	50U	50U	50U	50U	50U	50U	500	500	50U	1,500
Hexachlorobutadiene**	50U	50U	50U	50U	50U	50U	500	NA	NA	NA	NA	NA	NA	NA	72.0CC
Isopropylbenzene	50U	50U	50U	50U	50U	50U	50U	50U	50U	500	50U	50U	50U	50U	260.000
p-Isopropyitoluene	500	500	50U	50U	500	50U	500	500	500	500	50U	50U	500	500	-
Methylene chloride	500	500	500	500	500	500	500	3,190 UJ		2,460UJ		2,360UJ	2,550UJ	2,440UJ	100 100.000
Naphthalene	50U	50U	50U	50U	50U	50U	50U	50U	50U 50U	50U 50U	80 50U	50 50U	50U 50U	50U 50U	4 600
n-Propylbenzene	50U	50U 50U	50U 50U	50U 50U	50U 50U	50U 50U	50U 50U	50U 50U	50U 50U	50U	500	50U	50U 50U	50U 50U	2.700
Styrene	50U 50U	500	50U 50U	500	50U 50U	50U 50U	50U	NA	NA	NA	NA	NA	NA	NA	6,400
1,1,1,2-Tetrachloroethane**	50U 50U	50U	500		500	500	500	50U	500	500	500 :		500	500	700
1,1,2,2-Tetrachloroethane	500	50U	500	500	500	500	500	50U	500	50U	500 : 50U :	500	500	500	100
Tetrachloroethene	50U	500	500	500	500	500	500	150U	50U	500	50U	50U	50U	500	16.000
1.2.3-Trichlorobenzene**	500	500	500	500	50U	500	500	NA	NA	NA	NA	NA	NA	NA	
1,2,4-Trichlorobenzene**	500	50U	50U	50U	50U	500	500	NA	NA	NA	NA	NA	NÁ	NA	-
1, 1, 1-Trichloroethane	50U	500	50U	50U	50U	50U	50U	50U	50U	500	50U I	50U	50U	50U	4.0CC
1, 1, 2-Trichloroethane	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	500	50U	100
Trichloroethene	50U	50U	500	50U	50U	50U	50U	50U	50U	570J	50U	50U	770	50U	100
Trichlorofluoromethane**	50U	50U	50U	50U	50U	50U	50U	NA	NA	NA	NA	NA	NA	NA	150.000
1.2.3-Trichloropropane**	50U	50U	50U	50U	50U	50U	50U	NA	NA	NA	NA	NA	NA	NA	2,4CC
1.2.4-Trimethylbenzene	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	2,100
1,3,5-Trimethylbenzene	50U	500	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	_50U	50U	1.8CC
Vinyl chloride	50U	50U	50U	50U	50U	50U	50U	50U	500	50U	50U	50U	50U	50U	40
o-Xylene	50U	500	_50U	500	50U	_50U	500	220	50U	50U	500	50U	500	500	5.60C
		C D 1	50U	50U	50U	50U		70	50U	50U	500	500	50U	50U	5 60C
p.m-Xylene	50U	50U					500	50U	50U	500	500	50Ú	500	50U	
p.m-Xylene	50U	50U	50U	50U	50U	50U									
p.m-Xylene cis-1,3-Dichloropropene Acetone*	50U NA	50U NA	50U NA	NA	NA	NA	NA	3,600J	3.000J	1 300J	800J	1,100J	1,200J	1.100J	42 000
p.m-Xylene bis-1,3-Dichloropropene Acetone* 2-Butanone*	50U NA NA	50U NA NA	50U NA NA	NA NA	NA NA	NA NA	NA NA	3,600J 500U	3.000J 500U	1 300J 500U	800J 500U	1,100J 500U	1,200J 500U	1.100J 500U	760 CCC
p.m-Xylene cis-1,3-Dichloropropene Acetone* 2-Butanone* Carbon Disulfide*	50U NA NA NA	50U NA NA NA	50U NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	3,600J 500U 500U	3.000J 500U 500U	1 300J 500U 500U	800J 500U 500U	1,100J 500U 500U	1,200J 500U 500U	1.100J 500U 500U	760 CCC 46.0CC
p.m-Xylene bis-1,3-Dichloropropene Acetone* 2-Butanone*	50U NA NA	50U NA NA	50U NA NA	NA NA	NA NA	NA NA	NA NA	3,600J 500U	3.000J 500U	1 300J 500U	800J 500U	1,100J 500U	1,200J 500U	1.100J 500U	760 CCC

notes:

1) Results and criteria are shown in ug/kg (ppb).

Xesults and chiena ale shown in egreg (PP).
 MDEQ Part 201 Industrial Drinking Water Protection Criteria: as listed in the Interim Environmental Response Division operational Memorandum#18 dated June 7, 2000.
 "W" denotes Concentrations of trihalomethanes in groundwater must be added together to determine compliance with the State of Michigan Drinking Water Standard of 100 ug/l

Concentrations of trihalomethanes in soil must be added together to determine compliance with the drinking water protection criteria of 2,000 ug/l.

5) Samples analyzed by Fire & Environmental Consulting Laboratories. Inc. of East Lansing, Michigan.

6) Bold type denotes exceedance of Part 201 Industrial Drinking Water Protection criteria.

7) "-" denotes no criteria established.

8) "U" denotes the analyte was analyzed for, but was not detected.

9) Soil duplicate sample collected at G8-44.

10) "UJ" denotes that the sample specific reporting limit for the analyte in this sample should be considered approximate

11) "J" denotes that the concentration should be considered approximate

12) "*" indicates these constituents were added after implementation of the QAPP

13) "**" indicates these constituents were not part of the target compound list included in the QAPP

14) NA denotes sample not analyzed or not part of target compound list in QAPP

i/novi/project/4144/21487/4_notes/salb.wb2

REALM Coldwater Road Facility Soil Analytical Results Semivolatile Organic Compounds method 8:

																Results																		MDEQ
																		nds meth	ad 927	n														Part 201 Generic
														Senny	ulatile O	nyame t	vombou:	ius mett	100 021	•														Cleanup Criteria
Sample Location	0.0.2	001	GB-7	1 68 9	1 00 4	0 10	CP 11	CP 17	00 49	GB-19	69.30	GR-11	00 12	00 12	08.24	CP.25	CR.26	68.27	GB.28	CD 29	GR-30	GB-31	GR-32	G8-33	GB-39	GB-40	GB-41	GB-42	68.43	GB-44	GB-45	GB-46 G	B-47 Soil f	
Sample Depth		(13-15')		<u> </u>		(10-12')		÷	(0-2')	(0-2")	(0-2')	(0-2')	(0-2')		(0-2')		(0-2')	(0-2')		(0-2')		(0-2')	(0-2')		(0-2')	(0-2')	(0-2")		(0-2')		(0-2')	(0-2') (
Date Collected																																05/03/99 05/		
Parameter	V0124130	00124190	00/24/90	00124130	00/24/98	06/24/96	09120139	00120130	00120190	08/25/36	00120190	00123130	00120190	00120190	100/20/90	00120130	100120130	00/20/30	00120130	V0/21/30	00/2/190	00/20/30	00120130	00120130	00121130	00/2//30	00/2/190	03103133	00100133	03103133 0	5100133	00100103 001	00/30 00/00	
		20011	2001	20011	2021		00011	20011	20011			20011	20011	20011	1 00011		1 0000	20217	300U	300U	2001	300U	3000	20011	5,0000	300U	3000	3000	300U	3000	60011	300U 12	000 300	U 8.8+E5
Acenaphthene	300U 300U	3000	3000	300U	3000	3000	300U	300U 300U	300U 300U	3000	3000	300U	3000	3000	3000		3,000U 3,000U	3000	3000	3000	300U 300U	300U	3000	3000	5,0000		3000	300U	3000		6000		000 300	
Acenaphthylene Acetophenone*		3000	3000	3000	300U	300U	3000	3000 300UJ		3000	300U	300U 300UJ	300U	30CU	3000	3000	3,0000	3000	300 UJ								300 UJ		NA		NA T		VA NA	
Acerophenone Aniline*	300UJ	300UJ		300UJ	300UJ	300UJ	300UJ		300UJ	3000J				300 UJ				300 UJ						300 UJ		<u> </u>			NA I	NA	NA			
Anthracene	300UJ	30001	30001	300UJ 300U	300UJ 300U	300UJ	300UJ	300UJ	300UJ	30000	300UJ 300U	300UJ 300U		300 UJ			3,0000 3,000U	300 0J 300U	300 UJ 300U		300 03	300 0J	3000	3000	5,0000		3000	3000	3000				000 300	
4-Aminobiphenyl*	300U	3000				1,400	300U	3000	-300U				300U	3000	3000			300 UJ		300U			300 UJ			300 UJ	300 UJ	NA	NA NA	NA	NA		VA NÄ	
Benzidine*	30001	300UJ	300UJ	30001		600UJ	300UJ	300UJ	300UJ	300UJ	300ÚJ	300UJ	300 UJ	300 UJ				300 UJ					300 UJ				300 UJ	NA	NA	NA	NA			
	300UJ	300UJ 300UJ		300UJ 300UJ	300UJ 300UJ	600UJ	300UJ	300UJ	300UJ			300UJ	300 UJ		300 UJ 300 UJ						300 UJ			300 UJ				NA	NA	NA	NA		A NA	
Benzoic acid Benzo(a)anthracene	300UJ 400	30007	300UJ 300U	30000		600UJ 1.600	30000	300UJ 300U	300UJ 300U	300UJ 300U	300UJ	300UJ	300 UJ 300U	300 UJ	3000		3.00003	300 UJ	30003	30000	30003	300 UJ	3000		5.000U		3000	3000	3000		6000		000 3000	
Benzo(b)fluoranthene	800	3000		3000	300U 300U	2,200J	300U	3000	300U	300U	300U 300U	300U 300U	3000	300U 300U	3000	300U 300U	3.000U	3000	300U	300U	300U	3000	3000		5,0000	3000	3000	3000	3000				000 3000	
Benzo(k)/luoranthene	800	3000 300U	3000 3000	300U		2,200J	3000	3000	3000	3000	300U	3000	3000	3000	3000	3000	3.000U	3000	3000	300U	3000	3000	3000		5,000U	3000	3000	3000	3000				DOU 3001	
Benzo(ghi)perylene	300	300U	3000	300U	3000	600J	300U	3000	3000	3000	3000	3000	300U 300U	3000	3000	3000	3,0000		3000	3000	3000	3000	3000		5,000U	3000	3000	3000	3000				200 3000	
Benzo(a)pyrene	900	3000	3000	300U	3000	2.700J	3000	3000	3000	3000	3000	300U	3000	3000	3000	3000	3.0000		3000	3000	3000	3000	3000		5.000U	3000	300U	3000	3000				300 3000	
Benzyl alcohol*	3000	300UJ	30000	300UJ		600UJ	3000	300UJ	30000	300UJ		30001	300 UJ				3.000UJ				300 UJ				5,000 UJ		300 UJ	NA	NA		NA		A NA	
Bis(2-chloroethoxy)methane	300U	30003	3000	3000		6000	300U	3000	300U	300U	3000	300U	3000		3000	300U	3,0000		3000	3000	3000	300U	3000		5,0000		3000	3000	3000				200 3000	
Bis(2-chloroethyl)ether	3000	3000	3000	3000	3000	600U	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3,000U	3000	3000	3000	3000	3000	300U		5,0000	3000	300U	300U	3000				00 300	
Bis(2-chlorisopropyl)ether	3000	300U	3000	300U	3000	600U	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3,0000	300U	300U	3000	300U	3000 1	300U	3000	5.000U	3000		300UJ	300UJ			300UJ 120		
Bis(2-ethylhexyi)phthalate	3000	3000	3000	300U	3000	600U	3000	3000	3000	3000	3000	300U	300U	3000	3000	3000	4,000		3000	3000	600	300U	3000		5,000U	300U	3000	300U	3000	300U 6	100U	300U 120	OU 300L	J NLL
4-Bromophenyl phenyl ether	300U	300U	3000	300U	3000	600U	3000	3000	300U	300U	3000	300U	3000	3000	3000	3000	3.000U		300U	300U	300U	3000	300U				300U	300U	3000	3000 6	5000	3000 120	XOU 300U	
Butyl benzyl phthalate	3000	300U	300U	3000	300U	600U	300U	3000	300U	300U	3000	3000	3000	3000	1 300U	3000	3.000U	3000	300U	300U	300U	3000	300U	300U	5,000U	300U	3000	3000	300U	500U 6	1000	300U 120	00 3000	J 3.1+E5 (C)
4-Chloroaniline	30000	30000		300UJ	300UJ	600UJ	300UJ	300UJ	300UJ		300UJ	300UJ	300 UJ	300 UJ		<u> </u>	3.00000	300 UJ	300 UJ	300 UJ	300 UJ	300 UJ	300 UJ	300 UJ	5,000 UJ	300 UJ	300 UJ	300U	300U	300U 6	100U	300U 120	XU 300U	-
1-Chloronaphthalene*	30001			300UJ	300UJ	600UJ	300UJ	300UJ	300UJ			300UJ	300 UJ	300 UJ			3,000UJ	300 UJ	300 UJ	300 UJ	300 UJ	300 UJ	300 UJ	300 UJ	5,000 UJ	300 UJ	300 UJ	NA	NA	NA	NA	NA N	A NA	-
2-Chloronaphthalene	3000	300U	300U	300U	300U	600U	300U	300Ú	300Ú	3000	300U	300U	3000	300U	300U	300U	3,000U	3000	300U	300U	3000	300U	300U	300U	5,000U	300U	300U	300U	300U				00 3000	
4-Chloro-3-methylphenol	3000	300U	300U	300U	3000	600U	300U	3000	300U	300U	3,000U	300U	3000	300U	300U	300U	300U		5,000U	300U	3000	300U	3000				00 3000							
2-Chlorophenol	3000	300U	300U	300U	300U	600U	300U	300U	300U	300U	300U	3000	300U	300U	300U		3,000U	3000	300U	300U	300U	300U	300U	3000		300U	300U		300U				00 3000	-,
4-Chlorophenyl phenyl ether	300U	300U	300U	3000	300U	600U	300U	3000	300U	300U	3000	3000	300U	300U	300U	300U	3,000U		300U	300U	300U	300U	300U	300U		3000							00 3000	
Chrysene	500	300U	300U	300U	300U	1,700	300U	3000	300U		300U	300ป	300U	300U	300U		3,0000		300U	300U	300U	300U			5,000U	3000							0U 300U	
p,m-Cresol	300UJ	300UJ	300UJ	300UJ	300UJ	600UJ		300UJ	300UJ				300 UJ	300 UJ	300 UJ		3,000UJ			300 UJ			300 UJ		5,000 UJ	300 UJ						300U 120		
o-Cresol	30001	300UJ		300UJ	300UJ	600UJ		_300UJ	300UJ					300 UJ	300 UJ		3,000UJ			300 UJ			300 UJ					·				3000 120		
Dibenz(a.j)acridine*	300UJ	300UJ		300UJ	300UJ	600UJ		300UJ	300UJ			300UJ		300 UJ	300 UJ		3,000UJ			300 UJ				300 UJ			300 UJ	NA	NA (NA N		
Dibenzo(ah)anthracene	300U	300U	300U	300U	3000	600U	300U	300U	300U		300U	3000	300U	300U	300U	3000	3,000U	300U	300U		3000	3000	3000		5,0000		300U					300U 120 300U 120	0U 300U 0U 300U	
Dibenzofuran	300UJ	30001		300UJ	300UJ	600UJ	300UJ	300UJ	300UJ					300 UJ	300 UJ	300 UJ				300 UJ			300 UJ			300 UJ							00 3000 00 3000	
Di-n-butyl phthalate	3000	300U	3000	300U	300U	600U	300U	300U	300U		3000	300U	300U	3000	3000	3000	3,000U		3000	3000	300U	300U 300U	300U 300U		5,000U 5,000U								00 3000	
1.2-Dichlorobenzene	300U	300U	3000	300U	300U	600U	3000	300U	300U		3000	300U	300U	3000	3000	300U	3,000U			3000	300U 300U	3000	3000		5,0000	3000 3000							0 3000 0 3000	
1.3-Dichlorobenzene	3000	300U	300U	300U	3000	600U	3000	3000	3000		3000	3000	300U	3000	3000	300U 300U	3,000U		300U 300U	300U 300U	3000	3000	3000		5,000U	300U							0 3000 00 3000	
1.4-Dichlorobenzene	300U	3000	3000	300U		600U	300U	3000	300U		3000	300U 300UJ	300U 300 UJ	3000	3000	300U 300 UJ	3,000U	300U 300 UJ				3000 11				300 UJ							0 3000 0 3000	
3.3'-Dichlorobenzidine	300UJ	300UJ	300UJ	300UJ	30000	600UJ	300UJ	300UJ	300UJ 300U		300UJ	30000	300 00	300 UJ 300U	300 UJ 300U		3,00000		300U	3000	3000		3000		,								0 3000	
2,4-Dichlorophenol	300U 300UJ	300U 300UJ	300U 300UJ	300U	300U	600U	300U	300U 300UJ	300UJ							300 UJ		300 UJ				300 UJ		300 UJ 1				NA	NA			NA N/		4,200
2.6-Dichlorophenol* Diethyl phthalate	30000	30000	30000	300UJ 300U	300UJ 300U	600UJ	300UJ 300U	3000J 300U	30000		30003	30001	300 03	300 03	30000		3,00000		300 03	3000	3000		3000		5,000U								00 3000	
p-Dimethylaminoazobenzene*				300UJ		600UJ	300UJ	3000	300UJ					300 UJ	300 UJ	300UJ		300 UJ				300 UJ		300 UJ 3				NA	NA			NA NA		
7,12-Dimethylaminoazobenzene*	300UJ 300UJ					600UJ	30000	3000J	30000									300 UJ				300 UJ		300 UJ	· /			NA	NA			NA NA		
a-,a-Dimethylphenethylamine*	300UJ				300UJ			30000	300UJ			30000						300 UJ				300 UJ		300 UJ (NA NA		•
2,4-Dimethylphenol	30003 300U	3000	30000	3000	3000	600U	3000	30003	3000			3000		3000	3000	3000	3,000U						300U		5,000U							300U 1200		
Dimethyl phthalate*	300U	3000	3000	300U	300U	600U	300U	3000	3000				3000		3000		3.000U			3000		3000					300U		NA			NA NA		7.9+E5 (C)
Comments Internation				0000		0000	0000 1					1000					.,	<u> </u>			<u>-</u> I.			,	k-			·			•			

notes:

1) Results and criteria are shown in ug/kg (ppb).

2) MDEQ Part 201 Industrial Drinking Water Protection Criteria as listed in the Interim Environmental Response Division

Operational Memorandum #18, dated June 7, 2000.

3) "C" denotes value presented is a screening level based on the chemical-specific generic soil saturation concentration (Csat) since the calculated risk-based criterion is greater than Csat.

4) "E" denotes exponential factor.

5) "M" denotes calculated criterion is below the analytical method detection limit, therefore, the criterion defaults to the method detection limit.

6) Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan.

7) "-" denotes no criteria established.

8) NLL denotes chemical is not likely to leach under most soil conditions.

9) ID denotes inadequate data to develop criterion.

10) "UJ" denotes that the sample-specific reporting limit for the analyte in this sample should be considered approximate.

11) "U" denotes the analyte was analyzed for, but was not detected.

12) "NA" Denotes constituent not analyzed.

13) Soil duplicate sample collected at GB-44.

14) (*) denotes constituents were not part of TCL in QAPP.

i/novi/project/4144/21487/4_notes/satb.wb2

Table 1 (cont.)

pg 3 of 5

REALM

Coldwater Road Facility

															ater Roa		y																	·····
														Soil A	nalytical	Results																		MDEQ
														Semiv	olatile O	rganic C	ompour	nds met	hod 827	0														Part 201 Generic
																	•																•	Cleanup Criteria
Sample Location	GB-2	GB-3	GB-7	GB-8	GB-9	GB-10	GB-11	G8-17	GB-18	G8-19	GB-20	GB-21	GB-22	GB-23	GB-24	GB-25	GB-26	GB-27	GB-28	GB-29	GB-30	GB-31	GB-32	GB-33	GB-39	GB-40	GB-41	GB-42	GB-43	GB-44	GB-45	GB-46	G8-47 Soil Du	p Industrial Drinking
Sample Depth	112-14"	/13-15"	113 15')	(12.14)	(13-15)	(10-12%)	(7-9')	(0.2)	(0.2')	(0.2')	(0.2')	(0.2')	(0.2')	(0-2')	(0-2')	(0-2')	(0-2')	(0.2)	(0-2')	i (0-2')	(0-2')	(0-2')	(0.2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2') (0-2')	
Date Collected	09/24/09	09/34/05	08/2//08	09/7//08	08/24/98	08/24/08	08/25/98	08/25/08	08/25/98	08/25/98	08/25/98	08/25/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/27/98	08/27/98	3 08/26/98	08/26/98	08/26/98	08/27/98	08/27/98	08/27/98	05/03/99	05/03/99	05/03/99	05/03/99	05/03/99 0	5/03/99 05/03/9	9 Criteria
Parameter	00124030	100/24/30	00/24/30	100/24/30	00124/30	00124130	00120130	00/20130	100/20100	00120100	00120100	00/20100					-	1	1		1													
4,6-Dinitro-2-methylphenol	3000	3000	3000	3000	3000	6000	300U	300U	3000	300U	3000	300U	3000	300U	3000	3000	3.000U	300U	3000	3000	300U	3000	3000	300U	5,000U	3000	300U	300U	300U	300U	600U	3000	1200U 300U	
2,4-Dinitrophenol	3000	3000	3000	3000	3000	6000	3000	3000	3000	300U	300U	3000	300U	3000	3000	3000	3,0000	300U	300U	300U	300U	3000	300U	300U	5,000U	300U	3000	300U	300U	300U	600U	300U	1200U 300U	-
2.4-Dinitrotoluene	3000	3000	3000	3000	300U	600U	300U	3000	3000	3000	300U	300U	300U	3000	3000	3000	3,0000		300U	300U	3000	3000	300U	300U	5.000U	300U	300U	300U	300U	300U	600U	300U	12000 3000	-
2.6-Dinitrotoluene	3000	3000	3000	3000	3000	6000	300U	3000	3000	300U	300U	300U	300U	300U	300U	300U	3,000U	300U	3000	300U	300U	300U	300U	300U	5,000U	300U	300U	300U	300U	300U	600U	300U	1200U 300U	
Diphenylamine*	300UJ	30000	300UJ	300UJ	300UJ	600UJ	30000	300UJ	30000	300UJ	300UJ	300UJ			300 UJ		3.000UJ	300 UJ	300 UJ	300 UJ	300 UJ	300 UJ	300 UJ	300 UJ	5.000 UJ	300 UJ	300 UJ	NA	NA	NA	NA	NA	NA NA	-
												-	300 U3				3.000UJ	300 UJ	300 UJ	300 U J	300 UJ	300 UJ	300 UJ	300 UJ	5,000 UJ	300 UJ		NA	NA	NA	NA	NA	NA NA	
Di-n-octyl phthalate	College Store <															1.4+E8																		
Ethyl methanesulfonate*	300UJ	300UJ	30000	300UJ	300UJ	600UJ	300UJ	300UJ	300UJ	30000	300UJ	300UJ	300 UJ	300 UJ	300 UJ	300 UJ	13,000UJ	300 UJ	300 UJ	300 UJ	300 UJ	300 UJ				300 UJ	300 UJ	NA	NĂ	NA	NA	NA	NA NA	-
Fluoranthene	1,000	300U	3000	300U	300U	4,000	300U	300U	300U	300∪	3,000U	300U	300U	300U	300U	3000	300U			300U	300U	3000	300U		600U		12000 3000	7.3						
Fluorene	3000	3000	3000	300U	3000	600U	3000	3000	3000	300U	3000	300U	300U	3000	300U	300U	3,000U	300U	300U	300Ú	300U	3000	300U		5,000U	300U	300U	300U	300U		600U		1200U 300U	890,000
Hexachlorobenzene	3000	300U	300U	3000	300U	600U	300U	3000	300U	300U	300U	300U	300U	300U	3000	300U	3,0000	300U	300U	300U	300U	3000			5,000U	300Ú	300U	3000	300U		600U		2000 3000	1,800
Hexachlorobutadiene	3000	300U	300U	3000	3000	600U	300U	3000	300U	300U	300U	300U	300U	300U	3000	300U	3,000U	300U	_300U	300U	300U	300U			5,000U	300U	300U		300U		600U		2000 3000	72,000
Hexachlorocyclopentadiene	300R	300R	300R	300R	300R	600R	300R	300R	300R	300R	3,000R	300R	300R	300R	300R	300R	300R		5,000R	300R	300R	3000	300U		600U		2000 3000	320,000						
Hexachloroethane	3000	300U	300U	300U	300U	600U	300U	3000	300U	3000	300U	300U	300U	3000	3000	3000	3,0000	300U	300U	300U	300U	3000	3000		5,000U	300U	3000	3000	300U		600U		2000 3000	1,200
Indeno(1,2,3-cd)pyrene	400	300U	300U	3000	300U	800	300U	3000	300U	300U		300U	300U	300U	300U		3,000U	300U	300U	300U	3000	3000			5,000U	300U 300U	300U 300U	300U 300U			600U 600U	300U 1 300U 1	200U 300U 200U 300U	NLL 62.000
Isophorone	300U	300U		300U	300U	600U	300U	300U	3000	300U	300U	300U	300U	300U	300U		3,0000	3000	3000	300U	3000	3000				3000	300 UJ	NA	NA	3000 NA	NA	NA 1	NA NA	02,000
3-Methylcholanthrene*	30000	300UJ		300UJ	300UJ	600UJ	30000	300UJ	300UJ				300 UJ									300 UJ 300 UJ				300 UJ (300 UJ	NA	NA	NA	NA	NA	NA NA	
Methyl methanesulfonate*	300UJ	300UJ		300UJ	300UJ	600UJ	300UJ	30000	300UJ	300UJ				300 UJ	300 UJ	300 UJ	3.000UJ			300 UJ 300 UJ						300 UJ	300 UJ		3000		6000		2000 3000	170,000
2-Methylnaphthalene	300UJ	300UJ		300UJ	300UJ	600UJ	300UJ	30001	300UJ 300U	300UJ 300U	300UJ 300U	300UJ 300U	300 UJ 300U	300 UJ 300U	300 UJ 300U		3,000UJ	300 UJ 300U	30000	3000	300U	3000			5.0000	3000	3000		3000		6000		2000 3000	100,000
Naphthalene	3000	3000		300U 300UJ	300U 300UJ	600U	300U 300UJ	300U 300UJ	300UJ				300 UJ	300 UJ	300 UJ		3,00001			300 UJ			300 UJ				300 UJ	NA	NA	NA	NA		NA NA	
1-Naphthylamine* 2-Naphthylamine*	300UJ 300UJ		300UJ 300UJ	300UJ	300UJ	600UJ	300UJ	300UJ	300UJ					300 UJ	300 UJ				300 UJ					300 UJ		300 UJ	300 UJ	NA	NA	NA	NA	NA	NA NA	-
2-Nitoranitine	30001		300UJ	30003	300UJ	600UJ	300UJ	30000	300UJ	300UJ			300 UJ								300 UJ	300 UJ	300 UJ	300 UJ	5,000 UJ	300 UJ	300 UJ	3000	3000	300U	600U	300U 1	2000 3000	-
3-Nitroaniline	300UJ	30000		300UJ	30000	600UJ	300UJ	300UJ	300UJ	300UJ				300 UJ	300 UJ			300 UJ	300 UJ		300 UJ	300 UJ	300 UJ	300 UJ	5,000 UJ	300 UJ	300 UJ	300U		3000	600U	300U 1	2000 3000	• . }
4-Nitroaniline	30000	300UJ	30001	300UJ	300UJ	600UJ	300UJ	30000	300UJ	300UJ			300 UJ	300 UJ	300 UJ	300 UJ	3,000UJ	300 UJ	300 UJ	300 UJ	300 UJ	300 UJ					300 UJ						2000 3000	-
Nitrobenzene	3000	3000	300U	300U	300U	600U	300U	300U	3000	300U	3000	3000	300U	300U	300U	300U	3,000U	300U	300U	300U	300U	300U		3000		300U	3000						2000 3000	
2-Nitrophenol	3000	300U		3000	300U	600U	300U	300U	3000	300U	300U	300U	300U	300U	300U		3,000U	300U	300U	300U	300U	300U					300U						2000 3000	1,200
4-Nitrophenol	300U	300U	300U	300U	300U	600U	300U	300U	3000	300U	300U	3000	300U	300U	300U	300U	3,000U	_	300U	300U	3000	300U					300U				600U		2000 3000	
N-Nitroso-di-n-butylamine*	300UJ	300UJ	300UJ	300UJ	300UJ	600UJ	300UJ	300UJ	300UJ	300UJ			300 UJ	300 UJ	300 UJ	300 UJ	3,000UJ	300 UJ		300 UJ	300 UJ	300 UJ			5,000 UJ			NA	NA		NA		NA NA	· · · ·
N-Nitrosodimethylamine*	300U	300U	3000	300U	300U	600U	300U	3000	3000	300U		300U	3000	3000	300U	3000	3,000U	300U	300U	300U	300U	3000				300U 300U	300U 300U	NA 300U	NA 300U		NA 600U		NA NA 2000 3000	
N-Nitrosodiphenylamine	300Ų	300U	300U	3000	300U	600U	3000	300U	3000	300U		300U	300U	300U	300U		3,000U	300U	3000	3000	300U 300 UJ	300U 300 UJ			5.000 UJ		300 01	NA	NA		NA I		NA NA	
N-Nitrosopiperidine*	300UJ	300ÜJ		300UJ			300UJ	300UJ	300UJ	300UJ				300 UJ	300 UJ	300 UJ			300 UJ		300 UJ				5,000 UJ		300 UJ	NA	NA		NA			81.000
Pentachlorobenzene*	300UJ	300UJ	300UJ	300UJ	300UJ		300UJ	300UJ	300UJ	300UJ				300 UJ		300 UJ		300 UJ 300 UJ			300 UJ		300 UJ 3		5,000 UJ		300 UJ	NA	NA		NA		NA NA	37,000
Pentachloronitrobenzene*	300UJ	300UJ	300UJ	300UJ	300UJ	600UJ	300UJ	300UJ	300UJ 300U		300UJ	300UJ 300U	300 UJ 300U	300 UJ 300U	300 UJ 300U		3,00000		300 UJ	300U	3000	3000				3000							2000 3000	22
Pentachlorophenol	300U	300U	300U	300U 300UJ	300U 300UJ	600U 600UJ	300U 300UJ	300U 300UJ	3000	300U 300UJ		300UJ {		300 UJ				300 UJ			300 UJ						300 UJ	NA	NA		NA		NA NA	34,000
Phenacetin*	30000	300UJ	300UJ 300U		300UJ 300U	2,800	300U	3000	30003	3000	3000	3000	3000	3000	300U		3,000U		300U	300U	300U	300U			5,0000	3000	300U	300Ü	3000	3000 6	600U	3000 12	000 3000	160,000
Phenol	700	300U 300U	300U 300U	3000	300U 300U	600U	300U	3000	3000	3000	3000	3000	3000	3000	300U	300U	3,0000	300U	3000	300U	300U	300U	300U	300U	5,000U	300U	3000	300U	3000	3000 6	500U	3000 12	000 3000	260,000
2-Picoline*	300U 300UJ	3000	3000	300UJ	300UJ	600UJ	30003	30000	30001	30000		30000			300 UJ		3.000UJ		300 UJ		300 UJ		300 UJ 3	300 UJ 🗄	5,000 UJ	300 UJ	300 UJ	NA	NA	NA	NA	NA	NA NA	-
Pronamide*	30001	30000		30000	300UJ	600UJ	300UJ	300UJ	300UJ	300UJ				300 UJ	300 UJ		3,000UJ		300 UJ	300 UJ	300 UJ	300 UJ	300 UJ 3	300 UJ (5	5,000 UJ	300 UJ	300 UJ	NA	NA	NA	NA		NA NA	-
Pyrene	1,100	3000	3000	300U	300U	4,600	300U	3000	3000	3000		300U	3000	300U	<u> </u>	300U		300U	300U	300U	300U	300U											000 3000	480,000
1,2,4,5-Tetrachlorobenzene*	300UJ	300UJ	30000	300ÜJ	300UJ	600UJ	300UJ	300UJ	300UJ	30000	300UJ	30003	300 UJ	300 UJ	300 UJ	300 UJ			300 UJ	300 UJ	300 UJ	300 UJ					300 UJ	NA	NA		NA		NA NA	1.5+E6
2,3,4,5-Tetrachlorophenoi*	30000	30000		300UJ	300UJ	600UJ	300UJ	300UJ	300UJ	300UJ	300UJ	30001	300 UJ	300 UJ	300 UJ		3,000UJ		300 UJ	300 UJ	300 UJ		300 UJ 3				300 UJ	NA	NA		NA		NA NA	
1,2,4-Trichlorobenzene	3000	300U	300U	300U	300U	600U	300U	300U	300U	300U		300U	300U	300U	300U	300U	3,000U	300U	300Ú	300U	300U	300U											000 3000	4,200
2.4.5-Trichlorophenol	300UJ	300UJ		300UJ		600ÚJ	300UJ	300UJ	300UJ				300 UJ	300 UJ	300 UJ	300 UJ		300 UJ			300 UJ		300 UJ 3										000 3000	110,000 9,400
2.4.6-Trichlorophenol	300U	3000	300U	300U	300U	600U	300U	300U	300U	300U		300U	300U	300U	300U		3,000U	300U	300U	300U	300U		300U 300U	3000						300U 6			00U 300U 10UJ 300U	330 (M)
N-Nitroso-di-n-propylamine	300U	300U	300U	3000	300U	600U	3000	300U	300U	3000 (300U	300U	300U	300U	300U	300U	3,000U	3000	300U	3000	300U	3000 [3080	3000	3,0000	3000	3000	3000 1 3		20001 9		WUJ 120	003 3000 [550 (W)

notes:

1) Results and criteria are shown in ug/kg (ppb).

2) MDEQ Part 201 Industrial Drinking Water Protection Criteria as listed in the Interim Environmental Response Division

Operational Memorandum #18, dated June 7, 2000.

3) "C" denotes value presented is a screening level based on the chemical-specific generic soil saturation concentration (Csat) since the calculated risk-based criterion is greater than Csat.

4) "E" denotes exponential factor.

5) "M" denotes calculated criterion is below the analytical method detection limit, therefore, the criterion defaults to the method detection limit.

6) Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan.

7) "-" denotes no criteria established.

8) NLL denotes chemical is not likely to leach under most soil conditions.

9) ID denotes inadequate data to develop criterion.

10) "UJ" denotes that the sample-specific reporting limit for the analyte in this sample should be considered approximate.

11) "U" denotes the analyte was analyzed for, but was not detected.

12) "NA" Denotes constituent not analyzed.

13) Soil duplicate sample collected at GB-44.

14) "R" denotes that the reporting limit or sample results has been determined to be unusable due to deficiencies in the data generation process.

15) (*) denotes constituents were not part of TCL in QAPP.

i/nov/project/4144/21487/4_notes/salb.wb2

Table 1 (cont.)

_

REALM Coldwater Road Facility Soil Analytical Results Metals method 6020, Cyanide method 9010, and pH method 904

							Soil Analy Metals me			nethod 901	0, and pH	method 90	940							MDEQ Part 201 Generic Cleanup Criteria
Sample Location	GB-2	GB-3	GB-7	GB-8	GB-9	GB-10	GB-11	GB-17	GB-18	GB-19	GB-20	GB-21	GB-22	GB-23	GB-24	GB-25	GB-26	GB-27	GB-28	Industrial Drinking
Sample Depth	(12-14')	(13-15')	(13-15')	(12-14')	(13-15')	(10-12')	(7-9')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	Water Protection
Date Collected	08/24/98	08/24/98	08/24/98	08/24/98	08/24/98	08/24/98	08/25/98	08/25/98	08/25/98	08/25/98	08/25/98	08/25/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	Criteria
Parameter							-													
Cadmium (B)	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	50U	6,000						
Chromium (B,H)	13,200	7,600	5,900	10,400	10,200	1,900	4,500	12,300	349,000	58,300	12,800	10,400	9,700	8,100	1,210,000	9,600	16,600	10,300	12,100	1.0+E9
Copper {B}	20,100	5,900	6,500	10,700	11,700	4,900	8,700	10,600	9,800	14,400	13,500	20,800	7,600	7,600	14,500	66,000	22,000	9,400	12,000	5.8+E6
Lead {B}	10,300	3,400	4,600	4,800	5,800	3,000	3,300	6,100	5,700	3,900	5,400	6,000	5,500	5,900	5,400	5,500	5,600	5,200	5,800	700,000
Nickel {B}	19,500	11,500	16,400	23,800	22,200	3,100	5,900	26,900	23,100	13,800	29,000	31,200	18,000	22,700	39,000	22,400	63,300	24,700	25,100	1.0+E5
Zinc {B}	45,500	28,100	24,600	33,200	33,300	15,200	15,300	36,700	37,500	29,800	39,400	34,800	32,200	28,900	85,300	32,300	59,900	31,800	48,200	5.0+E6
Cyanide	500U	500U	500U	500U	500U	500U	500U	500U	500U	4,800	500U	500U	500U	4,000						
pH (STD Units)	7.88	8.09	7.93	7.93	7.92	7.83	8.22	8.62	9.69	9.23	9.70	9.78	7.68	7.78	8.51	8.20	7.62	8.32	8.44	-
																			r	

																			MDEQ
																			Part 201 Generic
																			Cleanup Criteria
Sample Location	GB-29	GB-30	GB-31	GB-32	GB-33	GB-36	GB-37	GB-38	GB-39	GB-40	GB-41	GB-42	GB-43	GB-44	GB-45	GB-46	GB-47	Soil Dup	Industrial Drinking
Sample Depth	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	Water Protection
Date Collected	08/27/98	08/27/98	08/26/98	08/26/98	08/26/98	08/27/98	08/27/98	08/27/98	08/27/98	08/27/98	08/27/98	05/03/99	05/03/99	05/03/99	05/03/99	05/03/99	05/03/99	05/03/99	Criteria
Parameter	••																		
Cadmium {B}	50U	120J	260J	50UJ	50UJ	50UJ	50UJ	6,000											
Chromium {B,H}	9,100	5,600	12,600	8,900	9,500	8,600	8,500	9,100	200,000	6,100	7,500	7,590	9,200	10,000	9,080	9,400	8,140	8,690	1.0+E9
Copper {B}	10,100	5,900	9,300	8,200	11,900	9,600	9,400	10,100	47,300	5,700	6,400	8,600	14,200	15,000	15,500	13,800	12,800	11,900	5.8+E6
Lead {B}	5,500	3,900	6,300	5,300	5,400	14,500	5,000	5,700	7,200	5,300	4,000	7,600J	8,500J	8,500J	7,900J	10,600J	8,900J	12,000J	700,000
Nickel {B}	20,900	15,200	28,200	20,700	23,100	20,400	20,900	23,700	651,000	16,300	17,100	16,900	18,000	18,900	18,400	19,600	16,400	17,600	 1.0+E5
Zinc {B}	30,800	27,000	35,800	31,300	31,300	27,600	27,100	27,600	46,800	21,500	19,900	28,600J	35,500J	39,700J	29,100J	31,400J	28,500J	26,400J	5.0+E6
Cyanide	500U	600	600	600	600	600	600	600	 4,000										
pH (STD Units)	8.25	7.70	8.03	8.64	10.46	9.19	8.81	9.10	7.85	7.87	8.59	9.18	8.81	8.72	9.94	9.84	8.23	8.64	 -

notes:

1) Results and criteria are shown in ug/kg (ppb).

.

2) MDEQ Part 201 Drinking Water Protection Criteria as listed in the Interim Environmental Response Division

Operational Memorandum #18, dated June 7, 2000.

3) Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan.

4) Bold type denotes exceedance of Part 201 Industrial Drinking Water Protection criteria.

5) {B} denotes Background , as defined in Rule 299.5701(c), may be substituted if higher than the cleanup criterion.

6) (H) denotes CR III cleanup criterion for protection of drinking water can only be used at sites where groundwater is prevented from being used as a public water supply, currently and in the future.

7) "M" denotes Calculated criterion is below the analytical method detection limit (mdl), therefore, the criterion defaults to the mdl.

8) "U" denotes the analyte was analyzed for, but was not detected.

9) "NA" Denotes constituent not analyzed.

10) "-" Denotes no criteria established.

11) Soil duplicate sample collected at GB-44.

12) "E" denotes exponential factor.

i/novi/project/4144/21487/4_notes/satb2.wb2

Table 1 (cont.)

pg 5 of 5

`

REALM Coldwater Road Facility Leachable Concrete Analytical Results Volatile Organic Compounds method 624/1311

Sample Location	CF-1 Deionized Water Basin Floor	CW-1 Deionized Water Basin Wall	CF-2 Cyanide Basin Floor	CW-2 Cyanide Basin Wall	CF-3 Cyanate Basin Floor	CW-3 Cyanate Basin Wall	CF-4 Lime Basin Floor	CW-4 West Alkali Basin Wall	CF-5 West Alkali Basin Floor	CW-5 North Alkali Basin Wall	CF-6 North Alkali Basin Floor	CW-6 South Alkali Basin Wall	MDEQ Act 307 Type B Health-Based
Date Collected	08/25/98	08/25/98	08/25/98	08/25/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	Drinking Water
Parameter													Criteria
Benzene, TCLP	100U	100U	-100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	1.2
Carbon tetrachloride, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100 <u>U</u>	100U	0.27
Chlorobenzene, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	130
Chloroform, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	5.6
1,4-Dichlorobenzene, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	1.5
1,2-Dichloroethane, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	0.38
1,1-Dichloroethene, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	7
2-Butanone, TCLP	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	320
Tetrachloroethene, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	0.7
Trichloroethene, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	2.2
Vinyl Chloride, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	0.016

· · · · · · · · · · · · · · · · · · ·	CF-7	CW-7	CF-8	CW-8	CF-9	CW-9	CF-10	CF-11	CF-12	CF-13	CF-14	Concrete	MDEQ
Sample Location	Leachate	East Basement	South Alkali	Center Basement	WWTP Basement	West Basement	WWTP Basement	WWTP Basement	East Basement	Center Basement	West Basement	Duplicate	Act 307 Type B
	Basin Floor	Basin Wall	Basin Floor	Basin Wall	Floor North	Basin Wall	Floor Center	Floor South	Basin Floor	Basin Floor	Basin Floor		Health-Based
Date Collected	08/27/98	04/28/99	08/26/98	04/28/99	08/27/98	04/28/99	08/27/98	08/27/98	04/28/99	04/28/99	04/28/99	04/28/99	Drinking Water
Parameter													Criteria
Benzene, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	1.2
Carbon tetrachloride, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	1000	100U	0.27
Chlorobenzene, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	1000	100U	130
Chloroform, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	1000	100U	5.6
1,4-Dichlorobenzene, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	1.5
1.2-Dichloroethane, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	0.38
1,1-Dichloroethene, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	7
2-Butanone, TCLP	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	320
Tetrachloroethene, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	1000	1000	100U	0.7
Trichloroethene, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	1000	100U	2.2
Vinyl Chloride, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	1000	100U	0.016

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) MDEQ Act 307 Type B Health-Based Drinking Water Criteria as listed in Operational Memorandum #8, Revision 3, June 1994.

3) Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan

4) "U" denotes the analyte was analyzed for, but was not detected.

5) Concrete duplicate sample collected at CF-12.

i/novi/project/4144/21487/4_notes/conctbl.wb2

Table 2

pg 1 of 6

-

REALM Coldwater Road Facility Leachable Concrete Analytical Results Semivolatile Organic Compounds method 625/1311

Sample Location	CF-1 Deionized Water Basin Floor	CW-1 Deionized Water Basin Wall	CF-2 Cyanide Basin Floor	CW-2 Cyanide Basin Wall	CF-3 Cyanate Basin Floor	CW-3 Cyanate Basin Wall	CF-4 Lime Basin Floor	CW-4 West Alkali Basin Wall	CF-5 West Alkali Basin Floor	CW-5 North Alkali Basin Wall	CF-6 North Alkali Basin Floor	CW-6 South Alkali Basin Wall	MDEQ Act 307 Type B Health-Based
Date Collected	08/25/98	08/25/98	08/25/98	08/25/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	Drinking Water
Parameter													Criteria
o-Cresol, TCLP	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	•
p,m-Cresol, TCLP	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	-
Pentachlorophenol, TCLP	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	0.29
2,4,5-Trichlorophenol, TCLP	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	700
2,4,6-Trichlorophenol, TCLP	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	3.2
2,4-Dinitrotoluene, TCLP	900	90U	90U	90U	90U	90U	90U	90U	90U	90U	90U	90U	0.052
Hexachlorobenzene, TCLP	90U	90U	90U	90U	90U	90U	90U	90U	90U	90U	90U	90U	0.022
Hexachlorobutadiene, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100Ú	100U ·	100U	0.46
Hexachloroethane	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100Ū	2.5
Nitrobenzene, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	3.2
Pyridine, TCLP	100UJ	100UJ	100UJ	100UJ	100UJ	100UJ	100UJ	100UJ	100UJ	100UJ	100UJ	100UJ	7

	CF-7	CW-7	CF-8	CW-8	CF-9	CW-9	CF-10	CF-11	CF-12	CF-13	CF-14	Concrete	MDEQ
Sample Location	Leachate	East Basement	South Alkali	Center Basement	WWTP Basement	West Basement	WWTP Basement	WWTP Basement	East Basement	Center Basement	West Basement	Duplicate	Act 307 Type B
	Basin Floor	Basin Wall	Basin Floor	Basin Wall	Floor North	Basin Wall	Floor Center	Floor South	Basin Floor	Basin Floor	Basin Floor		Health-Based
Date Collected	08/27/98	04/28/99	08/26/98	04/28/99	08/27/98	04/28/99	08/27/98	08/27/98	04/28/99	04/28/99	04/28/99	04/28/99	Drinking Water
Parameter]												Criteria
o-Cresol, TCLP	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	-
p,m-Cresol, TCLP	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	-
Pentachlorophenol, TCLP	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	0.29
2,4,5-Trichlorophenol, TCLP	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	700
2,4,6-Trichlorophenol, TCLP	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	1,000U	3.2
2,4-Dinitrotoluene, TCLP	90U	90U	90U	90U	90U	90U	90U	90U	90U	90U	90U	90U	0.052
Hexachlorobenzene, TCLP	90U	90U	90U	900	90U	90U	90U	900	90U	90U	90U	90U	0.022
Hexachlorobutadiene, TCLP	1000	100U	100U	100U	100U	100U	100U	100U	100U	100U	1000	100U	0.46
Hexachloroethane	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	2.5
Nitrobenzene, TCLP	100U	100U	100U	100U	100U	100U	100U	100U	100U	100U	1000	100U	3.2
Pyridine, TCLP	100UJ	100U	100UJ	100U	100UJ	100U	100UJ	100UJ	100U	100U	100U	100U	7

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) MDEQ Act 307 Type 8 Health-Based Drinking Water Criteria as listed in Operational Memorandum #8, Revision 3, June 1994.

.

3) Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan.

4) "-" denotes no criteria established.

5) "UJ" denotes that the sample-specific reporting limit for the analyte in this sample should be considered approximate.

6) "U" denotes the analyte was analyzed for, but was not detected.

7) "NA" Denotes constituent not analyzed.

8) Concrete duplicate sample colleted at CF-12.

i/novi/project/4144/21487/4_notes/conctbl.wb2

pg 2 of 6

_

REALM Coldwater Road Facility Leachable Concrete Analytical Results Metals method 200.8/245.1/1311

Sample Location	Basin Floor	CW-1 Deionized Water Basin Wall	CF-2 Cyanide Basin Floor	CW-2 Cyanide Basin Wall	CF-3 Cyanate Basin Floor	CW-3 Cyanate Basin Wall	CF-4 Lime Basin Floor	CW-4 West Alkali Basin Wall	CF-5 West Alkali Basin Floor	CW-5 North Alkali Basin Wall	CF-6 North Aíkali Basin Floor	CW-6 South Alkali Basin Wali	MDEQ Act 307 Type B Health-Based
Date Collected	08/25/98	08/25/98	08/25/98	08/25/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	08/26/98	Drinking Water
Parameter													Criteria
Arsenic, TCLP	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	0.02 (C)
Barium, TCLP	440	370	550	400	370	340	580	370	380	340	290	400	2,400 (C)
Cadmium, TCLP	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	3.5 (C)
Chromium, TCLP	340	10	40	20	20	20	10	20	810	10	50	20	37,000 (C)
Copper, TCLP	100	10U	50	470	10U	10U	10U	10U	990	100	10U	10U	1,300 (C)
Lead, TCLP	3U	3U	3U	3U	3U	3U	3Ų	3U	3U	3U	3U	30	4 (C, O)
Mercury, TCLP	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	5U	0.2U	0.2U	0.2U	0.2U	2.1 (C)
Selenium, TCLP	- 5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	50	5U	35 (C)
Silver, TCLP	10	1U	1U	1U	1U	10	1U	1U	10	10	1U	1U	33 (C)
Zinc, TCLP	120 J	110 J	150 J	110 J	30 J	40 J	130 J	30 J	70 J	30 J	30 J	130 J	2,300 (C)

	CF-7	CW-7	CF-8	CW-8	CF-9	CW-9	CF-10	CF-11	CF-12	CF-13	CF-14	Concrete	MDEQ
Sample Location	Leachate	East Basement	South Alkali	Center Basement	WWTP Basement	West Basement	WWTP Basement	WWTP Basement	East Basement	Center Basement	West Basement	Duplicate	Act 307 Type B
	Basin Floor	Basin Wall	Basin Floor	Basin Wall	Floor North	Basin Wall	Floor Center	Floor South	Basin Floor	Basin Floor	Basin Floor		Health-Based
Date Collected	08/27/98	04/28/99	08/26/98	04/28/99	08/27/98	04/28/99	08/27/98	08/27/98	04/28/99	04/28/99	04/28/99	04/28/99	Drinking Water
Parameter	7												Criteria
Arsenic, TCLP	5U	50	5U	50	5U	5U	5U	5Ú	5U	50	5U	50	0.02 (C)
Barium, TCLP	370	350	290	380	330	370	300	290	370	350	350	370	2,400 (C)
Cadmium, TCLP	5U	0.2U	5U	0.2U	5U	0.2U	5U	5U	0.20	0.20	0.20	0.2U	3.5 (C)
Chromium, TCLP	10	100	20	10U	30	10U	60	40	10U	10U	100	10U	37,000 (C)
Copper, TCLP	10U	10U	10U	100	100	10U	10U	10U	10U	100	10U	100	1,300 (C)
Lead, TCLP	3U	30	30	30	3U	3U	3U	3U	3U	3U	30	3U	4 (C, O)
Mercury, TCLP	0.20	0.20	0.20	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	2.1 (C)
Selenium, TCLP	5U	5U	50	5U	5U	5U	5U	5U	5U	5U	50	5U	35 (C)
Silver, TCLP	10	0.5U	1U	0.5U	10	0.5U	10	10	0.5U	0.5U	0.5U	0.50	33 (C)
Zinc, TCLP	30 J	10	50 J	30	150 J	30	230 J	130 J	30	30	10	40	2,300 (C)

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) MDEQ Act 307 Type 8 Health-Based Drinking Water Criteria as listed in Operational Memorandum #8, Revision 3, June 1994.

3) Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan

4) "C" denotes background as defined in Rule 701 (c), may be substituted as the cleanup criteria if higher than the Type B cleanup criterion.

5) "O" denotes higher level may be acceptable if soil concentration is less than 400 ppm and groundwater migrating off-site will not impact adjacent properties. Contact an ERD toxicologist for further explanation.

6) "J" denotes that the concentration should be considered approximate.

7) "U" denotes the analyte was analyzed for, but was not detected.

8) Concrete duplicate sample collected at CF-12.

i/novi/project/4144/21487/4_notes/conctbl.wb2

· · ·

pg 3 of 6

.

_

REALM Coldwater Road Facility Concrete Analytical Results Volatile Organic Compounds method 8260

Sample Location	CW-7	CW-8	CW-9	CF-12	CF-13	CF-14	Concrete	MDEQ
	East	Center	West	East	Center	West	Duplicate	Act 307
	Basement	Basement	Basement	Basement	Basement	Basement	.	20 X Drinking Water
		Basin Wall		Basin Floor		Basin Floor		Criteria
Date Collected	04/28/99	04/28/99	04/28/99		04/28/99	04/28/99	04/28/99	
	04/20/33	04/20/33	04/20/35	04120133	04/20/00	04120100	0-1120/00	
Parameter	100U	100U	100Ŭ	1 000U	1.000U	1.000U	1.000U	24
Benzene		1000			1,000U	1,000U	1.0000	11
Bromodichloromethane	1000		1000	1,000U		1,000U	1.0000	92
Bromoform	1000	1000	1000	1,000U	1,000U		1.0000	200
Bromomethane	100U	1000	100U	1,000U	1,000U	1,0000		
n-Butylbenzene	100U	100U	100U	1,000U	1,000U	1,000U	1,000U	• · · · · · · · · · · ·
sec-Butylbenzene	100U	1000	100U	1,000U	1,000U	1,000U	1,000U	<u> </u>
tert-Butylbenzene	100U	1000	1000	1,000U	1,000U	1,000U	1,000U	
Carbon tetrachloride	100U	1000	100U	1,000U	1,000U	1,000U	1,000U	5.4
Chlorobenzene	100U	100U	100U	1,0000	1,000U	1,000U	1,000U	2,600
Chloroethane	100U	100U	100U	1,000U	1,000U	1,000U	1,000U	180
Chloroform	1000	100U	100U	1,000U	1,000U	1,000U	1,000U	11
Chloromethane	100U	100U	100U	1,000U	1,000U	1,000U	1,000U	54
Dibromochloromethane	1000	100U	100U	1,000U	1,000U	1,000U	1,000U	8.4
1.2-Dichlorobenzene	100U	100U	1000	1.000U	1,000U	1.000U	1,000U	12,000
1.3-Dichlorobenzene	1000	100U	1000	1.000U	1.000Ü	1,000U	1,000U	12,000
1.4-Dichlorobenzene	1000	100U	1000	1.000U	1.000U	1,000U	1,000U	30
1,1-Dichloroethane	1000	100U	100U	1.000U	1,000U	1,000U	1,000U	17.000
1,2-Dichloroethane	1000	1000	100U	1.0000	1.000U	1.000U	1.000U	7.6
1.1-Dichloroethene	1000	1000	100U	1.000U	1,000U	1 000U	1.000U	-
cis-1.2-Dichloroethene	1000	1000	1000	1.000U	1,000U	1.000U	1,000U	
trans-1.2-Dichloroethene	1000	1000	1000	1.000U	1.000U	1.000U	1.000U	
1.2-Dichloropropane	1000	1000	1000	1,000U	1,000U	1,000U	1,000U	10
cis-1,3-Dichloropropene	1000	1000	1000	1.0000	1.000U	1.000U	1.000U	
	1000	1000	1000	1,000U	1,000U	1.000U	1.000U	
trans-1,3-Dichloropropene Ethylbenzene	1000	1000	1000	1,000U	1,000U	1,000U	1,000U	1,500
	1000	1000	1000	1.000U	1.0000	1.000U	1.000U	
Isopropylbenezene	1000	1000	1000	1,0000	1,000U	1.000U	1.000U	
p-Isopropyltoluene	700UJ	700UJ	70001	7,000UJ	7.000UJ	6.000UJ	6,000UJ	
Methylene Chloride	10003	10003	100U	1.000U	1.0000	1.000U	1.000U	5.000
Naphthalene	1000	1000	1000	1,000U	1,000U	1,000U	1.000U	5,000
n-Propylbenzene		1000	1000	1.0000	1,000U	1.000U	1.0000	24
Styrene	1000	1000	1000	1,0000	1,000U	1.0000	1,0000	24
1,1,2,2-Tetrachloroethane	1000				1,0000	1,0000	1,0000	16,000
Toluene	100U	200	100U	1,000U		1.0000	1,000U	4,000
1,1,1-Trichloroethane	1000	1000	100U	1,000U	1,000U	1,0000	1.0000	13
1,1,2-Trichloroethane	100U	100U	1000	1,000U	1,000U			
Trichloroethene	1000	100U	100U	1,000U	1,000U	1,000U	1,000U	-
1,2,4-Trimethylbenzene	1000	100U	100U	1,000U	1,000U	1,000U	1,000U	-
1,3,5-Trimethylbenzene	100U	100U	100U	1,000U	1,000U	1,000U	1,000U	ID
Vinyl Chloride	100U	1000	100U	1.000U	1,000U	1,000U	1,000U	-
o-Xylene	100U	1000	100U	1,000U	1,000U	1.000U	1,000U	5,600
p,m-Xylene	100U	100U	100U	1,000U	1,000	1,000U	1,000U	5,600
Acetone	1,000U	1,000U	1,000U	10,000U	10,000U	10,000U	10,000U	14,000
2-Butanone	1,000U	1,000U	1,000U	10,000U	10,000U	10,000U	10,000U	6.400
Carbon Disulfide	1,000U	1,000U	1,000U	10,0000	10,000U	10,000U	10,000U	15,000
2-Hexanone	1,000U	1,000U	1,000U	10,000U	10,000U	10,000U	10,000U	20,000
4-Methyl-2-pentanone	400	400	200	2,000J	3,000	5,000	5,000	7,000

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) MDEQ Act 307 Type B Health-Based Drinking Water Criteria as listed in Operational Memorandum #8, Revision 3, June 1994.

3) Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan

4) Bold type denotes exceedance of Act 307 Type B 20 times Drinking Water Criteria.

5) "ID" Inadequate data to develope criterion.

6) "-" denotes no criteria established.

7) Concrete duplicate sample collected at CF-12.

8) "U" denotes analyte was analyzed for, but was not detected.

9) "UJ" denotes sample specific reporting limit for the analyte in this sample should be considered approximate.

10) "J" denotes that the concentration should be considered approximate.

i:\novi\projects\4144\21487\4_notes\contot.wb2

REALM Coldwater Road Facility Concrete Analytical Results Semi-Volatile Organic Compounds method 8270

Sample Location	CW-7	CW-8	CW-9	CF-12	CF-13	CF-14	Concrete	MDEQ
	East	Center	West	East	Center	West	Duplicate	Act 307
	Basement	Basement	Basement	Basement	Basement	Basement	i l	20 X Drinking
	Basin Wall				Basin Floor		0.4/00 100	Water
Date Collected	04/28/99	04/28/99	04/28/99	04/28/99	04/28/99	04/28/99	04/28/99	Criteria
Parameter	3000	300U	3000	300U	300U	3000	500	24,000
Acenaphthene	300U	3000	3000	3000	3000	3000	3000	500
Acenaphthylene	3000 300U	300U 300U	3000	30001	3000	300U	1,100J	1.4+E5
Anthracene	3000	3000	3000	30001	3000	300U 300U	1.500J	(G)
Benzo(a)anthracene	3000	3000	3000	30000	3000	3000	1,600J	(G)
Benzo(b)fluoranihene	300U	300U	3000	3000	300U	3000	800	(G)
Benzo(k)fluoranthene	300U	3000	3000	3000	3000	3000	900	
Benzo(ghi)perylene	300U	3000	3000	30000	3000	3000	1,600J	(G)
Benzo(a)pyrene Bis(2-chloroethoxy)methane	300U	3000	3000	3000	300U	300U	300U	
Bis(2-chloroethyl)ether	300U	3000	3000	300U	3000	3000	3000	0.64
Bis(2-chloroisopropyl)ether	3000	3000	300U	300U	3000	3000	3000	
Bis(2-ethylhexyl)phthalate	3000	300U	3000	3000	3000	3000	3000	{G}
I-Bromophenyl phenyl ether	3000	3000	3000	3000	3000	3000	3000	
Butyl benzyl phthalate	3000	3000	300U	3000	3000	3000	3000	
4-Chloroaniline	3000	3000	3000	3000	3000	300U	3000	-
2-Chloronaphthalene	3000	3000	3000	300U	3000	300U	3000	-
4-Chloro-3-methylphenol	300R	3000	300R	300R	300R	300R	300R	
2-Chlorophenol	300R	300R	300R	300R	300R	300R	300R	860
-Chlorophenyl phenyl ether	3000	3000	3000	300U	300U	3000	3000	
Chrysene	3000	300U	300U	300UJ	3000	3000	1,300J	-
o.m-Cresol	3000	3000	300U	300U	300U	3000	3000	-
Cresol	3000	3000	300U	3000	3000	300U	300U	······ - · · · ·
Dibenzeno(a,h)anthracene	3000	3000	3000	3000	3000	300U	3000	{G}
Dibenzofuran	3000	300U	3000	3000	3000	3000	400	<u>(e)</u>
Di-n-butyl phthalate	3000	3000	300U	300U	3000	3000	3000	17,000
.2-Dichlorobenzene	3000	300U	3000	3000	3000	3000	3000	12,000
.3-Dichlorobenzene	3000	300U	3000	3000	300U	3000	300U	12,000
.4-Dichlorobenzene	300U	3000	300U	300U	3000	300U	3000	30
3.3-Dichlorobenzidine	300U	300U	300U	3000	3000	3000	3000	1.5
2,4-Dichlorophenol	300R	300R	300R	300R	300R	300R	300R	420
Diethyl phthalate	300U	300U	300U	300U	300U	300U	3000	1.0+E5
2,4-Dimethylphenol	300R	300R	300R	300R	300R	300R	300R	7.000
Dimethyl phthalate	300U	300U	300U	3000	300U	300U	300U	1.4+E6
1.6-Dinitro-2-methylphenol	300R	300R	300R	300R	300R	300R	300R	
2,4-Dinitrophenol	300R	300R	300R	300R	300R	300R	300R	•
4-Dinitrotoluene	3000	300U	300U	3000	3000	300U	3000	-
2,6-Dinitrotoluene	300U	3000	300U	300U	300U	3000	3000	•
Di-n-octyl phthalate	300U	3000	300U	300U	300U	300U	300U	
luoranthene	300U	300U	3000	400J	300U	3000	3,100J	17,000
luorene	300U	300U	3000	3000	300U	300U	600	17,000
lexachlorobenzene	300U	300U	3000	300U	300U	300U	300U	0.44
lexachlorobutadiene	300U	300U	3000	300U	300U	300U	300U	9.2
lexachlorocyclopentadiene	300U	300U	300U	300U	300U	300U	3000	1,000
lexachloroethane	300U	300U	300U	300U	300U	300U	300U	50
ndeo(1.2.3-cd)pyrene	300U	3000	300U	3000	300U	300U	800	(G)
sophorone	300U	300U	3000	300U	300U	300U	300U	760
-MethylnaphthalenE	300U	300U	300U	300U	300U	300U	3000	-
laphthalene	300U	300U	300U	300U	300U	300U	500	5,000
-Nitroaniline	300U	300U	300U	3000	3000	3000	300U	-
-Nitroaniline	300Ū	300U	3000	300U	3001	3000	300U	-
Nitroaniline	300U	300U	300U	300U	300U	300U	300U	-
litrobenzene	300U	300U	300U	300U	300U	300U	300U	64
-Nitrophenol	300R	300R	300R	300U	300R	300R	300R	-
-Nitrophenol	300R	300R	300R	300R	300R	300R	300R	
I-Nitrosodiphenylamine	300U	300U	300U	300U	300U	300U	300U	140
I-Nitrosodi-n-propylamine	300U	300U	300U	300U	300U	300U	300U	0.098
entachlorophenoi	300R	300R	300R	300R	300R	300R	300R	-
henanthrene	300U	300U	300U	400J	300U	300U	3,000J	500
henol	3000	3000	3000	300U	300U	300U	3000	84,000
Pyrene	300U	300U	3000	400J	300U	300U	2,800J	10,000
.2.4-Trichlorobenzene	3000	300U	300U	300U	3000	3000	300U	2,200
.4.6-Trichlorophenol	300R	300R	300R	300R	300R	300R	300R	64
.4.5- Trichlorophenol	300R	300R	300R	300R	300R Í	300R	300R	14,000

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) MDEQ Act 307 Type 8 20 times Drinking Water value as listed in Operational Memorandum #8. Revision 3, June 1994.

3) Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing. Michigan

4) Bold type denotes exceedance of Act 307 Type B 20 times Drinking Water Criteria.

5) (G) Chemical, due to its physicochemical properties, is not expected to leach through soils to groundwater under most conditions. Therefore, the direct contact soil criterion is considered to be protective of groundwater. However, the presence of organic solvents in the soil may increase the solubility of these chemicals, thereby increasing their potential to leach from soil to groundwater. Under these conditions site-specific leachate testing may be required.

6) "ID" Inadequate data to develope criterion

7) "-" denotes criteria not established.

8) Concrete duplicate sample collected at CF-12.

9) "U" denotes the analyte was analyzed for , but was not detected.

10) "J" denotes that the concentration should be considered approximate

11) "R" denotes that the reporting limit or sample result has been determined to be unusable due to deficiencies in the data generation proces

12 "UJ" denotes sample specific reporting limit for the analyte in this sample should be considered approximate.

13) "E" denotes exponential factor

r'novi\projects\4144\21487\4_notes contot.wb2

REALM Coldwater Road Facility Concrete Analytical Results Metals method 6020/7471

Sample Location	East Basement Basin Wall	Basin Wall		Basin Floor		CF-14 West Basement Basin Floor		MDEQ Act 307 20 X Drinking Water Criteria
Date Collected	04/28/99	04/28/99	04/28/99	04/28/99	04/28/99	04/28/99	04/28/99	
Parameter								
Arsenic	4,270	4,810	4,730	5,820	5,430	9,500	4,160	.4{C}
Barium	36,200	38,100	43,200	42,500	36,300	43,100	43,700	48,000{C}
Cadmium	50U	50U	50U	50U	70	50U	50U	70{C}
Chromium	12,200	19,100	9,940	14,500	13,100	11,400	13,300	2,400{C}
Copper	13,100J	19,900J	13,300J	48,400J	16,300J	21,700J	125,000J	20,000{C}
Lead	2,400	3,000	3,200	2,800	3,100	6,100	3,800	80{C}
Mercury	100U	100U	100U	100U	100U	100U	100U	42{C}
Selenium	500U	500U	500U	500U	500U	1,490	520	700{C}
Silver	200U	200U	200U	200U	2000	200U	2000	660{C}
Zinc	14,200J	14,700J	15.000J	16,500J	38,600J	14,800J	37,900J	46,000{C}

Notes:

1) Results and criteria are shown in ug/kg (ppb).

2) MDEQ Act 307 Type B Health-Based Drinking Water criteria as listed in Operational Memorandum #8, Revision 3, June 1994.

3) Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan

4) Bold type denotes exceedance of Act 307 Type B 20 times Drinking Water criteria.

5) "(C)" denotes Background, as defined in Rule 701(c), may be substituted as the cleanup criteria if higher than the Type B cleanup criterion.

6) Concrete duplicate sample collected at CF-12.

7) "U" denotes the analyte was analyzed for, but was not detected.

8) "J" denotes that the concentration should be considered approximate.

Page 6 of 6

i:\novi\projects\4144\21487\4_nts\contot.wb2

Table 3

REALM Coldwater Road Facility Concrete Rinseate Analytical Results Metals method 200.8/245.1/1311

				MDEQ
Sample Location	Deionized Water Basin floor	West Alkali Basin floor	Tap Water	Act 307 Type B Health-Based Drinking Water
Date Collected	12/21/98	12/21/98	12/21/98	Criteria
Parameter				
Arsenic	1U	3	5	0.02 (C)
Barium	30	70	180	2,400 (C)
Cadmium	0.2U	0.2U	0.2U	3.5 (C)
Chromium	10U	(30)	10U	37,000 (C)
Copper	(30)	(100)	10U	1,300 (C)
Lead	3	3U	30	4 (C, O)
Mercury	0.2U	0.2U	0.2U	2.1 (C)
Selenium	5U	5U	5U	35 (C)
Silver	0.5U	0.5U	0.5U	33 (C)
Zinc	(80)	(60)	30	2,300 (C)

Notes:

1) Results and criteria are shown in ug/l (ppb).

- 2) MDEQ Act 307 Type B Health-Based Drinking Water Criteria as listed in Operational Memorandum #8, Revision 3, June 1994.
- 3) Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan.
- 4) Bold type denotes exceedance of Act 307 Type B Health-Based Drinking Water Criteria.

5) "()" denotes exceedance of Tap Water sample.

- 6) "C" denotes background as defined in Rule 701 (c), may be substituted as the cleanup criteria if higher than the Type B cleanup criterion.
- 7) "O" denotes higher level may be acceptable if soil concentration is less than 400 ppm and groundwater migrating off-site will not impact adjacent properties. Contact an ERD toxicologist for further explanation.
- 8) "U" denotes the analyte was analyzed for, but was not detected.

pg 1 of 1

i/novi/project/4144/21487/4_notes/rinstbl.wb2

REALM **Coldwater Road Facility Basement Basin Concrete Rinseate Analytical Results** Volatile Organics Method 8260

Sample Location	East Basement Basin 04/20/99	Center Basement Basin 04/21/99	West Basement Basin 04/21/99	Rinseate Duplicate 04/20/99	Tap Water 04/21/99	MDEQ Part 201 Generic Cleanup Criteria Industriai Drinking Water Criteria
Date Collected	04/20/99	04/21/95	V4/21/99	04/20/99	<u>4/2 1199</u>	ហាមោង
Parameter						
Benzene	1U	10	10	10	10	5.0 (A)
Bromodichloromethane	4U	50	30	40	50	100 (A, W)
Bromoform	10	10	1U	10	10	100 (A, W)
Bromomethane	1U	10	10	10	10	29
n-Butylbenzene	101	1U	1U	10	10	230
sec-Butylbenzene	10	1U	1U	10	10	230
tert-Butylbenzene	10	10	រប	10	10	230
Carbon tetrachloride	1U	ប	10	10	10	5.0 (A)
Chlorobenzene	10	10	10	1U	10	100 (A)
Chioroethane	10	10	1U	10	10	1,700
Chloroform	50	6U	4U	5U	60	100 (A, W)
Chloromethane	<u>1U</u>	1U	10	10	10	1,100
Dibromochloromethane		3U	20	30	40	100 (A, W)
1,2-Dichlorobenzene	10	10	3	10	10	600 (A)
1,3-Dichlorobenzene	10	10	1U	10	10	19
1,4-Dichlorbenzene	10	1U	10	1U	10	75 (A)
1,1-Dichloroethane	10	1U	10	10	10	2,500
1,2-Dichloroethane	1U	1U	10	1U	10	5.0 (A)
1,1-Dichloroethene	10	10	10	1U	<u>1U</u>	7.0 (A)
cis-1,2-Dichloroethane	1U	10	10	10	10	70 (A)
trans-1,2-Dichloroethene	10	1U	10	1U	10	100 (A)
1.2-Dichloropropane	1U	1U	10	<u> 1U </u>	<u>1U</u>	5.0 (A)
cis-1,3-Dichloropropene	1U	10	10	1U	10	<u> </u>
trans-1,3-Dichloropropene	<u>1U</u>	10	<u>1U</u>	10	10	<u> </u>
Ethylbenzene	1U	<u>1U</u>	10	1U	1U	74 (E)
Isopropylbenzene	<u>1U</u>	10	<u> </u>	1U	1U	2,300
p-Isopropyltoluene	10	1U	10	1U	1U	-
Methylene chloride	9UJ	903	8UJ	9UJ	<u>9U1</u>	5.0 (A)
Naphthalene	3	1	30	3	<u>1U</u>	1,500
n-Propylbenzene	10	1U	10	10	10	230
Styrene	10	1U	10	10	10	100 (A)
1, 1, 2, 2-Tetrachloroethane	10	<u> </u>	10	<u>1U</u>	10	35
Tetrachioroethene	10	1U	10	10	1U	5.0 (A)
Toluene	10	2U	4U	1U	10	790 (E)
1, 1, 1-Trichloroethane	10	10	40	10	10	200 (A)
1,1,2-Trichloroethane	10	10	10	10	1U	5.0 (A)
Trichloroethene	1U	10	10	10	10	5.0 (A)
1.2.4-Trimethylbenzene	10	10	20	10	10	63 (E)
1,3,5-Trimethylbenzene	10	1	30	10	10	72 (E)
Vinyi chloride	10	10	10	10	10	2.0 (A)
o-Xyiene	10	1ป	5	10	10	280 (E)
p.m-Xylene	1ປ	1	3	1U	10	280 (E)
Acetone	50U	50U	50U	50U	50U	2,100
2-Butanone	50U	50U	5CU	500	50U	38,000
Carbon Disulfide	500	50U	50U	50U	50U	2,300
2-Hexanone	50U	50U	5CU	50U	50U	2,900
4-Methyl-2-pentanone	50U	50U	500	50U	50U	-

Notes:

1) Results and criteria are shown in ug/l (ppb).

Kesuits and criteria are shown in ug/l (ppb).
 MDEQ Part 201 Industrial Drinking Water Criteria as listed in Operational Memorandum #18, dated June 7, 2000.
 Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan
 "A" denotes criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking Water Act, Act No. 399 of the Public Acts of 1976
 "E" denotes criteria is the state of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking Water Act, Act No. 399 of the Public Acts of 1976

Water Act, Act No. 599 of the Public Acts of 1976
5) "E" denotes criterion is the asthetic drinking water value, as required by Section 20120 (1)(5).
6) "W" denotes Concentrations of trihalomethanes in groundwater must be added together to determine compliance with the State of Michigan Drinking Water Standard of 100 ug/l. Concentrations of trihalomethanes in soil must be added together to determine compliance with the drinking water protection criterion of 2,000 ug/kg.

7) "U" denotes the analyte was analyzed for, but was not detected.

8) "-" denotes no criteria established.

9) Rinseate duplicate sample collected at East Basement Sasin location.

10) "UJ" denotes that the sample-specific reporting limit for the analyte in this sample should be considered approximate.

REALM **Coldwater Road Facility Basement Basin Concrete Rinseate Analytical Results** Semi-Volatile Organics Method 8270

Sample Location	East Basement	Center Basement	West Basement	Rinseate	Tap Water	MDEQ Part 201 Generic Cleanup Criteria
Gentric Edeanon	Basin	Basin	Basin	Duplicate		Industrial
Date Coffected	G4/20/99	04/21/99	04/21/99	04/20/99	04/21/99	Drinking Water
Parameter		l			1	Criteria
Acenaphthene	20U	20U	400	20U	10U	3,800
Acenaphthylene	20U	20U	400	20U	100	150
Anthracene	20U	200	40U	200	100	43 (S)
Benzo(a)anthracene	20U	20U	400	20U	10U 10U	8.5
Benzo(b)fluoranthene	200	200	40U 40U	200	100	2.0 (M) 5.0(M)
Benzo(k)fluoranthene Benzo(ghi)perylene	200	200	400	200	100	5.0(M)
Benzo(a)pryene	200	20U	40U	200	10U	5.0 (A,M)
Bis(2-chlorothoxy)methane	200	20U	40U	200	100	
Bis(2-chloroisopropyl)ether	20U	20U	400	20U	100	8.3
Bis(2-ethylhexyl)phthalate	20	40 20U	70	30	10U 10U	6.0 (A)
4-Bromophenyl phenyl ether	20U 20U	200	40U 40U	200	100	2,700 (S)
Butyl benzyl phthalate 4-Chloroaniline	200	200	40UJ	200	1000	
2-Chloronaphthalene	200	200	40U	200	100	
4-Chloro-3-methylphenol	20U	20U	40U	20U	100	420
2-Chlorophenol	20U	20U	40U	200	100	130
4-Chiorophenyl phenyl ether	200	200	40U	200	100	-
Chrysene	200	200	400		10U 10U	5.0(M)
p.m-Cresol	200	20U 20U	40U 40U	200	100	· · · · · · · · · · · · · · · · · · ·
o-Cresol Dibenzo(a,h)anthracene	200	200	400	200	100	5.0 (M)
Dibenzofuran	200	200	400	200	100	ID
Di-n-butyl ohthalate	200	200	40U		10U	2,500
1.2-Dichlorobenzene	200	200	40U	200	10U	600 (A)
1,3-Dichlorobenzene	20U	200	40U	200	100	19
1.4-Dichlorobenzene	200	200	40U	200	10U	
3,3'-Dichlorobenzidine	20U 20U	20U 20UJ	40U 40U	200	10U 10U	4.3
2,4-Dichlorophenol [] Diethyl phthalate	200	2003	700	200	100	16,000
2,4-Dimethylphenol	20U	200	40U	200	100	1,000
Dimethyl ohthalate	20U	20U	40U	200	10Ù	210000
4.6-Dintro-2-methylphenol	20UJ	20U	40U	200	100	
2.4-Dinitrophenol	20UJ	200	40UJ	2000	10UJ	·
2,4-Dinitrotoluene	20U	200	40U 40U	200	10U 10U	32
2,6-Dinitrotoluene	200	200	400	200		380
Di-n-octyl phthalate	200	200	400	200	100	210 (S)
Pluorene	200	200	40U	200		2,000 (S)
Hexachlorobenzene	20U	20U	40U	200	10U	1.0 (A)
lexachlorobutadiene	20U	200	40U	200		42
Hexachlorocyclopentadiene	200	200	40U	200	100	50 (A)
Hexachloroethane	200	200	40U 40U	200	10U 10U	21 5.0 (M)
ndeno(1.2,3-cd)pyrene sophorone	200	200	400	200	100	3,100
Sophorone 2-Methylnaphthalene	200	200	40U	200	100	750
Naphthalene	200	20U	40U	200	100	1,500
2-Nitroaniline	2011	200	40U	200	10U	•
3-Nitroaniline	200	20U	40U	200	100	
I-Nitroaniline	20U	200	40U	200	100	
Nitrobenzene	20U	200	40U 40U	200 200	100	<u> </u>
2-Nitrophenol	2000	200	40UJ	2003	1000	
N-Nitrosodiphenylamine	200	2000	400	200		1,000
V-Nitrosodi-n-proplyamine	20U	200	40U	200	100	5.0 (M)
Pentachlorophenol	20UJ	200	400	200	100	1.0(A)
Phenanthrene	20U	200	400	200		150
Phenol	200	200	400	200 200		13,000
Pyrene	200	200	400	200 1		140(S) 70(A)
2,4-Trichlorobenzene	20U 20UJ	200	400	200 1	100	2,100

Notes:

1) Results and criteria are shown in ug/l (ppb).

MDEQ Part 201 Industrial Drinking Water criteria as listed in Operational Memorandum #18, Revision June 7, 2000.
 Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan

4) "ID" Inadequate data to develop criterion
 5) "A" denotes criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Sale Drinking. Water Act, Act No. 399 of the Public Acts of 1976.

Water Act, Act No. 359 there is below the analytical method detection limit, therefore, the criterion defaults to the method detection limit. 7) "S" denotes criterion defaults to the chemical-specific water solubility limit.

8) "UJ" denotes that the sample-specific reporting limit for the analyte in this sample should be considered approximate

10) "U" denotes the analyte was analyzed for, but was not detected

11) Rinseate Duplicate sample collected at East casement Basin location

12) "-" denotes no criteria established.

i/novi/project/4144/21487/4_notes/rinstbl.wb2

REALM Coldwater Road Facility Basement Basin Concrete Rinseate Analytical Results Metals method 200.8/245.1/1311

Date Collected	East Basement Basin 04/20/99	Center Basement Basin 04/20/99	West Basement Basin 04/20/99	Tap Water 04/20/99	Rinseate Duplicate 04/20/99	MDEQ Part 201 Generic Cleanup Criteria Industrial Drinking Water
Parameter	ELL.	E) I	4.2	<u></u>	.5U	Criteria
Cadmium	.5U 260	.5U 80	1.2 2,180	<u>.5U</u> 10U	240	5.0 (A) 100 (A)
Chromium			· · · · · · · · · · · · · · · · · · ·			
Copper	3,350	430	11,400	10U	3,060	1,000 (E)
Lead	96	20	169	52	93	4.0 (L)
Nickel	994	140	3,850	5U	913	100 (A)
Zinc	1,080	240	4,190	20U	990	5,000 (E)

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) MDEQ Part 201 Industrial Drinking Water criteria as listed in Operational Memorandum #18, dated June 7, 2000.

3) Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan

4) "A" denotes criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of

the Safe Drinking Water Act, Act No. 399 of the Public Acts of 1976.

5) "E" denotes criterion is the aesthetic drinking water value, as required by Sec. 20120(1)(5).

6) "L" denotes higher level may be acceptable(up to 15ug/l) if soil concentration is less than 400 ppm and groundwater migrating off-site will not result in unacceptable exposures. Contact an ERD toxicologist for further explanation.

7) "U" denotes the analyte was analyzed for, but was not detected.

8) Rinseate Duplicate sample collected at East Basement Basin location.

9) Bold type denotes exceedance of Part 201 Industrial Drinking Water criteria.

vnovi/project/4144/21487/4_notes/rinstbl.wb2

pg 3 of 3

Table 5

MDEQ

REALM Coldwater Road Facility Groundwater Analytical Results Volatile Organic Compounds method 8260

				MDEQ
				Part 201 Generic
Courses Langeling	OBG MW-1		000 100/0	Cleanup Criteria
Sample Location		GW Duplicate	OBG MW-2	Industrial
Date Collected	01/26/99	01/26/99	01/26/99	Drinking Water
Parameter				Criteria
Benzene	10	10	10	5.0 (A)
Bromodichloromethane	10	10	1U	100 (A, W)
Bromoform	10	1U	1U	100 (A. W)
Bromomethane	1U	10	1U	29
n-Butylbenzene	10	10	1U	230
sec-Butylbenzene	10	1U	10	230
tert-Butylbenzene	10	1U	10	230
Carbon tetrachloride	10	1U	1U	5.0 (A)
Chlorobenzene	1U	10	10	100 (A)
Chloroethane	10	10	1U	1,700
Chloroform	10	10	10	100 (A, W)
Chloromethane	10	10	10	1,100
Dibromochloromethane	10	1U	10	100 (A, W)
1,2-Dichlorobenzene	1U	10	10	600 (A)
1,3-Dichlorobenzene	10	10	10	19
1.4-Dichlorobenzene	10	10	10	75 (A)
1,1-Dichloroethane	10	10	10	2,500
	10	10		
1.2-Dichloroethane	10		1U	5.0 (A)
1,1-Dichloroethene cis 1,2-Dichloroethene	10	1U 1U	1U 1U	7.0 (A) 70 (A)
trans 1.2-Dichloroethene	10	10		
1,2-Dichloropropane	10	10	1U 1U	100 (A) 5.0 (A)
cis 1,3-Dichloropropene	10	10	10	
	10	10		
Ethylbenzene	10	10	10	74 (E)
Isopropylbenzene	10	10	<u> </u>	2,300
p-Isopropyltoluene		2 U	1U	-
Methylene chloride	<u>3 U</u>		3 U	5.0 (A)
Naphthalene	10	10	<u>1U</u>	1,500
n-Propylbenzene	<u>1U</u>	1U	10	-
Styrene	10	1U	10	100 (A)
1,1,2,2-Tetrachloroethane	1U	10	10	35
Tetrachloroethene	10	10	10	5.0 (A)
Toluene	10	10	10	790 (E)
1,1,1-Trichloroethane	10	10	10	200 (A)
1,1,2-Trichloroethane	1U	10	10	5.0 (A)
Trichloroethene	10	1U	10	5.0 (A)
1,2,4-Trimethylbenzene	2	10	10	63 (E)
1,3,5-Trimethylbenzene	1	iU	10	72 (E)
Vinyl chloride	1U	10	10	2.0 (A)
o-Xylene	10	10	10	280 (E)
p,m-Xylene	1U	10	10	280 (E)
Acetone*	50UJ	50UJ	50ÚJ	2,100
2-Butanone*	50UJ	50UJ	50UJ	38,000
Carbon Disulfide*	50U	50U	50U	2,300
2-Hexanone*	50U	50U	50U	2.900
4-Methyl-2-pentanone*	50U	50U	50U	5,200

Notes:

1) Results and criteria are shown in ug/i (ppb).

2) MDEQ Part 201 Industrial Drinking Water criteria as listed in Operational Memorandum #18. dated June 7, 2000.

3) Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan

4) "-" denotes no criteria established.

 "A" denotes criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking Water Act, Act No. 399 of the Public Acts of 1976.

6) "E" denotes criterion is the asthetic drinking water value, as required by Section 20120 (1)(5).

7) "W" denotes Concentrations of trihalomethanes in groundwater must be added together to determine compliance with the State of Michigan Drinking Water Standard of 100 ug/l. Concentrations of trihalomethanes in soil must be added together to determine compliance with the drinking water protection criterion of 2.000 ug/kg.

"U" denotes the analyte was analyzed for, but was not detected.

9) "UJ" denotes that the sample-specific reporting limit for the analyte in this sample should be considered approximate

10) Ground water duplicate sample collected at OBG MW-1.

11) "" indicates these constituents were added after implementation of the QAPP.

vinovi/project 4144 21487/4_hotes/gwib! wb2

REALM Coldwater Road Facility Groundwater Analytical Results Semivolatile Organic Compounds method 8270

MDEQ

				Part 201 Generic
	000 1044		000 101/ 1	Cleanup Criteria
Sample Location	OBG MW-101/26/99	GW Duplicate 01/26/99	OBG MW-2 01/26/99	Drinking Water
Date Collected	01120199	0 1/20/99	0 1120/55	Criteria
Parameter	1000	10UJ	10UJ	3,800
Acenaphthene	100J	1003	1003	150
Acenaphthylene	1003	10UJ	10UJ	43 (S)
Benzo(a)anthracene	100	100	100	8.5
Benzo(b)fluoranthene	10UJ	10UJ	10UJ	2(M)
Benzo(k)fluoranthene	100	10U	100	5.0(M)
Benzo(ghi)perylene	100	10U	10U	5.0(M)
Benzo(a)pyrene	10U	10U	100	5.0 (A.M)
Bis(2-chloroethoxy)methane	10U	10U	100	
Bis(2-chloroethyl)ether	10U	10U	100	8.3
Bis(2-chloroisopropyl)ether	10UJ	100	10U	
Bis(2-ethylhexyl)phthalate	10UJ	10UJ	10UJ	6.0 (A)
-Bromophenyl phenyl ether	10UJ	10UJ	10UJ	2,700 (S)
Butyl benzyl phthalate	10UJ	10ŬJ 10ŬJ	10UJ 10UJ	2,700 (S)
I-Chloroaniline	10UJ	10UJ 10UJ	1003	
2-Chioronaphthalene	10UJ 10U	1005	1003	420
-Chloro-3-methylphenol	10UJ	100	100	130
2-Chlorophenol 4-Chlorophenyl phenyl ether	1003	100	100	-
Chiorophenyi phenyi eller	100	100	100	5.0(M)
p.m-Cresol	100	100	100	
p-Cresol	100	10U	10U	
Dibenzo(ah)anthracene	10U	10U	100	5.0 (M)
Dibenzofuran	10UJ	10U	100	ID
Di-n-butyl phthalate	10UJ	10UJ	10UJ	2,500
,2-Dichlorobenzene	100	10U	100	600 (A)
.3-Dichlorobenzene	10U	10U	10U	19
,4-Dichlorobenzene	10U	10U	10U	75(A)
3,3'-Dichlorobenzidine	10UJ	100	10U 10U	<u>4.3</u> 210
2,4-Dichlorophenol	100	10U 10UJ	1001	16,000
Diethyl phthalate	10UJ 10U	1003	1003	1,000
2,4-Dimethylphenol	10UJ	100	100	210000
Dimethyl phthalate	100J	100	100	-
6-Dinitro-2-methylphenol	1003	100	100	
2,4-Dinitrotoluene	10UJ	10U	100	32
2.6-Dinitrotoluene	10UJ	100	10Ú	•
Di-n-octyl ohthalate	10UJ	10UJ	10UJ	380
luoranthene	10UJ	10UJ	10UJ	210 (S)
luorene	10UJ	10UJ	10UJ	2.000 (S)
lexachlorobenzene	10UJ	10U	10U	1.0 (A)
lexachlorobutadiene	100	10U	100	42
lexachlorocyclopentadiene	10UJ	10UJ	10UJ	50 (A)
lexachloroethane	100	10U 10U	10U 10U	21 5.0 (M)
ndeno(1,2,3-cd)pyrene	10U 10U	100	100	3,100
sophorone		100	100	750
2-Methylnaphthalene	10U 10UJ	10UJ	100	1,500
Naphthalene	1003	100J	100	
-Nitroaniline	1003 10UJ	1000	100	-
-Nitroaniline	10UJ	10UJ	10U	-
Vitrobenzene	10U	100	10U	9.6
-Nitrophenol	10U	10U	10U	58
Nitrophenol	10UJ	10UJ	10U	
N-Nitrosodiphenylamine	10UJ	10UJ	100	1,100
Phenanthrene	10UJ	10UJ	10U	150
Phenol	10UJ	100	10U	13,000
Pyrene	10U	10U	100	140 (S)
1.2.4-Trichlorobenzene	100	10U	100	70 (A)
2.4.5-Trichlorophenol	100	100	100	2,100

Notes:

Results and criteria are shown in ug/l (ppb).
 MDEQ Part 201 Industrial Drinking Water criteria as listed in Operational Memorandum #18, dated June 7.2000

3) Samples analyzed by Fire 3 Environmental Consulting Laboratories, Inc. of East Lansing, Michigan

4) "-" denotes no coteria established.

5) "A" denotes criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking

Water Act. Act No. 399 of the Public Acts of 1976.

5) "M" denotes calculated offerior is below the analytical method detection limit, therefore, the orderion defaults to the method detection limit.

7) "S" denotes criterion defaults to the chemical-specific water solubility limit.

8) "UJ" denotes that the sample-specific reporting limit for the analyte in this sample should be considered approximate.

9) "ID" denotes inadequate cata to develop criterion

10) "U" denotes the analyte was analyzed for, but was not detected.

11) Ground water duplicate sample collected at OSG MW-1

REALM Coldwater Road Facility Groundwater Analytical Results Metals method 200.8 and Cyanide method 335.2

				MDEQ Part 201 Generic Cleanup Criteria
Sample Location	OBG MW-1	GW Duplicate	OBG MW-2	Industrial
Date Collected	01/26/99	01/26/99	01/26/99	Drinking Water
Parameter				Criteria
Cadmium, Dissolved	0.2U	0.2U	0.4	5.0 (A)
Chromium, Dissolved	100	100	10U	100 (A)
Copper, Dissolved	10	10	20	1,000 (E)
Lead , Dissolved	8	9	32	4 (L)
Nickel, Dissolved	15	15	13	100 (A)
Zinc, Dissolved	20	20	50	5,000 (E)
Cyanide	5U	50	5U	200 (A)

Notes:

1) Results and criteria are shown in ug/l (ppb).

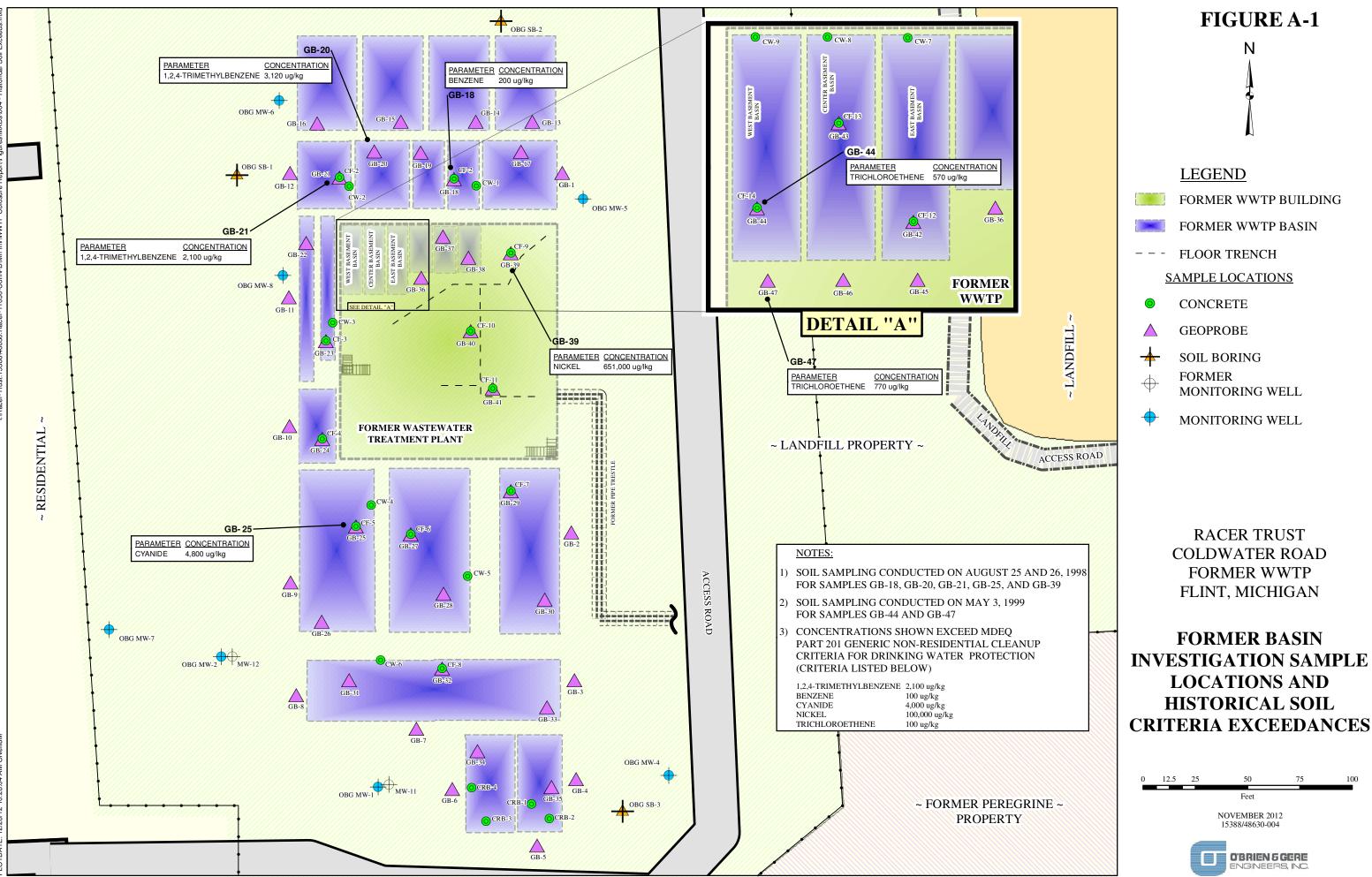
2) Samples analyzed by Fire & Environmental Consulting Laboratories, Inc. of East Lansing, Michigan.

3) Bold type denotes exceedance of Part 201 Industrial Drinking Water criteria.

4) MDEQ Part 201 Industrial Drinking Water Protection Criteria as listed in Operational Memorandum #18, dated June 7,2000.

5) "A" denotes criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking Water Act, Act No. 399 of the Public Acts of 1976.

6) "E" denotes criterion is the aesthetic drinking water value, as required by Section 20120 (1)(5).


7) "L" denotes higher groundwater concentrations (up to 15 ug/L) may be acceptable if the soil concentration is less than 400 ppm and groundwater migrating off-site will not result in unacceptable exposures. Contact an ERD toxicologist if further explanatio is needed.

8) "U" denotes the analyte was analyzed for, but was not detected.

9) Ground water duplicate sample collected at OBG MW-1.

i/novi/project/4144/21487/4_notes/gwtbl.wb2

pg 3 of 3

Appendix B

Former WWTP Addendum to the June 1999 Closure Certification Report Analytical Results

TABLE 1 REALM

Coldwater Road Facility

Ground Water Analytical Results - First Quarter (June 2007) Volatile Organic Compounds Method 8260

				MDEQ Part 201 Generic Cleanup Criteria
Sample Location	OBG MW-5	OBG MW-6	OBG MW-8	Industrial
Date Collected	6/19/2007	6/19/2007	6/19/2007	Drinking Water
Parameter				Criteria
Benzene	1U	<1	<1	5.0 (A)
Bromodichloromethane	<1	<1	<1	100 (A, W)
Bromoform	<1	<1	<1	100 (A, W)
Bromomethane	<5	<5	<5	29
n-Butylbenzene	<1	<1	<1	230
sec-Butylbenzene	<1	<1	<1	230
tert-Butylbenzene	<1	<1	<1	230
Carbon tetrachloride Chlorobenzene	<1	<1 <1	<1	5.0 (A)
Chloroethane	<5	<5	<1 <5	<u>100 (A)</u> 1,700
Chloroform	<1	<1	<1	100 (A, W)
Chloromethane	0.5J	50	50	1.100
Dibromochloromethane	5UJ	<5	<5	100 (A, W)
1,2-Dichlorobenzene	<1	<1	<1	600 (A)
1,3-Dichlorobenzene	<1	<1	<1	19
1,4-Dichlorobenzene	<1	<1	<1	75 (A)
1,1-Dichloroethane	6	<1	0.3	2,500
1,2-Dichloroethane	<1	<1	<1	5.0 (A)
1,1-Dichloroethene	0.3	<1	<1	7.0 (A)
cis 1,2-Dichloroethene	12	<1	<1	70 (A)
trans 1,2-Dichloroethene	0.6	<1	<1	100 (A)
1,2-Dichloropropane	<1	<1	<1	5.0 (A)
cis 1,3-Dichloropropene	<1	<1	<1	-
Ethylbenzene	10	<1	<1	74 (E)
Isopropylbenzene p-Isopropyltoluene	0.1J 0.2J	<5	<5 <5	2,300
Methylene chloride	1	<5 <5	<5	5.0 (A)
Naphthalene	12	5U	5U	1,500
n-Propylbenzene	<1	<1	<1	-
Styrene	<1	<1	<1	100 (A)
1,1,2,2-Tetrachloroethane	<1	<1	<1	35
Tetrachloroethene	3	<1	<1	5.0 (A)
Toluene	7J	1U	<1	790 (E)
1,1,1-Trichloroethane	<1	<1	<1	200 (A)
1,1,2-Trichloroethane	<1	<1	<1	5.0 (A)
Trichloroethene	1	<1	<1	5.0 (A)
1,2,4-Trimethylbenzene	1U	<1	<1	63 (E)
1,3,5-Trimethylbenzene	10	<1	<1	72 (E)
Vinyl chloride	2J	<1	<1	2.0 (A)
o-Xylene p.m-Xylene	2U 2U	<1 0.1	<1 <2	280 (E) 280 (E)
Acetone*	50U	<50	<50	2,100
2-Butanone*	6J	<30	<30	38,000
Carbon Disulfide*	<5	<5	<5	2,300
2-Hexanone*	0.6J	<50	<50	2,900
4-Methyl-2-pentanone*	10J	<50	<50	5,200
tert-Methyl butyl ether	<5	<5	<5	40 (E)
1,1,1,2-Tetrachloroethane	<1	<1	<1	320
1,2,3-Trichlorobenzene	<5	<5	<5	-
1,2,3-Trichloropropane	<1	<1	<1	120
1,2,4-Trichlorobenzene	<5	<5	<5	70 (A)
1,2-Dibromo-3-chloropropane	<5	<5	<5	-
1,2-Dibromoethane	<1	<1	<1	0.05 (A)
2-Methylnaphthalene	50	5U	5U	750
Bromobenzene	<2	<2	<2	<u>11</u> 50
Bromochloromethane	<1	<1 <1	<1 <1	-
Dibromomethane	<5	<1 <5	<1 <5	230
Dichlorodifluoromethane	5U	5U	<5 5U	1,700
Diethyl ether	<10	<10	<10	10 (E)
Hexachloroethane	50	<5	<5	21
Methyl iodide	<1	<1	<1	-
Tetrahydrofuran	3	<90	<90	270
Trichlorofluoromethane	<1	<1	<1	7,300
1,2,3-Trimethylbenzene	0.3	<1	<1	-
trans-1,4-Dichloro-2-butene	<1	<1	<1	-

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) MDEQ Part 201 Generic Industrial Drinking Water criteria as listed in Operational Memorandum #1, dated January 23, 2006.

3) Samples analyzed by Merit Laboratories, Inc. of East Lansing, Michigan

4) "-" denotes no criteria established.

5) "A" denotes criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking

Water Act, Act No. 399 of the Public Acts of 1976.

6) "E" denotes criterion is the asthetic drinking water value, as required by Section 20120 (1)(5).

7) "W" denotes Concentrations of trihalomethanes in groundwater must be added together to determine compliance with the State of Michigan Drinking Water Standard of 100 ug/l. Concentrations of trihalomethanes in soil must be added together to determine compliance with the drinking water protection criterion of 2,000 ug/kg.

8) "U" denotes the analyte was analyzed for, but was not detected.

9) "UJ" denotes that the sample-specific reporting limit for the analyte in this sample should be considered approximate.

10) "J" denotes concentration should be considered approximate based on analyte concentration being greater than the MDL.

TABLE 1 REALM Coldwater Road Facility Ground Water Analytical Results - First Quarter (June 2007) Metals Method 200.8 and Cyanide Method 335.2

Sample Location	OBG MW-1	OBG MW-2	OBG MW-3	OBG MW-4	OBG MW-5	OBG MW-6	OBG MW-7	OBG MW-8	MDEQ Part 201 Generic Cleanup Criteria Industrial
Date Collected	06/19/2007	06/19/2007	06/19/2007	06/19/2007	06/19/2007	06/19/2007	06/19/2007	06/19/2007	Drinking Water
Parameter									Criteria
Total inorganics									
Chromium	NS	NS	NS	NS	13	6	NS	10	100 (A)
Lead	<3	<3	<3	1	14	<3	<3	<3	4.0 (L)
Nickel	NS	NS	NS	NS	28	20	NS	41	100 (A)
Dissolved Inorganics									
Chromium	NS	NS	NS	NS	<5	NS	NS	NS	100 (A)
Lead	<3	<3	NS	NS	<3	NS	NS	NS	4.0 (L)
Nickel	NS	NS	NS	NS	17	NS	NS	NS	100 (A)
Total Cyanide									
Cyanide	NS	NS	NS	NS	295	<5	NS	<5	200 (A)

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) Samples analyzed by Merit Laboratories, Inc. of East Lansing, Michigan.

3) Bold type denotes exceedance of Part 201 Generic Industrial Drinking Water criteria.

4) MDEQ Part 201 Generic Industrial Drinking Water Protection Criteria as listed in Operational Memorandum #1, dated January 23, 2006.

5) *A* denotes criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking Water Act, Act No. 399 of the Public Acts of 1976.

6) "L" denotes higher groundwater concentrations (up to 15 ug/L) may be acceptable if the soil concentration is less than 400 ppm and groundwater migrating off-site will not result in unacceptable exposures. Contact an ERD toxicologist if further explanation is needed.

7) "NS" denotes the well was not sampled for this constituient.

MDEO

TABLE 3

REALM

Coldwater Road Facility

Ground Water Analytical Results- Second Quarter (September 2007) Volatile Organic Compounds Method 8260 MDEO

				MDEQ Part 201 Generic
Sample Location	OBG MW-5	OBG MW-6	OBG MW-8	Cleanup Criteria Industrial
Date Collected	09/25/2007	09/25/2007	09/25/2007	Drinking Water
Parameter	03/23/2001	03/23/2001	03/23/2007	Criteria
Benzene	0.2	<1	<1	5.0 (A)
Bromodichloromethane	<1	<1	<1	100 (A, W)
Bromoform	<1	<1	<1	100 (A, W)
Bromomethane	<5	<5	<5	29
n-Butylbenzene	<1	<1	<1	230
sec-Butylbenzene	<1	<1	<1	230
tert-Butylbenzene	<1	<1	<1	230
Carbon tetrachloride	<1	<1	<1	5.0 (A)
Chlorobenzene	<1	<1	<1	100 (A)
Chloroethane Chloroform	<5 <1	<5 <1	<5 <1	1,700 100 (A, W)
Chloromethane	<5	<5	<5	1,100
Dibromochloromethane	<5	<5	<5	100 (A, W)
1,2-Dichlorobenzene	<1	<1	<1	600 (A)
1,3-Dichlorobenzene	<1	<1	<1	19
1,4-Dichlorobenzene	<1	<1	<1	75 (A)
1,1-Dichloroethane	7	<1	<1	2,500
1,2-Dichloroethane	<1	<1	<1	5.0 (A)
1,1-Dichloroethene	0.4	<1	<1	7.0 (A)
cis 1,2-Dichloroethene	21	<1	<1	70 (A)
trans 1,2-Dichloroethene	1 <1	<1 <1	<1 <1	100 (A)
1,2-Dichloropropane cis 1,3-Dichloropropene	<1	<1	<1	5.0 (A)
trans-1,3-Dichloropropene	<1	<1	<1	-
Ethylbenzene	0.2	<1	<1	74 (E)
Isopropylbenzene	<5	<5	<5	2,300
p-Isopropyltoluene	<5	<5	<5	-
Methylene chloride	<5	<5	<5	5.0 (A)
Naphthalene	5	5U	5U	1,500
n-Propylbenzene	<1	<1	<1	-
Styrene	0.1	<1	<1	100 (A)
1,1,2,2-Tetrachloroethane	<1	<1	<1	35
Tetrachloroethene	0.6	<1	<1	5.0 (A)
Toluene	2	10	10	790 (E)
1,1,1-Trichloroethane	<1	<1	<1	200 (A)
1,1,2-Trichloroethane Trichloroethene	<1	<1 <1	<1 <1	5.0 (A) 5.0 (A)
1,2,4-Trimethylbenzene	0.2	<1	<1	63 (E)
1,3,5-Trimethylbenzene	<1	<1	<1	72 (E)
Vinyl chloride	2	<1	<1	2.0 (A)
o-Xylene	0.4	<1	<1	280 (E)
p,m-Xylene	0.6	0.1	0.1	280 (E)
Acetone*	<50R	<50R	<50R	2,100
2-Butanone*	<30	<30	<30	38,000
Carbon Disulfide*	<5	<5	<5	2,300
2-Hexanone* 4-Methyl-2-pentanone*	<50 3	<50 <50	<50 <50	2,900 5,200
tert-Methyl butyl ether	<5	<50	<50	5,200 40 (E)
1,1,1,2-Tetrachloroethane	<5 <1	<5 <1	<1	40 (E) 320
1.2.3-Trichlorobenzene	<5	<5	<5	-
1,2,3-Trichloropropane	<1	<1	<1	120
1,2,4-Trichlorobenzene	<5	<5	<5	70 (A)
1,2-Dibromo-3-chloropropane	<5	<5	<5	-
1,2-Dibromoethane	<1	<1	<1	0.05 (A)
2-Methylnaphthalene	<5	<1	5U	750
Acrylonitrile	<2	<2	<2	11
Bromobenzene	<1	<1	<1	50
Bromochloromethane	<1	<1	<1	-
Dibromomethane	<5	<5	<5	230
Dichlorodifluoromethane	<5	<5	<5	1,700
Diethyl ether Hexachloroethane	<10 <5	<10 <5	<10 <5	10 (E) 21
Methyl iodide	<5 <1	<5 <1	<1	-
Tetrahydrofuran	2	<90	<90	270
Trichlorofluoromethane	<1	<1	<1	7,300
1,2,3-Trimethylbenzene	0.1	<1	<1	-
trans-1,4-Dichloro-2-butene	<1	<1	<1	-

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) MDEQ Part 201 Generic Industrial Drinking Water criteria as listed in Operational Memorandum #1, dated January 23, 2006.

3) Samples analyzed by Merit Laboratories, Inc. of East Lansing, Michigan

4) "-" denotes no criteria established.

5) "A" denotes criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking Water Act, Act No. 399 of the Public Acts of 1976.
 6) "E" denotes criterion is the asthetic drinking water value, as required by Section 20120 (1)(5).

7) "W" denotes Concentrations of trihalomethanes in groundwater must be added together to determine compliance with the State of Michigan Drinking Water Standard of 100 ug/l. Concentrations of trihalomethanes in soil must be added together to determine

compliance with the drinking water protection criterion of 2,000 ug/kg.

8) "U" denotes the analyte was analyzed for, but was not detected.

9)"R" data rejected due to initial calibration failure

TABLE 3 REALM Coldwater Road Facility Ground Water Analytical Results- Second Quarter (September 2007) Metals Method 200.8 and Cyanide Method 335.2

									MDEQ Part 201 Generic Cleanup Criteria
Sample Location	OBG MW-1	OBG MW-2	OBG MW-3	OBG MW-4	OBG MW-5	OBG MW-6	OBG MW-7	OBG MW-8	Industrial
Date Collected	09/25/2007	09/25/2007	09/25/2007	09/25/2007	09/25/2007	09/25/2007	09/25/2007	09/25/2007	Drinking Water
Parameter									Criteria
Total inorganics									
Chromium	NS	NS	NS	NS	15	22	NS	16	100 (A)
Lead	<3	<3	<3	<3	4	<3	<3	<3	4.0 (L)
Nickel	NS	NS	NS	NS	9	23	NS	44	100 (A)
Total Cyanide									
Cyanide	NS	NS	NS	NS	108	<5	NS	14	200 (A)

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) Samples analyzed by Merit Laboratories, Inc. of East Lansing, Michigan.

3) MDEQ Part 201 Generic Industrial Drinking Water Protection Criteria as listed in Operational Memorandum #1, dated January 23, 2006.

4) "A" denotes criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking

Water Act, Act No. 399 of the Public Acts of 1976.

5) "L" denotes higher groundwater concentrations (up to 15 ug/L) may be acceptable if the soil concentration is less than 400 ppm and groundwater migrating off-site will not result in unacceptable exposures. Contact an ERD toxicologist if further explanation is needed.

6) "NS" denotes the well was not sampled for this constituient.

MDEO

TABLE 4 REALM

Coldwater Road Facility Ground Water Analytical Results- Third Quarter (December 2007) Volatile Organic Compounds Method 8260

				MDEQ Part 201 Generic Cleanup Criteria
Sample Location	OBG MW-5	OBG MW-6	OBG MW-8	Industrial
Date Collected	12/11/02007	12/11/02007	12/11/02007	Drinking Water
Parameter				Criteria
Benzene	<1	<1	<1	5.0 (A)
Bromodichloromethane	<1	<1	<1	100 (A, W)
Bromoform	<1	<1	<1	100 (A, W)
Bromomethane n-Butylbenzene	<5 <1	<5 <1	<5 <1	29 230
sec-Butylbenzene	<1	<1	<1	230
tert-Butylbenzene	<1	<1	<1	230
Carbon tetrachloride	<1	<1	<1	5.0 (A)
Chlorobenzene	<1	<1	<1	100 (A)
Chloroethane	<5	<5	<5	1,700
Chloroform	<1	<1	<1	100 (A, W)
Chloromethane	5UJ	5UJ	5UJ	1,100
Dibromochloromethane	<5	<5	<5	100 (A, W)
1,2-Dichlorobenzene	<1	<1	<1	600 (A)
1,3-Dichlorobenzene	<1	<1	<1	19
1,4-Dichlorobenzene	<1	<1	<1	75 (A)
1,1-Dichloroethane	5	<1	0.2	2,500
1,2-Dichloroethane	<1	<1	<1	5.0 (A)
1,1-Dichloroethene cis 1,2-Dichloroethene	0.1	<1 <1	<1 <1	7.0 (A) 70 (A)
trans 1,2-Dichloroethene	0.5	<1	<1	100 (A)
1,2-Dichloropropane	<1	<1	<1	5.0 (A)
cis 1,3-Dichloropropene	<1	<1	<1	-
trans-1,3-Dichloropropene	<1	<1	<1	
Ethylbenzene	0.2	<1	<1	74 (E)
Isopropylbenzene	<5	<5	<5	2,300
p-Isopropyltoluene	<5	<5	<5	-
Methylene chloride	<5	<5	<5	5.0 (A)
Naphthalene	5U	5U	5U	1,500
n-Propylbenzene	<1	<1	<1	-
Styrene	0.1	<1	<1	100 (A)
1,1,2,2-Tetrachloroethane	<1	<1	<1	35
Tetrachloroethene	0.4	<1	<1	5.0 (A)
Toluene	1U	<1	<1	790 (E)
1,1,1-Trichloroethane 1,1,2-Trichloroethane	<1 <1	<1 <1	<1 <1	200 (A) 5.0 (A)
Trichloroethene	1	<1	<1	5.0 (A)
1,2,4-Trimethylbenzene	<1	<1	<1	63 (E)
1,3,5-Trimethylbenzene	<1	<1	<1	72 (E)
Vinyl chloride	0.9	<1	<1	2.0 (A)
o-Xylene	<1	<1	<1	280 (E)
p,m-Xylene	<2	<2	0.1	280 (E)
Acetone*	<50	<50	<50	2,100
2-Butanone*	<30	<30	<30	38,000
Carbon Disulfide*	<5	<5	<5	2,300
2-Hexanone*	<50	<50	<50	2,900
4-Methyl-2-pentanone* tert-Methyl butyl ether	50UJ <5	50UJ <5	50UJ <5	5,200 40 (E)
1,1,1,2-Tetrachloroethane	<5	<5 <1	<5 <1	40 (E) 320
1,1,1,2-Tetrachioroethane	<1 <5	<1 <5	<1	- 320
1,2,3-Trichloropropane	<1	<1	<1	120
1,2,4-Trichlorobenzene	<5	<5	<5	70 (A)
1,2-Dibromo-3-chloropropane	<5	<5	<5	-
1,2-Dibromoethane	<1	<1	<1	0.05 (A)
2-Methylnaphthalene	<5	<1	5U	750
Acrylonitrile	<2	<2	<2	11
Bromobenzene	<1	<1	<1	50
Bromochloromethane	<1	<1	<1	-
Dibromomethane	<5	<5	<5	230
Dichlorodifluoromethane	<5	<5	<5	1,700
Diethyl ether	<10	<10	<10	10 (E)
Hexachloroethane	<5	<5	<5	21
Methyl iodide	<1	<1	<1	-
Tetrahydrofuran	2J	90UJ	90UJ	270
Trichlorofluoromethane 1,2,3-Trimethylbenzene	<1	<1	<1	7,300
trans-1,4-Dichloro-2-butene	<1 1UJ	<1 1UJ	<1 1UJ	-
Notes:	100	100	100	-

1) Results and criteria are shown in ug/l (ppb).

2) MDEQ Part 201 Generic Industrial Drinking Water criteria as listed in Operational Memorandum #1, dated January 23, 2006.

3) Samples analyzed by Merit Laboratories, Inc. of East Lansing, Michigan

4) "-" denotes no criteria established.

5) "A" denotes criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking Water Act, Act No. 399 of the Public Acts of 1976.

 6) "E" denotes criterion is the asthetic drinking water value, as required by Section 20120 (1)(5).
 7) "W" denotes Concentrations of trihalomethanes in groundwater must be added together to determine compliance with the State of Michigan Drinking Water Standard of 100 ug/l. Concentrations of trihalomethanes in soil must be added together to determine compliance with the drinking water protection criterion of 2,000 ug/kg.

8) "U" denotes the analyte was analyzed for, but was not detected.

9) "J" denotes estimated concentration.

10) "UJ" denotes not detected, estimating reporting limit.

TABLE 4 REALM Coldwater Road Facility Ground Water Analytical Results- Third Quarter (December 2007) Metals Method 200.8 and Cyanide Method 335.2

									MDEQ Part 201 Generic Cleanup Criteria
Sample Location	OBG MW-1	OBG MW-2	OBG MW-3	OBG MW-4	OBG MW-5	OBG MW-6	OBG MW-7	OBG MW-8	Industrial
Date Collected	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	Drinking Water
Parameter									Criteria
Total inorganics									
Arsenic	<2	<2	<2	<2	19	<2	5	<2	100 (A)
Chromium	NS	NS	NS	NS	20J	29J	NS	40J	100 (A)
Iron	440	630	1,780	420	1,490	990	970	520	300 (E)
Lead	<3	<3	<3	<3	<3	<3	<3	<3	4.0 (L)
Manganese	216	307	5,080	118	521	642	46	371	50 (E)
Nickel	NS	NS	NS	NS	18	15J	NS	44	100 (A)
Dissolved inorganics									
Arsenic	NS	NS	NS	NS	15	NS	NS	NS	10 (A)
Chromium	NS	NS	NS	NS	17	NS	NS	NS	100 (Á)
Iron	NS	NS	NS	NS	790	NS	NS	NS	300 (E)
Lead	NS	NS	NS	NS	<3	NS	NS	NS	4.0 (L)
Manganese	NS	NS	NS	NS	502	NS	NS	NS	50 (E)
Nickel	NS	NS	NS	NS	17	NS	NS	NS	100 (A)
Total Cyanide									
Cyanide	NS	NS	NS	NS	32	<5	NS	<5	200 (A)

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) Samples analyzed by Merit Laboratories, Inc. of East Lansing, Michigan.

3) MDEQ Part 201 Generic Industrial Drinking Water Protection Criteria as listed in Operational Memorandum #1, dated January 23, 2006.

4) "A" denotes criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking Water Act, Act No. 399 of the Public Acts of 1976.

5) "L" denotes higher groundwater migrating off-site will not result in unacceptable exposures. Contact an

ERD toxicologist if further explanation is needed.

6) "E" denotes criterion is aesthetic drinking water value.

7) "NS" denotes the well was not sampled for this constituient.

8) "J" denotes estimated concentration.

9) Bold type indicates concentration above MDEQ Part 201 Generic Industrial Drinking Water Criteria as listed in MDEQ RRD Operational Memorandum #1, dated January 23, 2006.

TABLE 5 REALM

Coldwater Road Facility Ground Water Analytical Results- Fourth Quarter (March 2008) Volatile Organic Compounds Method 8260

County Logarity				MDEQ Part 201 Generic Cleanup Criteria		
Sample Location Date Collected Parameter	OBG MW-5 03/18/2008	OBG MW-6 03/18/2008	OBG MW-8 03/18/2008	Industrial Drinking Water Criteria		
Benzene	<1	<1	<1	5.0 (A)		
Bromodichloromethane	<1	<1	<1	100 (A, W)		
Bromoform	<1	<1	<1	100 (A, W)		
Bromomethane	<5	<5	<5	29		
n-Butylbenzene	<1	<1	<1	230		
sec-Butylbenzene	<1	<1	<1	230		
tert-Butylbenzene Carbon tetrachloride	<1 <1	<1 <1	<1 <1	230 5.0 (A)		
Chlorobenzene	<1	<1	<1	100 (A)		
Chloroethane	<5	<5	<5	1,700		
Chloroform	<1	<1	<1	100 (A, W)		
Chloromethane	<5	<5	<5	1,100		
Dibromochloromethane	<5	<5	<5	100 (A, W)		
1,2-Dichlorobenzene	<1	<1	<1	600 (A)		
1,3-Dichlorobenzene	<1	<1	<1	19		
1,4-Dichlorobenzene 1,1-Dichloroethane	<1 2	<1 <1	<1 0.1	75 (A) 2,500		
1,1-Dichloroethane	<1	<1	0.1 <1	2,500 5.0 (A)		
1,1-Dichloroethene	<1	<1	<1	7.0 (A)		
cis 1,2-Dichloroethene	4	<1	<1	70 (A)		
trans 1,2-Dichloroethene	0.2	<1	<1	100 (A)		
1,2-Dichloropropane	<1	<1	<1	5.0 (A)		
cis 1,3-Dichloropropene	<1	<1	<1	-		
trans-1,3-Dichloropropene	<1	<1	<1			
Ethylbenzene	<1 <5	<1	<1 <5	74 (E)		
Isopropylbenzene p-Isopropyltoluene	<>>	<5 <5	<5	2,300		
Methylene chloride	<5	<5	<5	5.0 (A)		
Naphthalene	0.2	<5	<5	1,500		
n-Propylbenzene	<1	<1	<1	-		
Styrene	0.1	<1	<1	100 (A)		
1,1,2,2-Tetrachloroethane	<1	<1	<1	35		
Tetrachloroethene	0.2	<1	<1	5.0 (A)		
	<1 <1	<1	<1 <1	790 (E)		
1,1,1-Trichloroethane 1,1,2-Trichloroethane	<1	<1 <1	<1	200 (A) 5.0 (A)		
Trichloroethene	0.5	<1	<1	5.0 (A)		
1,2,4-Trimethylbenzene	<1	<1	<1	63 (E)		
1,3,5-Trimethylbenzene	<1	<1	<1	72 (E)		
Vinyl chloride	<1	<1	<1	2.0 (A)		
o-Xylene	<1	<1	<1	280 (E)		
p,m-Xylene Acetone*	<2 50R	<2 50R	<2 50R	280 (E) 2,100		
2-Butanone*		<30	<30	38,000		
Carbon Disulfide*	<5	<5	<5	2,300		
2-Hexanone*	<50	<50	<50	2,900		
4-Methyl-2-pentanone*	<50	<50	<50	5,200		
tert-Methyl butyl ether	<5	<5	<5	40 (E)		
1,1,1,2-Tetrachloroethane	<1	<1	<1	320		
1,2,3-Trichlorobenzene	<5	<5	<5	-		
1,2,3-Trichloropropane	<1	<1	<1	120 70 (A)		
1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane	<5 <5	<5 <5	<5 <5	70 (A)		
1,2-Dibromoethane	<1	<1	<1	0.05 (A)		
2-Methylnaphthalene	<5	<5	<5	750		
Acrylonitrile	<2	<2	<2	11		
Bromobenzene	<1	<1	<1	50		
Bromochloromethane	<1	<1	<1	•		
Dibromomethane	<5	<5	<5	230		
Dichlorodifluoromethane	<5	<5	<5	1,700		
Diethyl ether Hexachloroethane	<10 <5	<10	<10 <5	<u>10 (E)</u> 21		
Methyl iodide	<>>	<5 <1	<5 <1	-		
Tetrahydrofuran	<90	<90	<90	270		
Trichlorofluoromethane	<1	<1	<1	7,300		
1,2,3-Trimethylbenzene	<1	<1	<1	-		
trans-1,4-Dichloro-2-butene	<1	<1	<1	-		

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) MDEQ Part 201 Generic Industrial Drinking Water criteria as listed in Operational Memorandum #1, dated January 23, 2006.

3) Samples analyzed by Merit Laboratories, Inc. of East Lansing, Michigan

4) "-" denotes no criteria established.

5) "A" denotes criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking

Water Act, Act No. 399 of the Public Acts of 1976.

6) "E" denotes criterion is the asthetic drinking water value, as required by Section 20120 (1)(5).

7) "W" denotes Concentrations of trihalomethanes in groundwater must be added together to determine compliance with the State of Michigan Drinking Water Standard of 100 ug/l. Concentrations of trihalomethanes in soil must be added together to determine compliance with the drinking water protection criterion of 2,000 ug/kg.

8) "R" denotes sample result rejected due to relative response factor minimum not being met.

TABLE 5 REALM Coldwater Road Facility Ground Water Analytical Results- Fourth Quarter (March 2008) Metals Method 200.8 and Cyanide Method 335.2

									MDEQ Part 201 Generic Cleanup Criteria
Sample Location	OBG MW-1	OBG MW-2	OBG MW-3	OBG MW-4	OBG MW-5	OBG MW-6	OBG MW-7	OBG MW-8	Industrial
Date Collected	03/18/2008	03/18/2008	03/18/2008	03/18/2008	03/18/2008	03/18/2008	03/18/2008	03/18/2008	Drinking Water
Parameter									Criteria
Total inorganics									
Arsenic	<1	<1	<1	<1	10	<1	3	<1	100 (A)
Chromium	NS	NS	NS	NS	1	1	NS	1	100 (A)
Iron	160J	280J	1,180J	130J	1,770J	350J	560J	280J	300 (E)
Lead	<3	<3	<3	<3	<3	<3	<3	<3	4.0 (L)
Manganese	405	97	5,050	54	532	322	212	337	50 (E)
Nickel	NS	NS	NS	NS	24	15	NS	38	100 (A)
Dissolved inorganics	1:1:								
Arsenic	NS	NS	NS	NS	4	NS	NS	NS	10 (A)
Chromium	NS	NS	NS	NS	1	NS	NS	NS	100 (A)
Iron	NS	NS	NS	NS	190	NS	NS	NS	300 (E)
Lead	NS	NS	NS	NS	<3	NS	NS	NS	4.0 (L)
Manganese	NS	NS	NS	NS	520	NS	NS	NS	50 (E)
Nickel	NS	NS	NS	NS	24	NS	NS	NS	100 (A)
Total Cyanide									
Cyanide	NS	NS	NS	NS	22	<5	NS	<5	200 (A)

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) Samples analyzed by Merit Laboratories, Inc. of East Lansing, Michigan.

3) MDEQ Part 201 Generic Industrial Drinking Water Protection Criteria as listed in Operational Memorandum #1, dated January 23, 2006.

4) "A" denotes criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking

Water Act, Act No. 399 of the Public Acts of 1976.


5) "L" denotes higher groundwater concentrations (up to 15 ug/L) may be acceptable if the soil concentration is less than 400 ppm and groundwater migrating off-site will not result in unacceptable exposures. Contact an ERD toxicologist if further explanation is needed.

6) "E" denotes criterion is aesthetic drinking water value.

7) "NS" denotes the well was not sampled for this constituient.

8) "J" denotes estimated concentration.

9) Bold type indicates concentration above MDEQ Part 201 Generic Industrial Drinking Water Criteria as listed in MDEQ RRD Operational Memorandum #1, dated January 23, 2006.

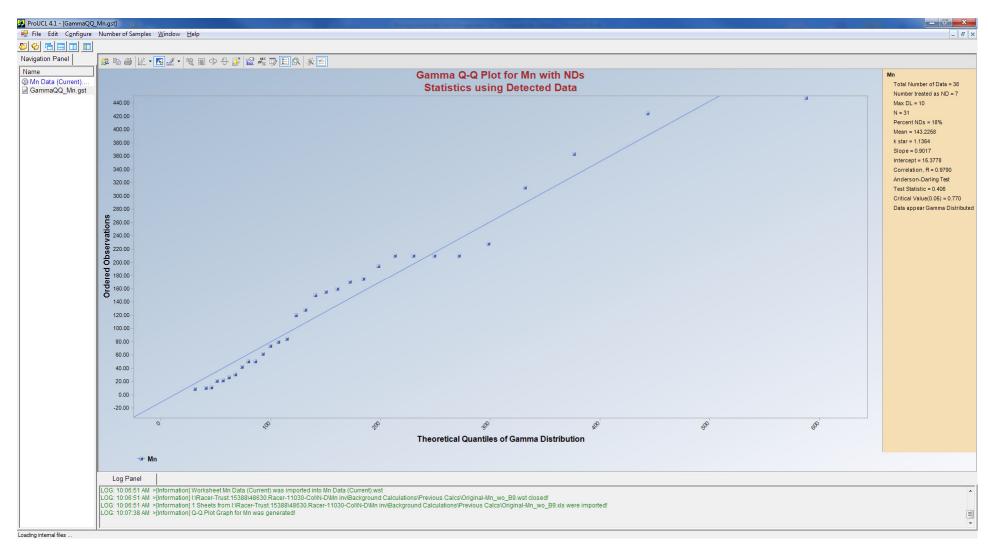
Appendix C ProUCL Site-Specific Background Calculations for the WWTP

RACER Trust Coldwater Road Facility Former Wastewater Treatment Plant Background Data Set(Manganese)

Location	Sample Date	Mn Value
B-7	Nov-98	424
B-7	Nov-99	313
B-7	Nov-02	5.0
B-7	Nov-03	5.0
B-7	Dec-04	74
B-7	Jun-05	31
B-7	Dec-05	50
B-7	Jun-06	150
B-7	Jun-07	42
B-7	Jun-08	10
B-18A	Nov-97	62
B-18A	Nov-98	128
B-18A	Nov-99	155
B-18A	Nov-02	26
B-18A	Nov-03	2.5
B-18A	Dec-04	363
B-18A	Jun-05	80
B-18A	Dec-05	170
B-18A	Jun-06	50
B-18A	Jun-07	22
B-18A	Jun-08	5.0
B-19A	Nov-03	5.0
B-19A	Dec-04	11
B-19AR	Dec-04	5
B-19AR	Jun-05	228
B-19AR	Dec-05	10
B-19AR	Jun-06	210
B-19AR	Jun-07	21
B-19AR	Jun-08	9
B-24	Nov-98	120
B-24R	Jun-05	448
B-24R	Dec-05	210
B-24R	Jun-06	210
B-24R	Jun-07	194
B-24R	Jun-08	175
B-28	Jun-06	210
B-28	Jun-07	160
B-28	Jun-08	84

Number of Detected Data31Number of Non-Detect Data7

Percent Non-Detect


Data Distribution

18.42 Gamma (Per Pro-UCL)

	General Background S	tatistics fo	r Data Sets	with Non-[Detects		
User Selected Options							
From File	Mn Data (Current).wst						
Full Precision	OFF						
Confidence Coefficient	95%						
Coverage	95%						
Different or Future K Values	1						
Number of Bootstrap Operations	2000						
Mn							
		<u> </u>	o				
	Number of Volid Date	General	Statistics		N		- 01
Number	Number of Valid Data	38				umber of Detected Dat	
	f Distinct Detected Data	27			NUN	ber of Non-Detect Dat	
	Tolerance Factor	2.132				Percent Non-Detect	s 18.42%
Daw Ci	tatistics			I	og_transfor	ned Statistics	
	Minimum Detected	9			og-transion	Minimum Detecte	d 2.197
	Maximum Detected	448				Maximum Detecte	
	Mean of Detected	143.2				Mean of Detecte	
	SD of Detected	120.4				SD of Detecte	
	Minimum Non-Detect	2.5				Minimum Non-Deteo	t 0.916
	Maximum Non-Detect	10				Maximum Non-Deteo	t 2.303
Data with Multiple	e Detection Limits			Sing	gle Detectio	n Limit Scenario	
Note: Data have multiple DLs - Use	e of KM Method is recom	mended		Number ti	reated as No	n-Detect with Single D	L 8
For all methods (except KM, DL/2, a	and ROS Methods),			Numbe	r treated as	Detected with Single D	L 30
Observations < Largest ND are trea	ited as NDs				Single DL	Non-Detect Percentag	e 21.05%
		-	d Statistics				
Normal Distribution Test v		•	Logn	ormal Dist		t with Detected Value	-
	apiro Wilk Test Statistic	0.887				apiro Wilk Test Statisti	
	apiro Wilk Critical Value	0.929				apiro Wilk Critical Valu	
Data not Normal at 5	% Significance Level			Data not L	ognormal at	5% Significance Lev	el
Assuming Norr	nal Distribution			A		ormal Distribution	
	L/2 Substitution			ASSL		L/2 Substitution Metho	4
	Mean	117.3			D	Mean (Log Scale	
	SD	121.7				SD (Log Scale	'
95	% UTL 95% Coverage	376.8			95	% UTL 95% Coverag	'
	95% UPL (t)	325.3				95% UPL (
	90% Percentile (z)	273.3				90% Percentile (z	·
	95% Percentile (z)	317.5				95% Percentile (z	·
	99% Percentile (z)	400.4				99% Percentile (z	:) 2653
Maximum Likelihood	Estimate(MLE) Method					Log ROS Metho	d
	Mean	100.5				Mean in Original Scal	e 118.4
	SD	142.8				SD in Original Scal	
95% U ⁻	TL with 95% Coverage	404.9				TL with 95% Coverag	
						TL with 95% Coverag	
				95% Boo	otstrap (%) U	TL with 95% Coverag	
	95% UPL (t)	344.5				95% UPL (:) 626.3

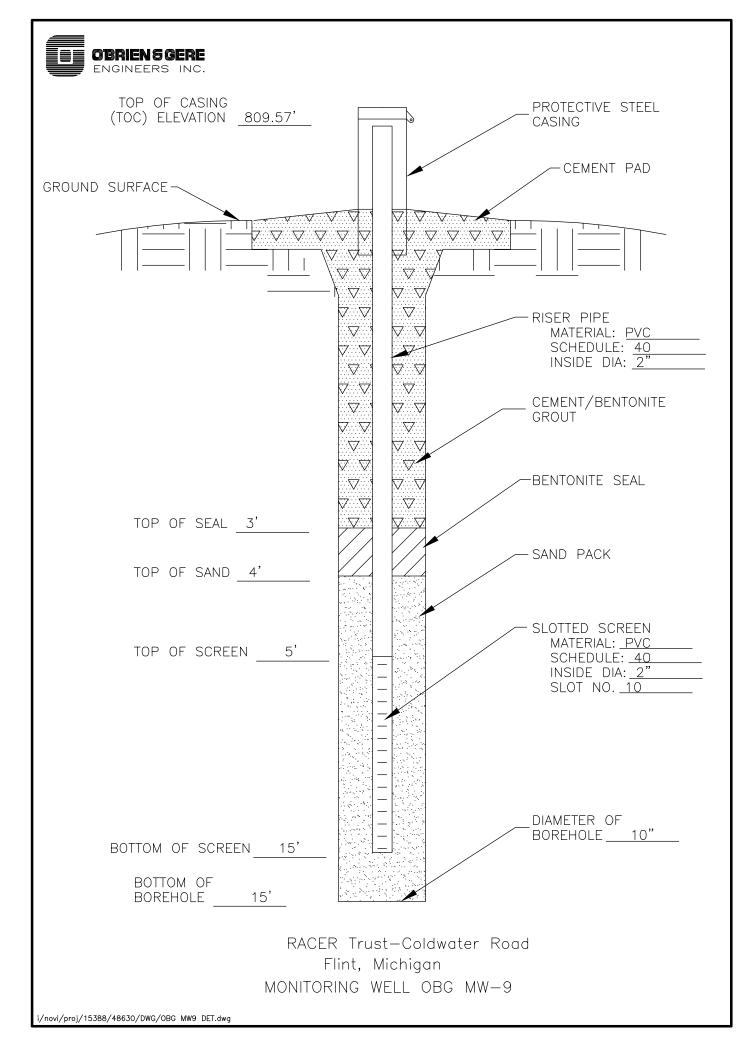
											1
	L		90% P	ercentile (z)	283.5		L		90%	6 Percentile (z)	344.6
			95% P	ercentile (z)	335.3				95%	6 Percentile (z)	572.5
			99% P	ercentile (z)	432.6		99% Percentile (z) 14			1484	
Gar	nma Distrib	oution Test v	vith Detect	ed Values O	nly	Da	ata Distribu	ition Test wi	th Deteo	cted Values On	ly
k star (bias corrected) 1.119						Data	appear Gar	mma Distribu	ited at 5°	% Significance I	evel
				Theta Star	128						
				nu star	69.36						
			A-D T	est Statistic	0.406		1	Nonparamet	ric Stati	stics	
			5% A-D C	ritical Value	0.77			Kap	lan-Mei	er (KM) Method	
			K-S T	est Statistic	0.123					Mean	118.5
			5% K-S C	ritical Value	0.162					SD	119
Data a	ppear Gam	ima Distribu	ted at 5%	Significance	Level		SE of Mean				19.62
								95% KM UT	L with	95% Coverage	372.2
	Ass	uming Gam	ma Distribu	tion				95	5% KM C	hebyshev UPL	644
	Gamma R	OS Statistics	with Extrap	olated Data			95% KM UPL (t)			321.9	
				Mean	116.8		90% Percentile (z)			271	
				Median	77				95%	6 Percentile (z)	314.2
				SD	122.2				99%	6 Percentile (z)	395.3
				k star	0.204						
				Theta star	573.6		Gamma R	OS Limits w	ith Extra	apolated Data	
				Nu star	15.48		95% Wilson	h Hilferty (WH	I) Approx	k. Gamma UPL	496.3
		95% Perc	entile of Ch	isquare (2k)	2.089	9	5% Hawkins	s Wixley (HW	 Approx 	k. Gamma UPL	665.6
					<mark>95% </mark>	WH Approx.	<mark>. Gamma UT</mark>	L with	95% Coverage	<mark>708.2</mark>	
			90%	6 Percentile	353.4	95%	HW Approx	. Gamma U	L with	95% Coverage	1049
			95%	6 Percentile	599.2						
			99%	6 Percentile	1274						
Note: DL/2	is not a red	commended	method.								

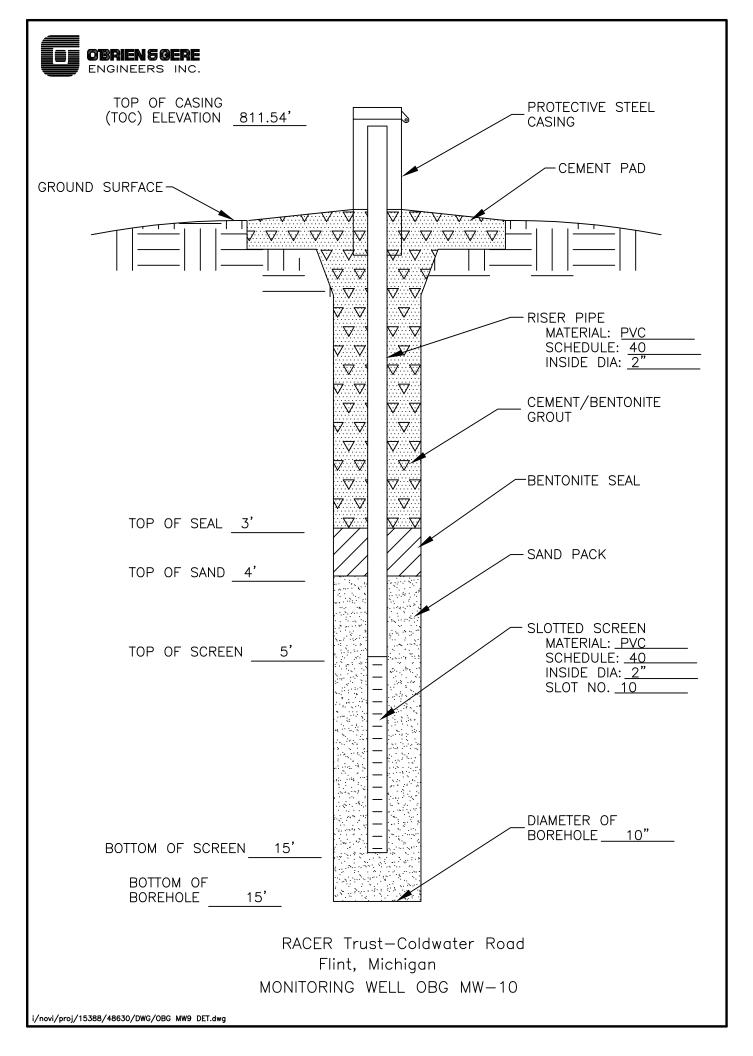
Pro-UCL Gamma Distribution Plot

	Goodness-	of-Fit Test	Statistics fo	r Data Sets	with Non-E	etects	L		
User Selected Options									
From File	Mn Data (C	urrent).wst							
Full Precision	OFF								
Confidence Coefficient	0.95								
Mn									
		Num Obs	Num Miss	Num Valid	Detects	NDs	% NDs		
Rav	w Statistics	38	0	38	31	7	18.42%		
		Number	Minimum	Maximum	Mean	Median	SD		
Statistics (Non-De	tects Only)	7	2.5	10	5.357	5	2.249		
Statistics (De	tects Only)	31	9	448	143.2	128	120.4		
Statistics (All: NDs treated as	DL value)	38	2.5	448	117.8	77	121.2		
Statistics (All: NDs treated as I		38	1.25	448	117.3	77	121.7		
Statistics (Normal ROS Estim	,	38	-210.3	448	93.35	77	153		
Statistics (Gamma ROS Estim	,	38	1.0000E-6	448	116.8	77	122.2		
Statistics (Lognormal ROS Estim	,	38	3.766	448	118.4	77	120.7		
· -	,								
		K Hat	K Star	Theta Hat	Log Mean	Log Stdv	Log CV		
Statistics (Det	ects Only)	1.215	1.136	117.9	4.499	1.119	0.249		
Statistics (N		0.747	0.705	157.8	3.967	1.526	0.385		
Statistics (NI	Ds = DL/2)	0.659	0.624	178.2	3.839	1.738	0.453		
Statistics (Gamma ROS I	Estimates)	0.202	0.204	578.1					
Statistics (Lognormal ROS I	Estimates)				4.052	1.397	0.345		
	-								
	Norm	al Distribut	ion Test Re	sults					
		No NDs	NDs = DL	NDs = DL/2	Normal ROS				
Correlation Co	pefficient R	0.947	0.925	0.926	0.988				
		Test value	Crit. (0.05)	Co	onclusion wi	th Alpha(0.0	5)		
Shapiro-Wilks (De	tects Only)	0.887	0.929	Data Not No		• •	,		
Lilliefors (De	• ·	0.14	0.159	Data Appea					
Shapiro-Wilks (• ·	0.844	0.938	Data Not No					
	NDs = DL)	0.171	0.144	Data Not No					
Shapiro-Wilks (N	,	0.848	0.938	Data Not No					
Lilliefors (N	,	0.17	0.144	Data Not No					
Shapiro-Wilks (Normal ROS	,	0.971	0.938	Data Appea					
Lilliefors (Normal ROS		0.106	0.144	Data Appea					
· · · · · ·	/			11.2					
	Gamr	na Distribu	tion Test Re	esults					
		No NDs	NDs = DL	NDs = DL/2	Samma ROS				
Correlation Co	pefficient R	0.979	0.972	0.967	0.872				
	-	-		-					
		Test value	Crit. (0.05)	Co	onclusion wi	th Alpha(0.0	5)		
Anderson-Darling (De	tects Onlv)	0.406	0.77			F(-10	,		
Kolmogorov-Smirnov (De	.,	0.123	0.162	Data Appea	ar Gamma D	istributed			
Anderson-Darling (0.717	0.789						
Kolmogorov-Smirnov (· · · · ·	0.121	0.149	Data Appea	n Gamma D	istributed			
			010						

Anderson-Darling (NDs = DL/2)	0.68	0.797			<u>.</u>		-	
Kolmogorov-Smirnov (NDs = DL/2)	0.126	0.15	Data Appea	ir Gamma D	istributed			
Anderson-Darling (Gamma ROS Estimates)	5.839	0.901						
Kolmogorov-Smirnov (Gamma ROS Est.)	0.291	0.158	Data Not Ga	amma Distri	buted			
		1						
Lognor	mal Distrib	ution Test I	Results					
	No NDs	NDs = DL	NDs = DL/2	Log ROS				
Correlation Coefficient R	0.97	0.963	0.953	0.967				
		1						
	Test value	Crit. (0.05)	Co	onclusion wi	th Alpha(0.0	5)		
Shapiro-Wilks (Detects Only)	0.926	0.929	Data Not Lo	gnormal				
Lilliefors (Detects Only)	0.16	0.159	Data Not Lo	gnormal				
Shapiro-Wilks (NDs = DL)	0.908	0.938	Data Not Lo	gnormal				
Lilliefors (NDs = DL)	0.152	0.144	Data Not Lo	gnormal				
Shapiro-Wilks (NDs = DL/2)	0.89	0.938	Data Not Lo	gnormal				
Lilliefors (NDs = DL/2)	0.155	0.144	Data Not Lo	gnormal				
Shapiro-Wilks (Lognormal ROS Estimates)	0.916	0.938	Data Not Lo	gnormal				
Lilliefors (Lognormal ROS Estimates)	0.148	0.144	Data Not Lo	gnormal				
Note: Substitution methods such as DL or DL	/2 are not i	ecommend	led.					

Appendix D Soil Boring Logs




	a	RDIEN	5 GERE		SOIL BORING LOG	REPORT	OF BOR	NG:	OBG M	W-9
			ERS, INC.		Boring Location: NW corner of Peregrine Property, near entrance gate to landfill	Surface Ele		AGE	<u>1</u> OF	1
PI	ROJE		RACER Trust Former WWTP I	nvestigation	Drilling equipment: Mini Sonic track-mounted ATV rig Sampling equipment: 4" x 5' sonic core	Northing: Easting:				
	PROJECT LOCATION: Coldwater Road Landfill, Flint FILE NO.: 15388/47850			Borehole Diameter: 6" Total Depth: 15 ft bg	Depth to ground water:					
	ING C	OMPANY: OREMAN:	Boart Longyear Walter Tidwell Mike Robison		Start date: 10/10/2011 Completion date: 10/10/2011	LEGEND:	/ Cem Sand			Screen Riser
DEPTH	O GE	CORE	PENETRATION/	Analytical Sample		STRATUM	Equipm	ent	Fie Tes	eld
BELOW	No.	INTERVAL (ft bg)		Interval (ft bg)	SAMPLE DESCRIPTION	GENERAL	-	a	PID Reading	USCS
0	1	0 - 5	5/5		Asphalt	_	/	/	I	
1					Olive grey, damp, silty CLAY, little fine to medium sand and medium gravel	2"	/	/	I	CL
							,	,	I	
2					-				0.0	
3					-				I	
5									I	
4					same as above, changes to olive brown, some medium gravel	4'			0.0	
	0	5 40	<i>c /c</i>			C 1			1	
5	2	5 - 10	5/5		Olive grey, moist-wet, soft sandy CLAY with organics (thin roots) same as above, wet	5'	===		I	CL
6					Olive grey, wet, silty SAND, little clay and small gravel	6'	===		0.0	SM
						7'	====		I	
7					Olive brown w/ orange mottling, damp, firm, silty CLAY, trace small gravel		===		1	CL
8							===		0.0	
									1	
9					-		===		1	
10	3	10 - 15	5/5				===		0.0	
							===		I	
11					same as above, stiff	11'	===		1	
12							===		0.0	
							===		1	
13							===		1	
14							===		0.0	
					same as above, changes to olive grey	14.5'			0.0	
15	4	15 - 20	5/5		EOB @ 15 ft bg				I	
16									I	
10									I	
17					-				I	
18									I	
									I	
19					-				I	
20									I	
20									I	
21									I	
									I	
22									I	
23									I	
									I	
24									I	
Notes:	י חום	MiniPast	eadings shows in	narte nor milli	I = Rackaround reading = 0.0 ppm	1	1 1	<u> </u>		<u>. </u>
	Monit	oring well	OBG MW-9 cons	tructed of 2" d	on. Background reading = 0.0 ppm. iameter schedule 40 PVC with 0.010" slot well screen extending from 5-15'. Well completed as sti	ck-up with pr	otective co	ver.		
<u> </u>										

GADE No No Processes 0 0 0.5 3 0 0.5 0		0	BDIEN	SGEPF		SOIL BORING LOG	REPORT	OF BORING:	OBG M	W-10
UNE NO Test Days Test Days Test Days Control of the target days Control of target days Contro Contro <td>P</td> <td></td> <td>CLIENT: CT NAME:</td> <td>RS, INC. RACER Trust Former WWTP I</td> <td></td> <td>approx. 100 ft south of OBG-MW-9 Drilling equipment: Mini Sonic track-mounted ATV rig Sampling equipment: 4" x 5' sonic core</td> <td>Northing: Easting:</td> <td>evation:</td> <td><u>1</u> OF</td> <td>1</td>	P		CLIENT: CT NAME:	RS, INC. RACER Trust Former WWTP I		approx. 100 ft south of OBG-MW-9 Drilling equipment: Mini Sonic track-mounted ATV rig Sampling equipment: 4" x 5' sonic core	Northing: Easting:	evation:	<u>1</u> OF	1
Deprine (marked (marked) Code (marked) (marked) Post (marked) (marked) Analytical (marked) (mbg) Analytical (mbg) BAME E GEGRIPTION Offen (marked) (mbg) Code (mbg) Code (mbg) Post (mbg) Total (mbg) Post (mbg) Post (mbg) <td>BOR</td> <td>ING C</td> <td>OMPANY:</td> <td>Boart Longyear</td> <td></td> <td>Start date: 10/10/2011</td> <td></td> <td>/ Cement/g</td> <td></td> <td></td>	BOR	ING C	OMPANY:	Boart Longyear		Start date: 10/10/2011		/ Cement/g		
0 1 0. 0. 5. 0.00 0.000	DEPTH BELOW		CORE INTERVAL	PENETRATION/ RECOVERY	Sample Interval	SAMPLE DESCRIPTION	CHANGE GENERAL	Equipment Installed	Fie Tes PID	ting USCS
I I					(ft bg)	Apphali	DESCRIPT		Reading	symbol
111 <th< td=""><td>0</td><td>1</td><td>0-5</td><td>5/5</td><td></td><td></td><td>2"</td><td></td><td></td><td>SM</td></th<>	0	1	0-5	5/5			2"			SM
Image: constraint of the series of	1							1 1		
Image: constraint of the series of	2								0.0	
I I <thi< th=""> I <thi< th=""> <thi< th=""></thi<></thi<></thi<>						-			0.0	
4 1	3									
i i	4					Moderate yellowish brown, moist, clayey SAND, little medium gravel	3.5'		0.0	SC
Image: Normal Sector Image: No	4					-			0.0	
6 1	5	2	5 - 10	5/5		same as above, wet	5'	===		
I I <thi< th=""> I I <thi< th=""></thi<></thi<>							CI.			014
1 1	6					Moderate yellowish brown, wet, very fine SAND, some slit, trace small gravel	6		0.0	SM
8 1 <th1< th=""> 1 1 1</th1<>	7							===		
Image: constraint of the second sec										
9 1	8								0.0	
10 3 10 - 15 5/5	9							1:1:1 1:1		
Image: constraint of the second se								===		
11 1	10	3	10 - 15	5/5		Moderate yellowish brown, damp, clayey SAND, trace small gravel	10'		0.0	SC
12 1	11					-				
1 1								===		
13 1	12						10.5		0.0	CI
14 Image: Second se	13		-			Unive gray, damp, mm, sity CLAT, ittle inne sand, trace small graver	12.5	1:1:1 1:1		UL
Indext of the set of the								===		
15 4 15-20 5/5 16 1 1 16 1 1 17 1 1 1 18 1 1 1 19 1 1 1 19 1 1 1 20 1 1 1 21 1 1 1 22 1 1 1 23 1 1 1 24 1 1 1 25 1 1 1 24 1 1 1 24 1 1 1 24 1 1 1 24 1 1 1 24 1 1 1 25 1 1 1 26 1 1 1 27 1 1 1 28 1 1 1 29 1 1 1 20 1	14					same as above, stiff	14'	===	0.0	
17 1 1 17 1 1 18 1 1 19 1 1 19 1 1 20 1 1 21 1 1 22 1 1 23 1 1 24 1 1 10 1 1 10 1 1 10 1 1 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 16 1 1 17 1 1 18 1 1 19 1 1 10 1 1 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 16 1	15	4	15 - 20	5/5		EOB @ 15 ft bg		····		
17 1 1 17 1 1 18 1 1 19 1 1 19 1 1 20 1 1 21 1 1 22 1 1 23 1 1 24 1 1 10 1 1 10 1 1 10 1 1 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 16 1 1 17 1 1 18 1 1 19 1 1 10 1 1 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 16 1										
18 1 18 1 19 1 19 1 10 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 10 1 11 1 16 <td< td=""><td>16</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	16									
18 1 18 1 19 1 19 1 10 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 10 1 11 1 16 <td< td=""><td>17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	17									
19 1 1 19 1 1 20 1 1 21 1 1 22 1 1 23 1 1 24 1 1 24 1 1 24 1 1 25 1 1 26 1 1 27 1 1 28 1 1 29 1 1 20 1 1 21 1 1 22 1 1 23 1 1 24 1 1 25 1 1 26 1 1 27 1 1 28 1 1 29 1 1 20 1 1 21 1 1 22 1 1 24 1 1 27 1										
Image: shown in parts per million. Background reading = 0.0 ppm.	18					4				
Image: shown in parts per million. Background reading = 0.0 ppm.	19					1				
1 1 1 21 1 1 21 1 1 22 1 1 23 1 1 24 1 1 24 1 1 24 1 1 25 1 1 26 1 1 27 1 1 28 1 1 29 1 1 20 1 1 21 1 1 23 1 1 24 1 1 27 1 1 28 1 1 29 1 1 20 1 1 21 1 1 22 1 1 24 1 1 27 1 1 28 1 1 29 1 1 20 1 1 20 1										
1 1 1 22 1 1 23 1 1 24 1 1 24 1 1 1 1 1	20					4				
1 1 1 22 1 1 23 1 1 24 1 1 24 1 1 1 1 1	21					1				
1 1 1 23 1 1 24 1 1 24 1 1 1 1 1 Notes: PID (MiniRae) readings shown in parts per million. Background reading = 0.0 ppm.										
24 1	22					4				
24 1	23					1				
Notes: PID (MiniRae) readings shown in parts per million. Background reading = 0.0 ppm.										
PID (MiniRae) readings shown in parts per million. Background reading = 0.0 ppm.	24					4				
	Notes:					1				I
							stick-up with p	protective cover		
			-			,				

Appendix E Monitoring Well Construction Details

Appendix F

Data Validation Report – November 1, 2011

To:	Tony Finch
From:	KA Storne
Re:	Data Validation Results for the RACER Coldwater Road Landfill Site - Sampling Performed November 2011

File:14774/47850.004.001Date:December 30, 2011

This data validation memorandum provides the data validation results for the groundwater samples collected for the Revitalizing Auto Communities Environmental Response Trust (RACER) at the Coldwater Road Landfill site located in Flint, Michigan. O'Brien & Gere conducted sample collection activities in November 2011.

CC:

The following table summarizes the analysis performed for this sampling event.

Parameter	Method	Reference				
Metals (Total and Dissolved Manganese)	USEPA Methods 3015A/200.8	1, 2				
Note: 1. USEPA. 2004. <i>Test Methods for Ev</i> Washington D.C.	aluating Solid Waste: Physical/Chemical Methods, SW-846, 3rd	d Edition, Update IIIB.				
2. USEPA. 2001. 40 CFR Part 136, App	USEPA. 2001. 40 CFR Part 136, Appendix A. Washington, D.C.					

Merit Laboratories, Inc. (Merit Labs) of East Lansing, Michigan performed the analyses. The laboratory package contained quality control analysis summary forms.

The list of samples that were submitted to the laboratory for this project is presented in Attachment A. Attachment B presents the specific data validation approach applied to data generated for this investigation. Attachment C presents the Laboratory QA/QC analyses definitions.

Full validation was performed for the samples collected for this sampling event.

The analytical data generated for this investigation were evaluated by O'Brien & Gere using the quality assurance/quality control (QA/QC) criteria presented in the method used by the laboratory and the following document for general guidance:

• O'Brien & Gere. 2007. *Quality Assurance Project Plan Former WWTP Coldwater Road Landfill, Flint Michigan (QAPP)*. Farmington Hills, Michigan.

Data affected by excursions from these QA/QC criteria are qualified using the following USEPA data validation guidance and professional judgment:

• USEPA. 2010. Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, EPA 540-R-10-011. Washington D.C.

The application of these validation guidelines has been modified to reflect the requirements of the methods utilized by Merit Labs.

The following parameters were reviewed in the validation for full validation:

December 29, 2011 Page 2

- Chain-of-custody record
- Sample collection
- Sample preservation
- Holding times
- Calibration
- Blank analysis
- Matrix spike/matrix spike duplicate (MS/MSD) analysis
- Field duplicate and co-located sample analysis
- Laboratory Control Sample (LCS) analysis
- Internal standard performance
- Target analyte quantitation and quantitation limits (QLs)
- Documentation completeness

The following sections of this memorandum present the results of the comparison of the analytical data to the QA/QC criteria specified above. Based on the data validation, an overall evaluation of data usability is also presented in the final section.

METALS DATA EVALUATION SUMMARY

The following QA/QC parameters were found to meet method and validation criteria or did not result in additional qualification of sample results:

- Chain-of-custody record
- Sample collection
- Sample preservation
- Holding times
- Calibration
- Blank analysis
- MS/MSD) analysis
- Field duplicate and co-located sample analysis
- LCS analysis
- Internal standard performance
- Documentation completeness

Deviations from QA/QC criteria were not identified during the validation process. Additional observations are summarized below.

I. Target analyte quantitation and QLs

Sample results were reported using diluted analyses due to elevated concentrations of target analytes and matrix interferences present in the samples.

DATA USABILITY

Overall data usability with respect to completeness for the final sample results reported is 100 percent for the metals data. The data are usable for qualitative and quantitative purposes. Based on the validation performed, the completeness goal of 95 percent was met for these analyses.

Sample cross reference	list				
Samples collected and s	ubmitted for data valida	ation			
Laboratory Name	Date Collected	Laboratory Identfication	Client Identification	Matrix	Analysis Requested
Merit Labs	11/4/2011	S50670.01	OBG MW - 10	Groundwater	Manganese, Manganese, Dissolved
Merit Labs	11/4/2011	\$50670.02	OBG MW - 10 MS	Groundwater	Manganese
Merit Labs	11/4/2011	\$50670.03	OBG MW - 10 MSD	Groundwater	Manganese
Merit Labs	11/4/2011	\$50670.04	OBG MW - 10 Co-located	Groundwater	Manganese
Merit Labs	11/4/2011	\$50670.05	DUP-1 [OBG MW-10]	Groundwater	Manganese
Merit Labs	11/4/2011	\$50670.06	OBG MW - 9	Groundwater	Manganese, Manganese, Dissolved
Merit Labs	11/4/2011	\$50670.07	OBG MW - 9 MS	Groundwater	Manganese, Dissolved
Merit Labs	11/4/2011	\$50670.08	OBG MW - 9 MSD	Groundwater	Manganese, Dissolved
Merit Labs	11/4/2011	\$50670.09	OBG MW - 9 Co-Located	Groundwater	Manganese, Dissolved
Merit Labs	11/4/2011	\$50670.10	DUP-2 [OBG ME-9]	Groundwater	Manganese, Dissolved
Merit Labs	11/4/2011	S50670.11	FB-1	Groundwater	Manganese

Note:

Merit Labs indicates Merit Laboratories of East Lansing, Michigan.

Sample in brackets indicates field duplicate location collected and submitted blind to the laboratory.

DUP indicates field duplicate.

MS, MSD indicates matrix spike, matrix spike duplicate.

Co-located samples are independent samples collected from the same location.

Laboratory Methods and Data Validation Approach	The O'Brien & Gere data validation approach utilizes the Project QAPP and <u>methods</u> applied by the laborator to evaluate data. USEPA National Functional Guidelines address data validation of Contract Laborator Program (CLP) methods. If excursions from the QAPP or <u>method</u> quality control requirements are identifier O'Brien & Gere applies a similar approach as used in the USEPA National Functional Guidelines to app
	validation qualifiers to the data associated with the excursions.
	The validation approach taken by O'Brien & Gere is a conservative one; qualifiers are applied to sample dat to indicate both major and minor excursions so that data associated with any type of excursion are identifie to the data user. Major excursions result in data being rejected (R), indicating that the data are considere unusable for either quantitative or qualitative purposes. Minor excursions result in sample data being qualified as approximate (J, UJ, JN) or non-detected (U) that is otherwise usable for quantitative or qualitative purposes.
General Validation Approach	Excursions are subdivided into excursions that are within the laboratory's control and those that are a result of site conditions. Excursions involving laboratory control sample recovery, calibration response, method blank excursions, low or high spike recovery due to inaccurate spiking solutions or poor instrument response holding times, interpretation errors, and quantitation errors are within the control of the laborator Excursions resulting from matrix spike recovery, serial dilution recovery, surrogate, and internal standard performance due to interference from the matrix of the samples are examples of those excursions that are due to site conditions and are not within the laboratory's control if the laboratory has followed proper method procedures, including performing appropriate cleanup techniques.
Applying professional	USEPA National Functional Guidelines allow professional judgment to be used when applying qualifiers in
judgment	some cases. When utilizing professional judgment, justification for actions taken will either be provided in th
	associated report or will be available upon request.
Mallalation Benerication	O'Brien & Gere Data Validation Approach based on:
Validation Parameter	 USEPA. 2010. Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, EPA 540-R-10-011. Washington D.C.
Validation Qualifiers – Inorganics	 J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the QL). J+ - The result is an approximate concentration, but the result may be biased high. J The result is an approximate concentration, but the result may be biased low. R - The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. UJ - The analyte was not detected at a level greater than or equal to the QL. However, the QL is approximate and may be inaccurate or imprecise.
Cooler Temperature	Results for samples submitted for organic and inorganic analyses that are impacted by coolers that did not contain ice, or if the ice melted upon receipt and the cooler temperatures are greater than 10°C, are qualifie as approximate (UJ, J). If samples are delivered to the laboratory the same day as sample collection and samples did not have sufficient time to reach 10°C, samples are not qualified, unless proper preservation was not provided for samples between sample collection and sample receipt at the laboratory. Results for samples received at ambient temperature involved in extended shipment-day issues may be rejected, applying professional judgment.
Holding Time for Inorganics	Detected results for samples improperly preserved (without appropriate chemical or temperature) are qualified as approximate, biased low (J ⁻) and non-detected results are <u>rejected (R)</u> , applying professional judgment. Non-detected and detected results for samples properly preserved and analyzed outside of but less than two times the holding time window established in the method or the QAPP for preparation and/or analysis are qualified as approximate, biased low (UJ, J ⁻). Non-detected results for samples properly preserved and analyzed greater than two times the holding time window for preparation and/or analysis are <u>rejected</u> (R). Detected results for samples properly preserved and analyzed greater than two times the holding time window for preparation and/or analysis are qualified as approximate, biased low (J ⁻).

O'Brien & Gere Data vali	idation approach using USEPA National Functional Guidelines for Non-Contract Laboratory Program Methods
Evaluation of Initial (ICV) and Calibration Verification (CCV) for Metals, Mercury and Inorganics	 Metals are evaluated using the criteria for ICV and CCV of 90% to 110% of the expected value. Mercury is evaluated using the criteria for ICV of 90% to 110% of the expected value and 80% to 120% of the expected value for the CCV. Total Cyanide is evaluated using the criteria for ICV and CCV of 85% to 115% of the expected value. For analyses utilizing a calibration curve, the correlation coefficient for the first or second order curve must be ≥ 0.995.
ICV and CCV Actions for Metals, Mercury, Cyanide and Inorganics	 For Metal and Mercury ICV and CCV recoveries outside of laboratory CLs: 1. Detected result associated with recovery of greater than upper CLs is qualified as approximate, biased high (J⁺). Non-detected result is not qualified. 2. Detected result associated with recovery of greater than or equal to 75% but less than the lower laboratory CL is qualified as approximate, biased low (J⁻). Non-detected result is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of less than 75% is qualified as approximate, biased low (J⁻). Non-detected result is <u>rejected (R)</u>. For Total Cyanide: 1. Detected result associated with recovery of greater than upper CLs is qualified as approximate, biased high (J⁺). Non-detected result is not qualified. 2. Detected result associated with recovery of greater than or equal to 70% but less than the lower laboratory CL is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of greater than or equal to 70% but less than the lower laboratory CL is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of greater than or equal to 70% but less than the lower laboratory CL is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of greater than or equal to 70% but less than the lower laboratory CL is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of less than 70% is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of less than 70% is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of less than 70% is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of less than 70% is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of less than 70% is qualified as approximate, biased low (J⁻). Non-det
ICP-MS Instrument Performance Evaluation	detected result is <u>rejected (R)</u> . ICP-MS data is evaluated using resolution of mass calibration of within 0.1 μ and the %RSD of less than 5%. If IP fails criteria, detected results are qualified as approximate (J) and non-detected results are qualified as approximate (UJ).
Evaluation of Internal Standards for ICP-MS	Internal standard recoveries are evaluated using control limits of percent relative intensity (%RI) from 60% to 125% of the response in the calibration blank. The results associated with internal standard %RI outside of CL, detected and non-detected results are qualified as approximate (J, UJ).
Metal and Inorganic MS/MSD, Laboratory/Field Duplicate, Serial Dilution	Qualification of sample results associated with MS/MSD, laboratory duplicate and field duplicate excursions is performed on samples for the same matrix, within the same preparation batch, within the same SDG group.
Evaluation of LCS Data for Metals and Inorganics	 To apply qualifiers if LCS result is outside of laboratory CLs or 80 to 120%: Aqueous and soil samples: 1. Detected result associated with a recovery of less than 50% is qualified as approximate, biased low (J⁻) and non-detected result is <u>rejected</u> (R). 2. Detected result associated with recovery between 50 and 79%, is qualified as approximate, biased low (J⁻). Non-detected result is qualified as approximate (UJ). 3. Detected result associated with recoveries of greater than upper CL is qualified as approximate, biased high (J⁺). 4. Detected result associated with recoveries of greater than 150% is <u>rejected</u> (R), applying professional judgment.

O'Brien & Gere Data vali	idation approach using USEPA National Functional Guidelines for Non-Contract Laboratory Program Methods
Evaluation of MS/MSD	To apply qualifiers if either MS or MSD result is outside of laboratory CL or 75 to 125% and if post-digestion spike evaluated for metals and post-distillation spike for Total Cyanide:
Data for Metals and Inorganics	Aqueous and soil sample:
	 Detected result associated with a recovery of less than 30% with a Post-Digestion spike recovery of less than 75% is qualified as approximate, biased low (J⁻) and non-detected result is <u>rejected</u> (R). Detected result associated with a recovery of less than 30% with a Post-Digestion spike recovery of greater than or equal to 75% is qualified as approximate (J) and non-detected result is qualified as approximate (UJ). Detected result associated with a recovery of 30% to 74% with a Post-Digestion spike recovery of less than 27% is qualified as approximate (UJ).
	 75% is qualified as approximate, biased low (J⁻) and non-detected result is qualified as approximate (UJ). 4. Detected result associated with a recovery of 30% to 74% with a Post-Digestion spike recovery of greater than 75% is qualified as approximate (J) and non-detected result is qualified as approximate (UJ). 5. Detected result associated with a recovery of greater than 125% with a Post-Digestion spike recovery of greater than 125% is qualified as approximate, biased high (J⁺).
	6. Detected result associated with a recovery of greater than 125% with a Post-Digestion spike recovery of less than or equal to 125% is qualified as approximate (J).
	 7. Detected result associated with a recovery of less than 30% without a Post-Digestion spike is qualified as approximate, biased low (J⁻) and non-detected result is <u>rejected</u> (R). 8. Detected result associated with a recovery of 30% to 74% without a Post-Digestion spike is qualified as
	approximate, biased low (J ^{\circ}) and non-detected result is qualified as approximate (UJ). 9. Detected result associated with a recovery of greater than 125% without a Post-Digestion spike is qualified as approximate, biased high (J ^{\circ}).
Evaluation of Laboratory Duplicate for Metals and Mercury	To apply qualifiers if laboratory duplicate results are outside of RPD or difference criteria: Aqueous and soil sample with sample and duplicate values <u>both</u> greater than or equal to 5 times the QL: 1. Detected result greater than or equal to the QL, associated with an RPD of greater than 20 is qualified as approximate (J) and non-detected result is qualified as approximate (UJ).
	Aqueous and soil sample when <u>either detected</u> sample or duplicate value is less than 5 times the QL: 1. Detected results with absolute difference greater than two times the QL are qualified as approximate (J). Non-detected results are qualified as approximate (UJ).
	Metals are evaluated using the criteria for ICSA (Interferents) and ICSAB (Interferents and analytes) of ± two times the QL and of 80% to 120% of the expected value. For ICSA and ICSAB outside of CLs:
Interference Check Sample (ICS) Evaluation	1. For recovery outside the upper CLs or for potential false positives (+two times the QL), detected results are qualified as approximate, biased high (J^{\dagger}) .
and Actions for Metals	2. For recovery outside the lower CLs but greater than 50% or potential false negatives (- two times the QL), detected results are qualified as approximate, biased low (J ⁻). Non-detected result is qualified as approximate (UJ).
	3. For recovery less than 50%, detected results are qualified as approximate, biased low (J ⁻). Non-detected result is <u>rejected (R)</u> .
Evaluation of Field Duplicate for Metals and Mercury	Field duplicate data are evaluated against relative percent difference (RPD) criteria of less than 50 percent for aqueous samples and less than 100 percent for soils when both results are greater than or equal to five times the QL. When one field duplicate result is less than five times the QL, a control limit of plus or minus two times the QL (difference criterion) is applied. If RPDs or differences are outside of criterion, detected and non-detected results are qualified as approximate (UJ, J) to indicate minor excursions.
Evaluation of Metal and Mercury Blank Data	 For calibration blanks and preparation blanks at concentrations greater than or equal to the laboratory MDLs but less than or equal to QLs: 1. Concentration in the associated samples of greater than or equal to the MDLs but less than or equal to QLs are revised to the QL level and qualified as non-detected (U).
	For calibration blanks, preparation blanks and field blanks at concentrations greater than laboratory QLs: 1. Concentrations in the associated samples of greater than or equal to the MDLs but less than or equal to QLs are revised to the QL level and are qualified as non-detected (U).
	2. Concentration in the associated samples of greater than the QLs and less than the blank concentration are <u>rejected</u> (R) or qualified as non-detected (U), applying professional judgment.
	For calibration blanks and preparation blanks at concentrations equal to or between the negative value of the MDL and the QL: 1. Detects in the associated samples are qualified as approximate, biased low (J ⁻) and non-detects are
	qualified as approximate (UJ).

O'Brien & Gere Data vali	dation approach using USEPA National Functional Guidelines for Non-Contract Laboratory Program Methods
Evaluation of ICP Serial Dilution Data for Metals	Serial dilution results are evaluated for data with initial sample concentrations that are greater than 50 times the MDL. If the percent difference is greater than 10%, detected sample results are qualified as approximate (J) and non-detected results are qualified as approximate (UJ).
Source O'Brien & Gere	

0.1/0.0 T	Laboratory QA/QC analyses definitions.
QA/QC Term	Definition
Accuracy	The closeness or agreement of the observed value or test response to the true or acceptable reference value or the test response from a reference method. It is influenced by both random error (precision) and systematic error (bias). The terms "bias" and "precision" are often used in lieu of "accuracy".
Precision	A measure of mutual agreement between two or more individual measurements of the same property, obtained under similar conditions.
Representativeness	A measure of the degree to which data accurately and precisely characterize a population; the correspondence between the analytical result and the actual quality or condition experienced by a contaminant receptor.
Sensitivity	The capability of a method or instrument to discriminate between measurement responses representing different levels of a variable of interest.
Completeness	A measure of the amount of valid data obtained from a measurement system as compared to the planned amount, usually expressed as a percentage; also a measure of the degree to which the sampling scheme represents the available range in something, regardless of what was planned.
Detection limit	The lowest concentration or amount of the target analyte that can be determined to be different from zero by a single measurement at a stated level of probability.
Quantitation limit	The level above which numerical results may be obtained with a specified degree of confidence; the minimum concentration of an analyte in a specific matrix that can be identified and quantified above the method detection limit and within specified limits of precision and bias during routine analytical operating conditions.
Method detection limit	The minimum concentration of an analyte that undergoes preparation similar to the environmental samples and can be reported with a stated level of confidence that the analyte concentration is greater than zero.
Instrument detection limit	The lowest concentration of a metal target analyte that, when directly inputted and processed on a specific analytical instrument, produces a signal/response that is statistically distinct from the signal/response arising from equipment "noise" alone.
Gas chromatography/mass spectrometry (GC/MS) instrument performance check	Performed to verify mass resolution, identification, and to some degree, instrument sensitivity. These criteria are not sample specific; conformance is determined using standard materials.
Control limits	The variation in a process data set expressed as plus/minus standard deviations from the mean, generally placed on a chart to indicate the upper and lower acceptable ranges of process data and to judge whether the process is in or out of statistical limitations.
Calibration	Compliance requirements for satisfactory instrument calibration are established to verify that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of analysis and calibration verifications document satisfactory maintenance and adjustment of the instrument on a day-to-day basis.
Relative Response Factor	A measure of the relative mass spectral response of an analyte compared to its internal standard. Relative Response Factors are determined by analysis of standards and are used in the calculation of concentrations of analytes in samples.
Relative standard deviation	The standard deviation divided by the mean; a unit-free measure of variability.
Correlation coefficient	A measure of the strength of the relationship between two variables.
Relative Percent Difference	Used to compare two values; the relative percent difference is based on the mean of the two values, and is reported as an absolute value, i.e., always expressed as a positive number or zero.
Percent Difference	Used to compare two values; the percent difference indicates both the direction and the magnitude of the comparison, i.e., the percent difference may be either negative, positive, or zero.
Drift	The deviation in instrument response from its set or reference value over a period of time.
Percent Recovery	The act of determining whether or not the methodology measures all of the target analytes contained in a sample.
Blanks	Several types of blanks are analyzed by the laboratory. Corrective action procedures are implemented for blank analyses if target compounds are detected at concentrations greater than the method criteria. The criteria for evaluation of blanks apply to any blank associated with a group of samples. If problems with a blank exist, data associated with the project are evaluated to determine whether or not there is an inherent variability in the data for the project or if the problem is an isolated occurrence not affecting other data.
Reagent blank	Consists of laboratory target analyte-free water and any reagents added to a sample during analysis. This type of blank is analyzed to evaluate whether contamination occurred during the analysis of the sample due to reagent contamination. A reagent blank is usually analyzed following highly contaminated samples to assess the potential for cross-contamination during analysis.
Instrument blank	Consists of clean solvent spiked with the surrogates and analyzed on each GC column and instrument used for sample analysis by GC. This type of blank is analyzed to evaluate whether contamination occurred during the analysis of the sample due to instrument contamination.
Calibration blank	Consists of acids and reagent water used to prepare metal samples for analysis. This type of blank is analyzed to evaluate whether contamination is occurring during the preparation and analysis of the sample.
Method blank	A water or soil blank that undergoes the preparation procedures applied to a sample (i.e., extraction, digestion, clean-up). These samples are analyzed to examine whether sample preparation, clean-up,

	Laboratory QA/QC analyses definitions.
	and analysis techniques result in sample contamination.
Field/equipment	Collected and submitted for laboratory analysis, where appropriate. Field/equipment blanks ar handled in the same manner as environmental samples. Equipment/field blanks are analyzed t assess contamination introduced during field sampling procedures.
Trip blank	Consist of samples of analyte-free water that have undergone shipment from the sampling site to the laboratory in coolers with the environmental samples submitted for volatile organic compound (VOC analysis. Trip blanks will be analyzed for VOCs to determine if contamination has taken place durin sample handling and/or shipment. Trip blanks will be utilized at a frequency of one each per cooler sent to the laboratory for VOC analysis.
Storage blank	Consists of sample vials filled with laboratory analyte-free water. The vials are stored at the laborator with the samples collected for VOC analysis, under the same conditions as the samples. The storag blank is analyzed with the VOC samples to evaluate for contamination due to sample storage.
Internal standards performance	Compounds not found in environmental samples which are spiked into samples and quality control samples at the time of sample preparation for organic analyses. Internal standards must meet retention time and recovery criteria specified in the analytical method. Internal standards are used a the basis for quantitation of the target analytes.
Surrogate recovery	Compounds similar in nature to the target analytes but not expected to be detected in th environmental media which are spiked into environmental samples, blanks, and quality control sample prior to sample preparation for organic analyses. Surrogates are used to evaluate analytical efficience by measuring recovery.
Laboratory control sample Matrix spike blank analyses	Standard solutions that consist of known concentrations of the target analytes spiked into laborator analyte-free water or sand. They are prepared or purchased from a certified manufacturer from source independent from the calibration standards to provide an independent verification of th calibration procedure. They are prepared and analyzed following the same procedures employed for environmental sample analysis to assess method accuracy independently of sample matrix effects.
Laboratory duplicate	Two or more representative portions taken from one homogeneous sample by the analyst an analyzed in the same laboratory.
Matrix	The material of which the sample is composed or the substrate containing the analyte of interest, suc as drinking water, waste water, air, soil/sediment, biological material.
Matrix Spike (MS)	An aliquot of a matrix (water or soil) fortified (spiked) with known quantities of specific target analyte and subjected to the entire analytical procedure in order to indicate the appropriateness of the metho for the matrix by measuring recovery.
Matrix spike duplicate (MSD)	A second aliquot of the same matrix as the matrix spike that is spiked in order to determine th precision of the method.
Retention time	The time a target analyte is retained on a GC column before elution. The identification of a target analyte is dependent on a target compound's retention time falling within the specified retention time window established for that compound.
Relative retention time	The ratio of the retention time of a compound to that of a standard.
Resolution	The separation between peaks on a chromatogram.
Interference	An element, compound, or other matrix effect present in a sample which disturbs the detection of target analyte leading to inaccurate concentration results for the target analyte.
Raw data	The documentation generated during sampling and analysis which includes, but is not limited to, fiel notes, hardcopies of electronic data, disks, un-tabulated sample results, QC sample results, printouts or chromatograms, instrument outputs, and handwritten notes.

Lab Sample ID: S50670.01 Sample Tag: OBG MW - 10 Collected Date/Time: 11/04/2011 10:45 Matrix: Groundwater COC Reference: 65159

Sample Containers

Sai	Tiple Containers								
#	Туре	Preservative(s)		Refrigerated	?/ Arrival Te	emp. (C) Ther	mometer #		
2	125ml Plastic	HNO3		Yes	4.6	IR			
An	alysis		Results	Units	RL	Method	Run Date/Time	Analyst CAS #	Flags
Ex	traction / Prep.								
Ме	tal Digestion		Completed			3015A	11/11/11 09:00	PER	
Me	tal Digestion		Completed			3015A	11/11/11 09:00	PER	
Me	tals								
Ma	nganese, Dissolved		3.56	mg/L	0.05	200.8	11/11/11 12:45	PER 7439-96-	5
Ма	nganese		3.69	mg/L	0.05	200.8	11/11/11 12:16	PER 7439-96-	5

1:25

Lab Sample ID: S50670.02 Sample Tag: OBG MW - 10 MS Collected Date/Time: 11/04/2011 10:45 Matrix: Groundwater COC Reference: 65159

# Туре	Preservative(s)	Refrigerated?	Arrival Te	mp. (C)	Thermometer #	
1 125ml Plastic	HNO3	Yes	4.6		IR	
Analysis	Result	s Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Extraction / Prep.						
Metal Digestion	Compl	eted		3015A	11/11/11 09:00	PER
Metals						
Manganese	4.91	mg/L	0.05	200.8	11/11/11 12:18	PER 7439-96-5

Lab Sample ID: S50670.03 Sample Tag: OBG MW - 10 MSD Collected Date/Time: 11/04/2011 10:45 Matrix: Groundwater COC Reference: 65159

Sample Containers

#	Туре	Preservative(s)		Refrigerated?	Arrival Tem	ip. (C) Tł	hermometer #		
1	125ml Plastic	HNO3		Yes	4.6	IR	3		
Ana	alysis		Results	Units	RL	Method	Run Date/Time	Analyst CAS #	Flags
Ex	traction / Prep.								
Me	tal Digestion		Completed			3015A	11/11/11 09:00	PER	
Me	tals								
Ma	nganese		4.88	mg/L	0.05	200.8	11/11/11 12:20	PER 7439-96-5	

6

Lab Sample ID: S50670.04 Sample Tag: OBG MW - 10 Co-located Collected Date/Time: 11/04/2011 10:45 Matrix: Groundwater COC Reference: 65159

1.

#	Туре	Preservative(s)		Refrigerated?	Arrival Terr	np. (C) Thermor	neter#	
1	125ml Plastic	HNO3		Yes	4.6	IR		
Ana	alysis		Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Ext	traction / Prep.							
Me	tal Digestion		Completed			3015A	11/11/11 09:00	PER
Me	tals							
Ма	nganese		3.66	mg/L	0.05	200.8	11/11/11 12:21	PER 7439-96-5

Lab Sample ID: S50670.05 Sample Tag: DUP-1 Collected Date/Time: 11/04/2011 00:01 Matrix: Groundwater COC Reference: 65159

1:26

# Туре	Preservative(s)	Refrigerated?	Arrival 7	Temp. (C)	Thermometer #	
1 125ml Plastic	HNO3	Yes	4.6		IR	
Analysis	Results	Units	RL_	Method	Run Date/Time	Analyst_CAS # Flags
Extraction / Prep. Metal Digestion	Completed			3015A	11/11/11 09:00	PER
<i>Metals</i> Manganese	3.71	mg/L	0.05	200.8	11/11/11 12:23	PER 7439-96-5

Lab Sample ID: S50670.06 Sample Tag: OBG MW - 9 Collected Date/Time: 11/04/2011 12:30 Matrix: Groundwater COC Reference: 65159

1:5

# Ty	уре	Preservative(s)		Refrigerated?	Arrival T	emp. (C)	Thermometer	er#			
2 12	25m) Plastic	HNO3		Yes	4.6		IR				
Analysis			Results	Units	RL	Method	R	un Date/Time	Analys	Analyst CAS #	
Extract	tion / Prep.		_								
Metal D	Digestion		Completed			3015A	1	1/11/11 09:00	PER		
Metal D	Digestion		Completed			3015A	1	1/11/11 09:00	PER		
Metals	;										
Mangar	nese, Dissolved		0.570	mg/L	0.005	200.8	1	1/11/11 12:47	PER	7439-96-5	
Mangar	nese		0.565	mg/L	0.005	200.8	1	1/11/11 12:44	PER	7439-96-5	

Lab Sample ID: S50670.07 Sample Tag: OBG MW - 9 MS Collected Date/Time: 11/04/2011 12:30 Matrix: Groundwater COC Reference: 65159

1:6

# Туре	Preservative(s)	Refrigerated?	Arrival T	emp. (C) T	hermometer #	
1 125ml Plastic	HNO3	Yes	4.6	IF	२	
Analysis	Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Extraction / Prep.						
Metal Digestion	Completed			3015A	11/11/11 09:00	PER
Metals						
Manganese, Dissolved	0.820	mg/L	0.005	200.8	11/11/11 12:49	PER 7439-96-5

Lab Sample ID: S50670.08 Sample Tag: OBG MW - 9 MSD Collected Date/Time: 11/04/2011 12:30 Matrix: Groundwater COC Reference: 65159

1:6

# Туре	Preservative(s)		Refrigerated?	Arrival T	emp. (C)	Thermometer #	
1 125ml Plastic	HNO3		Yes	4.6		IR	
Analysis		Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Extraction / Prep. Metal Digestion		Completed			3015A	11/11/11 09:00	PER
<i>Metals</i> Manganese, Dissolv	ed	0.823	mg/L	0.005	200.8	11/11/11 12:50	PER 7439-96-5

Lab Sample ID: S50670.09 Sample Tag: OBG MW - 9 Co-Located Collected Date/Time: 11/04/2011 12:30 Matrix: Groundwater COC Reference: 65159

1:5

#	Туре	Preservative(s)		Refrigerated?	Arrival Ter	np. (C)	Thermometer #	
1	125ml Plastic	HNO3		Yes	4.6		IR	
An	alysis		Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Ex	traction / Prep.							
Me	tal Digestion		Completed			3015A	11/11/11 09:00	PER
Me	tals							
Ma	nganese, Dissolved		0.574	mg/L	0.005	200.8	11/11/11 12:52	PER 7439-96-5

Lab Sample ID: S50670.10 Sample Tag: DUP-2 Collected Date/Time: 11/04/2011 00:01 Matrix: Groundwater COC Reference: 65159

#	Туре	Preservative(s)		Refrigerated?	Arrival Ter	np. (C)	Thermometer #		
1	125ml Plastic	HNO3		Yes	4.6		IR		
An	alysis		Results	Units	RL	Method	Run_Date/Time	Analyst CAS # Flag	s
Ex	traction / Prep.			-					
Me	etal Digestion		Completed			3015A	11/11/11 09:00	PER	
Me	etals								
Ma	anganese, Dissolved		0.577	mg/L.	0.005	200.8	11/11/11 12:53	PER 7439-96-5	

Lab Sample ID: S50670.11 Sample Tag: FB-1 Collected Date/Time: 11/04/2011 13:00 Matrix: Groundwater COC Reference: 65159

1:2

#	Туре	Preservative(s)		Refrigerated?	Arrival Ten	np. (C)	Thermometer #	
1	125ml Plastic	HNO3	_	Yes	4.6		IR	
Ana	alysis		Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Ext	traction / Prep.							
Me	tal Digestion		Completed			3015A	11/11/11 09:00	PER
Me	tals							
Mai	nganese		Not detected	mg/L	0.005	200.8	11/11/11 12:13	PER 7439-96-5
Mai	nganese		Not detected	mg/L	0.005	200.8	11/11/11 12:13	PER 7439-96-5

Appendix G Data Validation Report – April 5, 2012

To:	Tony Finch
From:	KA Storne
Re:	Data Validation Results for the RACER Coldwater Road Landfill Site - Sampling Performed April 2012
File:	14774/48630.004.001

Date: May 16, 2012

This data validation memorandum provides the data validation results for the groundwater samples collected for the Revitalizing Auto Communities Environmental Response Trust (RACER) at the Coldwater Road Landfill site located in Flint, Michigan. O'Brien & Gere conducted sample collection activities in April 2012.

CC:

The following table summarizes the analysis performed for this sampling event.

Parameter	Method	Reference		
Metals (Total and Dissolved Manganese)	USEPA Methods 3015A/200.8	1, 2		
Note:				
 USEPA. 2004. Test Methods for Evo Washington D.C. 	aluating Solid Waste: Physical/Chemical Methods, SW	-846, 3rd Edition, Update IIIB.		
2. USEPA. 2001. 40 CFR Part 136, Appe	USEPA. 2001. 40 CFR Part 136, Appendix A. Washington, D.C.			

Merit Laboratories, Inc. (Merit Labs) of East Lansing, Michigan performed the analyses. The laboratory package contained quality control analysis summary forms.

The list of samples that were submitted to the laboratory for this project is presented in Attachment A. Attachment B presents the specific data validation approach applied to data generated for this investigation. Attachment C presents the Laboratory QA/QC analyses definitions.

Full validation was performed for the samples collected for this sampling event.

The analytical data generated for this investigation were evaluated by O'Brien & Gere using the quality assurance/quality control (QA/QC) criteria presented in the method used by the laboratory and the following document for general guidance:

• O'Brien & Gere. 2007. *Quality Assurance Project Plan Former WWTP Coldwater Road Landfill, Flint Michigan (QAPP)*. Farmington Hills, Michigan.

Data affected by excursions from these QA/QC criteria are qualified using the following USEPA data validation guidance and professional judgment:

• USEPA. 2010. Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, EPA 540-R-10-011. Washington D.C.

The application of these validation guidelines has been modified to reflect the requirements of the methods utilized by Merit Labs.

The following parameters were reviewed in the validation for full validation:

May 16, 2012 Page 2

- Chain-of-custody record
- Sample collection
- Sample preservation
- Holding times
- Calibration
- Blank analysis
- Matrix spike/matrix spike duplicate (MS/MSD) analysis
- Field duplicate and co-located sample analysis
- Laboratory Control Sample (LCS) analysis
- Internal standard performance
- Target analyte quantitation and quantitation limits (QLs)
- Documentation completeness

The following sections of this memorandum present the results of the comparison of the analytical data to the QA/QC criteria specified above. Based on the data validation, an overall evaluation of data usability is also presented in the final section.

METALS DATA EVALUATION SUMMARY

The following QA/QC parameters were found to meet method and validation criteria or did not result in additional qualification of sample results:

- Chain-of-custody record
- Sample collection
- Sample preservation
- Holding times
- Calibration
- Blank analysis
- MS/MSD analysis
- Field duplicate and co-located sample analysis
- LCS analysis
- Internal standard performance
- Documentation completeness

Deviations from QA/QC criteria were not identified during the validation process. Additional observations are summarized below.

I. Target analyte quantitation and QLs

Sample results were reported using diluted analyses due to elevated concentrations of target analytes and matrix interferences present in the samples.

DATA USABILITY

Overall data usability with respect to completeness for the final sample results reported is 100 percent for the metals data. The data are usable for qualitative and quantitative purposes. Based on the validation performed, the completeness goal of 95 percent was met for these analyses.

Sample cross reference list

	Date	Laboratory			
Laboratory Name	Collected	Identification	Client Identification	Matrix	Analysis Requested
Merit	4/5/2012	\$52100.01	OBG MW-10, MS/MSD	Groundwater	Total and Dissolved Manganese
Merit	4/5/2012	S52100.04	OBG MW-10 Co-located	Groundwater	Total Manganese
Merit	4/5/2012	S52100.05	DUP-1 [OBG MW-10]	Groundwater	Total Manganese
Merit	4/5/2012	\$52100.06	O"BG MW-9, MS/MSD	Groundwater	Total and Dissolved Manganese
Merit	4/5/2012	\$52100.09	OBG MW-9 Co-located	Groundwater	Dissolved Manganese
Merit	4/5/2012	S52100.10	DUP-2 [OBG MW-9]	Groundwater	Dissolved Manganese
Merit	4/5/2012	S52100.11	FB-1	Aqueous	Total Manganese

Note:

Merit indicates Merit Laboratories located in East Lansing, Michigan.

MS/MSD indicates matrix spike/matrix spike duplicate analyses.

DUP inidicates duplicate sample.

The sample identification utilized for field duplicate is shown in brackets.

Co-located samples are independent samples collected from the same location using same collection methods for the environmental sample.

Laboratory Methods and Data Validation Approach	The O'Brien & Gere data validation approach utilizes the Project QAPP and <u>methods</u> applied by the laborator to evaluate data. USEPA National Functional Guidelines address data validation of Contract Laborator Program (CLP) methods. If excursions from the QAPP or <u>method</u> quality control requirements are identifier O'Brien & Gere applies a similar approach as used in the USEPA National Functional Guidelines to app
	validation qualifiers to the data associated with the excursions.
	The validation approach taken by O'Brien & Gere is a conservative one; qualifiers are applied to sample dat to indicate both major and minor excursions so that data associated with any type of excursion are identifie to the data user. Major excursions result in data being rejected (R), indicating that the data are considere unusable for either quantitative or qualitative purposes. Minor excursions result in sample data being qualified as approximate (J, UJ, JN) or non-detected (U) that is otherwise usable for quantitative or qualitative purposes.
General Validation Approach	Excursions are subdivided into excursions that are within the laboratory's control and those that are a result of site conditions. Excursions involving laboratory control sample recovery, calibration response, method blank excursions, low or high spike recovery due to inaccurate spiking solutions or poor instrument respons holding times, interpretation errors, and quantitation errors are within the control of the laborator Excursions resulting from matrix spike recovery, serial dilution recovery, surrogate, and internal standar performance due to interference from the matrix of the samples are examples of those excursions that and due to site conditions and are not within the laboratory's control if the laboratory has followed proper method procedures, including performing appropriate cleanup techniques.
Applying professional	USEPA National Functional Guidelines allow professional judgment to be used when applying qualifiers in
judgment	some cases. When utilizing professional judgment, justification for actions taken will either be provided in th
	associated report or will be available upon request.
Mallalation Benerication	O'Brien & Gere Data Validation Approach based on:
Validation Parameter	 USEPA. 2010. Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, EPA 540-R-10-011. Washington D.C.
Validation Qualifiers – Inorganics	 J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the QL). J+ - The result is an approximate concentration, but the result may be biased high. J The result is an approximate concentration, but the result may be biased low. R - The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. UJ - The analyte was not detected at a level greater than or equal to the QL. However, the QL is approximate and may be inaccurate or imprecise.
Cooler Temperature	Results for samples submitted for organic and inorganic analyses that are impacted by coolers that did not contain ice, or if the ice melted upon receipt and the cooler temperatures are greater than 10°C, are qualifie as approximate (UJ, J). If samples are delivered to the laboratory the same day as sample collection and samples did not have sufficient time to reach 10°C, samples are not qualified, unless proper preservation was not provided for samples between sample collection and sample receipt at the laboratory. Results for samples received at ambient temperature involved in extended shipment-day issues may be rejected, applying professional judgment.
Holding Time for Inorganics	Detected results for samples improperly preserved (without appropriate chemical or temperature) are qualified as approximate, biased low (J ⁻) and non-detected results are <u>rejected (R)</u> , applying professional judgment. Non-detected and detected results for samples properly preserved and analyzed outside of but less than two times the holding time window established in the method or the QAPP for preparation and/or analysis are qualified as approximate, biased low (UJ, J ⁻). Non-detected results for samples properly preserved and analyzed greater than two times the holding time window for preparation and/or analysis are <u>rejected</u> (R). Detected results for samples properly preserved and analyzed greater than two times the holding time window for preparation and/or analysis are qualified as approximate, biased low (J ⁻).

O'Brien & Gere Data vali	idation approach using USEPA National Functional Guidelines for Non-Contract Laboratory Program Methods
Evaluation of Initial (ICV) and Calibration Verification (CCV) for Metals, Mercury and Inorganics	 Metals are evaluated using the criteria for ICV and CCV of 90% to 110% of the expected value. Mercury is evaluated using the criteria for ICV of 90% to 110% of the expected value and 80% to 120% of the expected value for the CCV. Total Cyanide is evaluated using the criteria for ICV and CCV of 85% to 115% of the expected value. For analyses utilizing a calibration curve, the correlation coefficient for the first or second order curve must be ≥ 0.995.
ICV and CCV Actions for Metals, Mercury, Cyanide and Inorganics	 For Metal and Mercury ICV and CCV recoveries outside of laboratory CLs: 1. Detected result associated with recovery of greater than upper CLs is qualified as approximate, biased high (J⁺). Non-detected result is not qualified. 2. Detected result associated with recovery of greater than or equal to 75% but less than the lower laboratory CL is qualified as approximate, biased low (J⁻). Non-detected result is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of less than 75% is qualified as approximate, biased low (J⁻). Non-detected result is <u>rejected (R)</u>. For Total Cyanide: 1. Detected result associated with recovery of greater than upper CLs is qualified as approximate, biased high (J⁺). Non-detected result is not qualified. 2. Detected result associated with recovery of greater than or equal to 70% but less than the lower laboratory CL is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of greater than or equal to 70% but less than the lower laboratory CL is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of greater than or equal to 70% but less than the lower laboratory CL is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of greater than or equal to 70% but less than the lower laboratory CL is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of less than 70% is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of less than 70% is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of less than 70% is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of less than 70% is qualified as approximate, biased low (J⁻). Non-detected result associated with recovery of less than 70% is qualified as approximate, biased low (J⁻). Non-det
ICP-MS Instrument Performance Evaluation	detected result is <u>rejected (R)</u> . ICP-MS data is evaluated using resolution of mass calibration of within 0.1 μ and the %RSD of less than 5%. If IP fails criteria, detected results are qualified as approximate (J) and non-detected results are qualified as approximate (UJ).
Evaluation of Internal Standards for ICP-MS	Internal standard recoveries are evaluated using control limits of percent relative intensity (%RI) from 60% to 125% of the response in the calibration blank. The results associated with internal standard %RI outside of CL, detected and non-detected results are qualified as approximate (J, UJ).
Metal and Inorganic MS/MSD, Laboratory/Field Duplicate, Serial Dilution	Qualification of sample results associated with MS/MSD, laboratory duplicate and field duplicate excursions is performed on samples for the same matrix, within the same preparation batch, within the same SDG group.
Evaluation of LCS Data for Metals and Inorganics	 To apply qualifiers if LCS result is outside of laboratory CLs or 80 to 120%: Aqueous and soil samples: 1. Detected result associated with a recovery of less than 50% is qualified as approximate, biased low (J⁻) and non-detected result is <u>rejected</u> (R). 2. Detected result associated with recovery between 50 and 79%, is qualified as approximate, biased low (J⁻). Non-detected result is qualified as approximate (UJ). 3. Detected result associated with recoveries of greater than upper CL is qualified as approximate, biased high (J⁺). 4. Detected result associated with recoveries of greater than 150% is <u>rejected</u> (R), applying professional judgment.

O'Brien & Gere Data vali	idation approach using USEPA National Functional Guidelines for Non-Contract Laboratory Program Methods
Evaluation of MS/MSD	To apply qualifiers if either MS or MSD result is outside of laboratory CL or 75 to 125% and if post-digestion spike evaluated for metals and post-distillation spike for Total Cyanide:
Data for Metals and Inorganics	Aqueous and soil sample:
	 Detected result associated with a recovery of less than 30% with a Post-Digestion spike recovery of less than 75% is qualified as approximate, biased low (J⁻) and non-detected result is <u>rejected</u> (R). Detected result associated with a recovery of less than 30% with a Post-Digestion spike recovery of greater than or equal to 75% is qualified as approximate (J) and non-detected result is qualified as approximate (UJ). Detected result associated with a recovery of 30% to 74% with a Post-Digestion spike recovery of less than 27% is qualified as approximate (UJ).
	 75% is qualified as approximate, biased low (J⁻) and non-detected result is qualified as approximate (UJ). 4. Detected result associated with a recovery of 30% to 74% with a Post-Digestion spike recovery of greater than 75% is qualified as approximate (J) and non-detected result is qualified as approximate (UJ). 5. Detected result associated with a recovery of greater than 125% with a Post-Digestion spike recovery of greater than 125% is qualified as approximate, biased high (J⁺).
	6. Detected result associated with a recovery of greater than 125% with a Post-Digestion spike recovery of less than or equal to 125% is qualified as approximate (J).
	 7. Detected result associated with a recovery of less than 30% without a Post-Digestion spike is qualified as approximate, biased low (J⁻) and non-detected result is <u>rejected</u> (R). 8. Detected result associated with a recovery of 30% to 74% without a Post-Digestion spike is qualified as
	approximate, biased low (J ^{\circ}) and non-detected result is qualified as approximate (UJ). 9. Detected result associated with a recovery of greater than 125% without a Post-Digestion spike is qualified as approximate, biased high (J ^{\circ}).
Evaluation of Laboratory Duplicate for Metals and Mercury	To apply qualifiers if laboratory duplicate results are outside of RPD or difference criteria: Aqueous and soil sample with sample and duplicate values <u>both</u> greater than or equal to 5 times the QL: 1. Detected result greater than or equal to the QL, associated with an RPD of greater than 20 is qualified as approximate (J) and non-detected result is qualified as approximate (UJ).
	Aqueous and soil sample when <u>either detected</u> sample or duplicate value is less than 5 times the QL: 1. Detected results with absolute difference greater than two times the QL are qualified as approximate (J). Non-detected results are qualified as approximate (UJ).
	Metals are evaluated using the criteria for ICSA (Interferents) and ICSAB (Interferents and analytes) of ± two times the QL and of 80% to 120% of the expected value. For ICSA and ICSAB outside of CLs:
Interference Check Sample (ICS) Evaluation	1. For recovery outside the upper CLs or for potential false positives (+two times the QL), detected results are qualified as approximate, biased high (J^{\dagger}) .
and Actions for Metals	2. For recovery outside the lower CLs but greater than 50% or potential false negatives (- two times the QL), detected results are qualified as approximate, biased low (J ⁻). Non-detected result is qualified as approximate (UJ).
	3. For recovery less than 50%, detected results are qualified as approximate, biased low (J ⁻). Non-detected result is <u>rejected (R)</u> .
Evaluation of Field Duplicate for Metals and Mercury	Field duplicate data are evaluated against relative percent difference (RPD) criteria of less than 50 percent for aqueous samples and less than 100 percent for soils when both results are greater than or equal to five times the QL. When one field duplicate result is less than five times the QL, a control limit of plus or minus two times the QL (difference criterion) is applied. If RPDs or differences are outside of criterion, detected and non-detected results are qualified as approximate (UJ, J) to indicate minor excursions.
Evaluation of Metal and Mercury Blank Data	 For calibration blanks and preparation blanks at concentrations greater than or equal to the laboratory MDLs but less than or equal to QLs: 1. Concentration in the associated samples of greater than or equal to the MDLs but less than or equal to QLs are revised to the QL level and qualified as non-detected (U).
	For calibration blanks, preparation blanks and field blanks at concentrations greater than laboratory QLs: 1. Concentrations in the associated samples of greater than or equal to the MDLs but less than or equal to QLs are revised to the QL level and are qualified as non-detected (U).
	2. Concentration in the associated samples of greater than the QLs and less than the blank concentration are <u>rejected</u> (R) or qualified as non-detected (U), applying professional judgment.
	For calibration blanks and preparation blanks at concentrations equal to or between the negative value of the MDL and the QL: 1. Detects in the associated samples are qualified as approximate, biased low (J ⁻) and non-detects are
	qualified as approximate (UJ).

O'Brien & Gere Data vali	dation approach using USEPA National Functional Guidelines for Non-Contract Laboratory Program Methods
Evaluation of ICP Serial Dilution Data for Metals	Serial dilution results are evaluated for data with initial sample concentrations that are greater than 50 times the MDL. If the percent difference is greater than 10%, detected sample results are qualified as approximate (J) and non-detected results are qualified as approximate (UJ).
Source O'Brien & Gere	

0.1/0.0 T	Laboratory QA/QC analyses definitions.
QA/QC Term	Definition
Accuracy	The closeness or agreement of the observed value or test response to the true or acceptable reference value or the test response from a reference method. It is influenced by both random error (precision) and systematic error (bias). The terms "bias" and "precision" are often used in lieu of "accuracy".
Precision	A measure of mutual agreement between two or more individual measurements of the same property, obtained under similar conditions.
Representativeness	A measure of the degree to which data accurately and precisely characterize a population; the correspondence between the analytical result and the actual quality or condition experienced by a contaminant receptor.
Sensitivity	The capability of a method or instrument to discriminate between measurement responses representing different levels of a variable of interest.
Completeness	A measure of the amount of valid data obtained from a measurement system as compared to the planned amount, usually expressed as a percentage; also a measure of the degree to which the sampling scheme represents the available range in something, regardless of what was planned.
Detection limit	The lowest concentration or amount of the target analyte that can be determined to be different from zero by a single measurement at a stated level of probability.
Quantitation limit	The level above which numerical results may be obtained with a specified degree of confidence; the minimum concentration of an analyte in a specific matrix that can be identified and quantified above the method detection limit and within specified limits of precision and bias during routine analytical operating conditions.
Method detection limit	The minimum concentration of an analyte that undergoes preparation similar to the environmental samples and can be reported with a stated level of confidence that the analyte concentration is greater than zero.
Instrument detection limit	The lowest concentration of a metal target analyte that, when directly inputted and processed on a specific analytical instrument, produces a signal/response that is statistically distinct from the signal/response arising from equipment "noise" alone.
Gas chromatography/mass spectrometry (GC/MS) instrument performance check	Performed to verify mass resolution, identification, and to some degree, instrument sensitivity. These criteria are not sample specific; conformance is determined using standard materials.
Control limits	The variation in a process data set expressed as plus/minus standard deviations from the mean, generally placed on a chart to indicate the upper and lower acceptable ranges of process data and to judge whether the process is in or out of statistical limitations.
Calibration	Compliance requirements for satisfactory instrument calibration are established to verify that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of analysis and calibration verifications document satisfactory maintenance and adjustment of the instrument on a day-to-day basis.
Relative Response Factor	A measure of the relative mass spectral response of an analyte compared to its internal standard. Relative Response Factors are determined by analysis of standards and are used in the calculation of concentrations of analytes in samples.
Relative standard deviation	The standard deviation divided by the mean; a unit-free measure of variability.
Correlation coefficient	A measure of the strength of the relationship between two variables.
Relative Percent Difference	Used to compare two values; the relative percent difference is based on the mean of the two values, and is reported as an absolute value, i.e., always expressed as a positive number or zero.
Percent Difference	Used to compare two values; the percent difference indicates both the direction and the magnitude of the comparison, i.e., the percent difference may be either negative, positive, or zero.
Drift	The deviation in instrument response from its set or reference value over a period of time.
Percent Recovery	The act of determining whether or not the methodology measures all of the target analytes contained in a sample.
Blanks	Several types of blanks are analyzed by the laboratory. Corrective action procedures are implemented for blank analyses if target compounds are detected at concentrations greater than the method criteria. The criteria for evaluation of blanks apply to any blank associated with a group of samples. If problems with a blank exist, data associated with the project are evaluated to determine whether or not there is an inherent variability in the data for the project or if the problem is an isolated occurrence not affecting other data.
Reagent blank	Consists of laboratory target analyte-free water and any reagents added to a sample during analysis. This type of blank is analyzed to evaluate whether contamination occurred during the analysis of the sample due to reagent contamination. A reagent blank is usually analyzed following highly contaminated samples to assess the potential for cross-contamination during analysis.
Instrument blank	Consists of clean solvent spiked with the surrogates and analyzed on each GC column and instrument used for sample analysis by GC. This type of blank is analyzed to evaluate whether contamination occurred during the analysis of the sample due to instrument contamination.
Calibration blank	Consists of acids and reagent water used to prepare metal samples for analysis. This type of blank is analyzed to evaluate whether contamination is occurring during the preparation and analysis of the sample.
Method blank	A water or soil blank that undergoes the preparation procedures applied to a sample (i.e., extraction, digestion, clean-up). These samples are analyzed to examine whether sample preparation, clean-up,

	Laboratory QA/QC analyses definitions.
	and analysis techniques result in sample contamination.
Field/equipment	Collected and submitted for laboratory analysis, where appropriate. Field/equipment blanks ar handled in the same manner as environmental samples. Equipment/field blanks are analyzed t assess contamination introduced during field sampling procedures.
Trip blank	Consist of samples of analyte-free water that have undergone shipment from the sampling site to the laboratory in coolers with the environmental samples submitted for volatile organic compound (VOC analysis. Trip blanks will be analyzed for VOCs to determine if contamination has taken place durin sample handling and/or shipment. Trip blanks will be utilized at a frequency of one each per cooler sent to the laboratory for VOC analysis.
Storage blank	Consists of sample vials filled with laboratory analyte-free water. The vials are stored at the laborator with the samples collected for VOC analysis, under the same conditions as the samples. The storag blank is analyzed with the VOC samples to evaluate for contamination due to sample storage.
Internal standards performance	Compounds not found in environmental samples which are spiked into samples and quality control samples at the time of sample preparation for organic analyses. Internal standards must meet retention time and recovery criteria specified in the analytical method. Internal standards are used a the basis for quantitation of the target analytes.
Surrogate recovery	Compounds similar in nature to the target analytes but not expected to be detected in th environmental media which are spiked into environmental samples, blanks, and quality control sample prior to sample preparation for organic analyses. Surrogates are used to evaluate analytical efficience by measuring recovery.
Laboratory control sample Matrix spike blank analyses	Standard solutions that consist of known concentrations of the target analytes spiked into laborator analyte-free water or sand. They are prepared or purchased from a certified manufacturer from source independent from the calibration standards to provide an independent verification of th calibration procedure. They are prepared and analyzed following the same procedures employed for environmental sample analysis to assess method accuracy independently of sample matrix effects.
Laboratory duplicate	Two or more representative portions taken from one homogeneous sample by the analyst an analyzed in the same laboratory.
Matrix	The material of which the sample is composed or the substrate containing the analyte of interest, suc as drinking water, waste water, air, soil/sediment, biological material.
Matrix Spike (MS)	An aliquot of a matrix (water or soil) fortified (spiked) with known quantities of specific target analyte and subjected to the entire analytical procedure in order to indicate the appropriateness of the metho for the matrix by measuring recovery.
Matrix spike duplicate (MSD)	A second aliquot of the same matrix as the matrix spike that is spiked in order to determine th precision of the method.
Retention time	The time a target analyte is retained on a GC column before elution. The identification of a target analyte is dependent on a target compound's retention time falling within the specified retention time window established for that compound.
Relative retention time	The ratio of the retention time of a compound to that of a standard.
Resolution	The separation between peaks on a chromatogram.
Interference	An element, compound, or other matrix effect present in a sample which disturbs the detection of target analyte leading to inaccurate concentration results for the target analyte.
Raw data	The documentation generated during sampling and analysis which includes, but is not limited to, fiel notes, hardcopies of electronic data, disks, un-tabulated sample results, QC sample results, printouts or chromatograms, instrument outputs, and handwritten notes.

Quality Control Cover Page

Page 1 of 1

Report ID: S52100.01(01) Report Date: 04/06/2012 Project: Coldwater Road Former WWTP Area Lab Sample ID(s): S52100.01-S52100.11

Report to:

Attention: Tony Finch O'Brien & Gere Engineers, Inc. 37000 Grand River Ave. Suite 260 Farmington, MI 48335

Sample ID	Sample Tag	Collected	Matrix	Analysis Departments
S52100.01	OBG MW-10	04/05/2012 09:55	Groundwater	Extraction / Prep., Metals
S52100.02	OBG MW-10 MS	04/05/2012 09:55	Groundwater	Extraction / Prep., Metals
S52100.03		04/05/2012 09:55	Groundwater	Extraction / Prep., Metals
S52100.04	OBG MW-10 Co-Located	04/05/2012 09:55	Groundwater	Extraction / Prep., Metals
S52100.05	Dup-1 [MW-10]	04/05/2012 00:01	Groundwater	Extraction / Prep., Metals
S52100.06	OBG MW-9 🖍	04/05/2012 11:05	Groundwater	Extraction / Prep., Metals
S52100.07	OBG MW-9 MS	04/05/2012 11:05	Groundwater	Extraction / Prep., Metals
S52100.08		04/05/2012 11:05	Groundwater	Extraction / Prep., Metals
S52100.09	OBG MW-9 Co-Located $\int MW - 9$	04/05/2012 11:05	Groundwater	Extraction / Prep., Metals
S52100.10	Dup-2	04/05/2012 00:01	Groundwater	Extraction / Prep., Metals
S52100.11	FB-1 V	04/05/2012 11:25	Quality Control	Extraction / Prep., Metals

This QC package, to the best of my knowledge, is in compliance with all technical and administrative requirements. If you have any questions, please do not hesitate to contact me at 517-332-0167 (ext. 14) or email me at mayamurshak@meritlabs.com.

Sincerely,

Maya Murshak Technical Director

Data Set ID: MT-12-0406A Analysis Date: 04/06/12

Instrument ID: HP ICP/MS Analyst: SLR std id#: 0

Lab Sample ID: S52100.01Sample Tag: OBG MW-10Date Collected: 04/05/2012Matrix: Groundwater

CAS #	Analyte	Result	RDL	Units	Dilute	Run Date Notes
7439-96 - 5	Manganese	2.62	0.005	mg/L	5	04/06/2012
7439-96-5	Manganese, Dissolved	2.57	0.005	mg/L	5	04/06/2012

Data Set ID: MT-12-0406A	
Analysis Date: 04/06/12	

Instrument ID: HP ICP/MS Analyst: SLR std id#: 0

Lab Sample ID: S52100.04	Sample Tag: OBG MW-10 Co-Located
Date Collected: 04/05/2012	Matrix: Groundwater

CAS #	Analyte	Result	RDL	Units	Dilute	Run Date	Notes
7439-96-5	Manganese	2.87	0.005	mg/L	5	04/06/2012	

Data Set ID: MT-12-0406A Analysis Date: 04/06/12

Instrument ID: HP ICP/MS Analyst: SLR std id#: 0

Lab Sample ID: S52100.05 Date Collected: 04/05/2012 Sample Tag: Dup-1 $\left[\mathcal{M} \mathcal{W} - \mathcal{D} \right]$ Matrix: Groundwater

CAS #	Analyte	Result	RDL	Units	Dilute	Run Date Notes	_
7439-96-5	Manganese	2.85	0.005	mg/L	5	Run Date Notes 04/06/2012	5

Data Set ID: MT-12-0406A

Analysis Date: 04/06/12

Instrument ID: HP ICP/MS Analyst: SLR std id#: 0

Lab Sample ID: \$52100.06Sample Tag: OBG MW-9Date Collected: 04/05/2012Matrix: Groundwater

CAS #	Analyte	Result	RDL	Units	Dilute	Run Date	Notes
7439-96-5	Manganese	0.591	0.005	mg/L	5	04/06/2012	Notes
7439-96-5	Manganese, Dissolved	0.562	0.005	mg/L	5	04/06/2012	

Data Set ID: MT-12-0406A Analysis Date: 04/06/12

Instrument ID: HP ICP/MS Analyst: SLR std id#: 0

Lab Sample ID: S52100.09	Sample Tag: OBG MW-9 Co-Located
Date Collected: 04/05/2012	Matrix: Groundwater

CAS #	Analyte	Result	RDL	Units	Dilute	Run Date	Notes
7439-96-5	Manganese, Dissolved	0.599	0.005	mg/L	5	04/06/2012	Notes

Data Set ID: MT-12-0406A Analysis Date: 04/06/12

Instrument ID: HP ICP/MS

Analyst: SLR std id#: 0

Lab Sample ID: S52100.10 Date Collected: 04/05/2012

Sample Tag: Dup-2 Matrix: Groundwater [Mw-qpis]

CAS #	Analyte	Result	RDL	Units	Dilute	Run Date	Notes
7439-96-5	Manganese, Dissolved	0.581	0.005	mg/L	5	04/06/2012	woles

RACER 2013 ADDENDUM TO JUNE 199 CLOSURE CERTIFICATION REPORT – FORMER WWTP

Attachments

Attachment A MDEQ Comments on September 12, 2008, Addendum to the June 1999 Closure Certification Report for the Former WWTP at the Coldwater Road Landfill Facility

STATE OF MICHIGAN

September 26, 2011

LANSING

DAN WYANT DIRECTOR

RECEIVED

SEP 2 8 2011

O'BRIEN & GERE

Mr. Dave Favero RACER Trust 2930 Ecorse Road Ypsilanti, Michigan 48198

Dear Mr. Favero:

SUBJECT: Acceptance of Response to Resource Management Division (RMD) March 24, 2009, letter comments on the Addendum to the June 1999 Closure Certification Report for the Former WWTP; Coldwater Road Landfill Facility, Genesee Township, Michigan; MID 005 356 860

The Department of Environmental Quality (DEQ), RMD, has reviewed the subject document dated July 13, 2009, for the Coldwater Road Landfill Facility, prepared and submitted by O'Brien & Gere Engineers, Inc.

The July 13, 2009, document was reviewed for compliance with Waste Management Division (now RMD) Order No. 64-05-92, effective October 29, 1992, and Part 111, Hazardous Waste Management, and Part 201, Environmental Remediation, of the Natural Resources and Environmental Protection Act, 1994, PA 451, as amended.

Based on this review, the response to the RMD comments is acceptable, and the investigation work can continue.

Should you require further information, please contact me at 517-241-2108; confortir@michigan.gov or DEQ, P.O. Box 30241, Lansing, Michigan 48909-7741.

Sincerely,

Richard A. Conforti, Jr., P.E. Hazardous Waste Section Resource Management Division

- cc: Mr. Grant Trigger, RACER Trust
 - Mr. Anthony Finch, O'Brien & Gere Engineers, Inc.
 - Mr. Jack Schinderle/Mr. John McCabe/Mr. Joe Rogers, DEQ
 - Mr. William Yocum, DEQ
 - Corrective Action File

Attachment B

Response to Comments – Addendum to the June Closure Certification Report for the Former WWTP

July 13, 2009

Mr. Richard A. Conforti, Jr., P.E Environmental Engineer Waste and Hazardous Materials Division Department of Environmental Quality PO Box 30241 Lansing, MI 48909-7741

Subject: REALM Coldwater Road Landfill MID 005 356 860 Response to Comments- Addendum to the June 1999 Closure Certification Report for the Former WWTP

Dear Mr. Conforti:

This letter is in response to the Michigan Department of Environmental Quality (MDEQ) letter dated March 24, 2009 providing comments on the Addendum to the June 1999 Closure Certification Report for the Former Wastewater Treatment Plant (WWTP) submitted in September 2008 and the teleconference call with the MDEQ on May 4, 2009. The MDEQ indicated in their March 24, 2009 letter they were not in agreement with the facility's conclusion that closure of the former WWTP pursuant to Part 111 has been achieved. Please note that Motors Liquidation Company (MLC) will now be managing this site as of July10, 2009.

The MDEQ comments and responses are discussed below:

MDEQ comment 1:

"... there are iron and/or manganese concentrations in groundwater above Part 201 residential drinking water protection criteria in the six monitoring wells (MW-1, MW-2, MW-3, MW-6, MW-7 and MW-8) located within approximately 100 feet of the facility's western property boundary. The Report does not delineate the extent of this groundwater contamination or document that the contamination above the drinking water criteria is contained within the facility's property."

Response:

• ,

Section R 299.5707, R299.5706a(5)(b) of the MI Part 201 regulations allows for a background concentration to be substituted for the generic cleanup criterion when the cleanup criterion is less than background. Therefore, background values were calculated for iron and manganese in groundwater at the former WWTP area. The background groundwater quality

Richard Conforti July 13, 2009 Page 2

for iron and manganese were determined from the historical Coldwater Road Landfill Site (on-site) monitoring well data (dissolved concentrations).

The MDEQ Sampling Strategies and Statistics Training Materials for Part 201 Cleanup Criteria 2002 permits the mean plus three standard deviations (SD) for a site-specific background determination for groundwater if the data is normally or log normally distributed, and the 95% upper confidence limit (UCL) for non-parametric (not normally or log normally distributed) data. Groundwater data from the shallow (perched groundwater) wells B-7, B-9, B-18A, B-19Ar, B-24r, and B-28 (shown on Figure 1) for the Coldwater Road Landfill Site were selected to develop the site-specific background values for iron and manganese. These wells were selected since they are believed to represent background conditions at the Site, i.e., the metals concentrations which exist do not appear to be attributable to any release at or regionally proximate to the Site. Since only dissolved metals groundwater data is available for the landfill Site, this data was used as a conservative measure in developing the site-specific background concentrations. Monitoring wells B-14, B-29 and B-30 were excluded from the analysis because B-14 had questionable zinc results in the past and has been replaced by B-28, and wells B-29 and B-30 have also been abandoned, but were also located very close to B-28 and would have biased the analysis in this area of the site.

The dissolved iron data is close to being log normally distributed, but just fails the test for log normally distribution. Therefore, the iron data was analyzed using the U.S. EPA recommended ProUCL program to calculate the 95% UCL concentration (attached as Exhibit A) which resulted in a background value of 1,730 ug/l.

Using the same set of wells listed above, a site-specific background was also calculated for manganese. The dissolved manganese data is log normally distributed, therefore, the dissolved manganese background concentration was calculated using the mean plus three SD, which resulted in a value of 1,312 ug/l. The dissolved manganese background calculation worksheet is included in Exhibit B.

The enclosed Table 1 summarizes the iron and manganese ground water results from the last two quarters of the quarterly sampling program (December 2007 and March 2008) compared to the site specific background values and Residential Health-Based Drinking Water criteria. The comparison shows that the results of the quarterly groundwater sampling program at the former WWTP are below the site-specific background for iron, except for one sample collected during the December 2007 sampling event at well OBG MW-3 (1,780 ug/l). However, this detection of iron is below the Health-Based Drinking Water criterion (2,000 ug/l). Therefore, no additional sampling or investigation is necessary to assess the extent of iron detected in groundwater at the former WWTP area.

One well location (OBG MW-3) exhibited concentrations of manganese above the calculated background concentration for the last two quarterly sampling events. Therefore, we propose to use the background value as the criteria for which the extent of manganese in groundwater will be assessed.

MDEQ Comment 2:

"The facility's proposed approach of implementing a prohibition of on-site use of groundwater for drinking water through the filing of a Declaration of Restrictive Covenant is not acceptable since it does not address potential off-site exposure (i.e.,

Richard Conforti July 13, 2009 Page 3

> drinking contaminated groundwater) issues. Final closure of the area cannot be approved until the facility can reliably document that no potential off-site exposure can ever occur or that no off-site migration of contaminated groundwater above applicable criteria is occurring."

Response:

Potential off-site exposure will be addressed through the installation and sampling of two monitoring wells at the west property boundary to determine the concentrations of manganese. The locations of the proposed monitoring wells are depicted on Figure 2. Fieldwork will be performed in accordance with the Post-Closure Care Plan and the MDEQ-approved December 2006 Work Plan. Groundwater samples will be collected using low-flow sampling methods for two quarterly groundwater events with samples collected and analyzed for total manganese. If the results indicate manganese concentrations are below the site-specific background, closure of the area will be pursued through an Addendum to the Closure Certification Report. The site deed restriction would be expanded to prohibit use of the groundwater at the entire site, including the former WWTP area. The current Declaration of Restrictive Covenant prohibits the construction of wells or other devices to extract groundwater for consumption, irrigation, dewatering or any other use at two areas of the Coldwater Road Landfill Site: the Remaining Materials Area (RMA) and the landfill.

MDEQ Comment 3:

"In addition, it should also be noted that the facility's conclusion that the shallow groundwater at the site is not an aquifer cannot be supported by the WHMD unless that designation is formally approved through submittal of a Groundwater Not In An Aquifer (GWNIAA) Determination."

Response:

It is our intent not to rely on a GWNIAA determination for Site closure, but instead document that there are no exceedances of the Residential Health-Based Drinking Water criteria or site-specific background values at the western property boundary, thus demonstrating no off-site exposure (i.e., drinking contaminated groundwater) issues.

Additional MDEQ Comment:

During our teleconference call on May 4, 2009, the MDEQ expressed concern that the detections of volatile organic compounds (VOCs) at well OBG MW-5 (included on Table 2) were not delineated vertically and could potentially migrate to the lower usable aquifer.

Response:

Therefore, MDEQ recommended a deep monitoring well be installed at the site to assess the potential vertical extent of VOC impact to groundwater. The Natural Resources and Environmental Protection Act (NREPA), 1994 PA 451 R299.5528 states that a remedial investigation shall define the nature and extent of contamination in excess of the applicable generic residential cleanup criteria. No VOCs were detected at OBG MW-5 (or at adjacent wells OBG MW-6 or OBG MW-8) above the Generic Residential Drinking Water criteria during four rounds of quarterly sampling. Therefore, no further investigation is required under NREPA R299.5528.

Richard Conforti July 13, 2009 Page 4

If you have any questions regarding this response letter, please call me at (248) 477-5701, ext. 13.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC.

Cormier, PE Vice President

cc: Joe Rogers – MDEQ John McCabe – MDEQ Tony Finch – O'Brien & Gere

TABLES

TABLE 1

REALM Coldwater Road Facility Ground Water Analytical Results- Third Quarter (December 2007) Metals Method 200.8

Manganese	NS	NS	NS	NS	502	NS	NS	NS	860	1,312
Iron	NS	NS	NS	NS	790	NS	NS	NS	2,000	1,730
Dissolved inorgan	CS.									an an sing time. An a
Manganese	216	307	5,080	118	521	642	46	371	860	1,312
Iron	440	630	1,780	420	1,490	990	970	520	2,000	1,730
otal inorganics						1999 (1999) (1999) 1999 (1999) (1999)				an a
Date Collected	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	Drinking Water Criteria	
ample Location			OBG MW-3				OBG MW-7		Health-Based	
									MDEQ Part 201 Residential	Site-Specific Background

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) Samples analyzed by Merit Laboratories, Inc. of East Lansing, Michigan.

3) MDEQ Part 201 Residential Health-Based Drinking Water Protection Criteria as listed in Operational Memorandum #1, dated January 23, 2006.

4) "NS" denotes the well was not sampled for this constituient.

5) Bold type indicates concentration above Site-Specifc Background and Part 201 Residential Health-Based Drinking Water criteria.

6) Site-specific background calculated in accordance with MDEQ Sampling Strategies and Statistical Training Materials for Part 201 Cleanup Criteria dated 2002 using dissolved metals.

TABLE 1

REALM

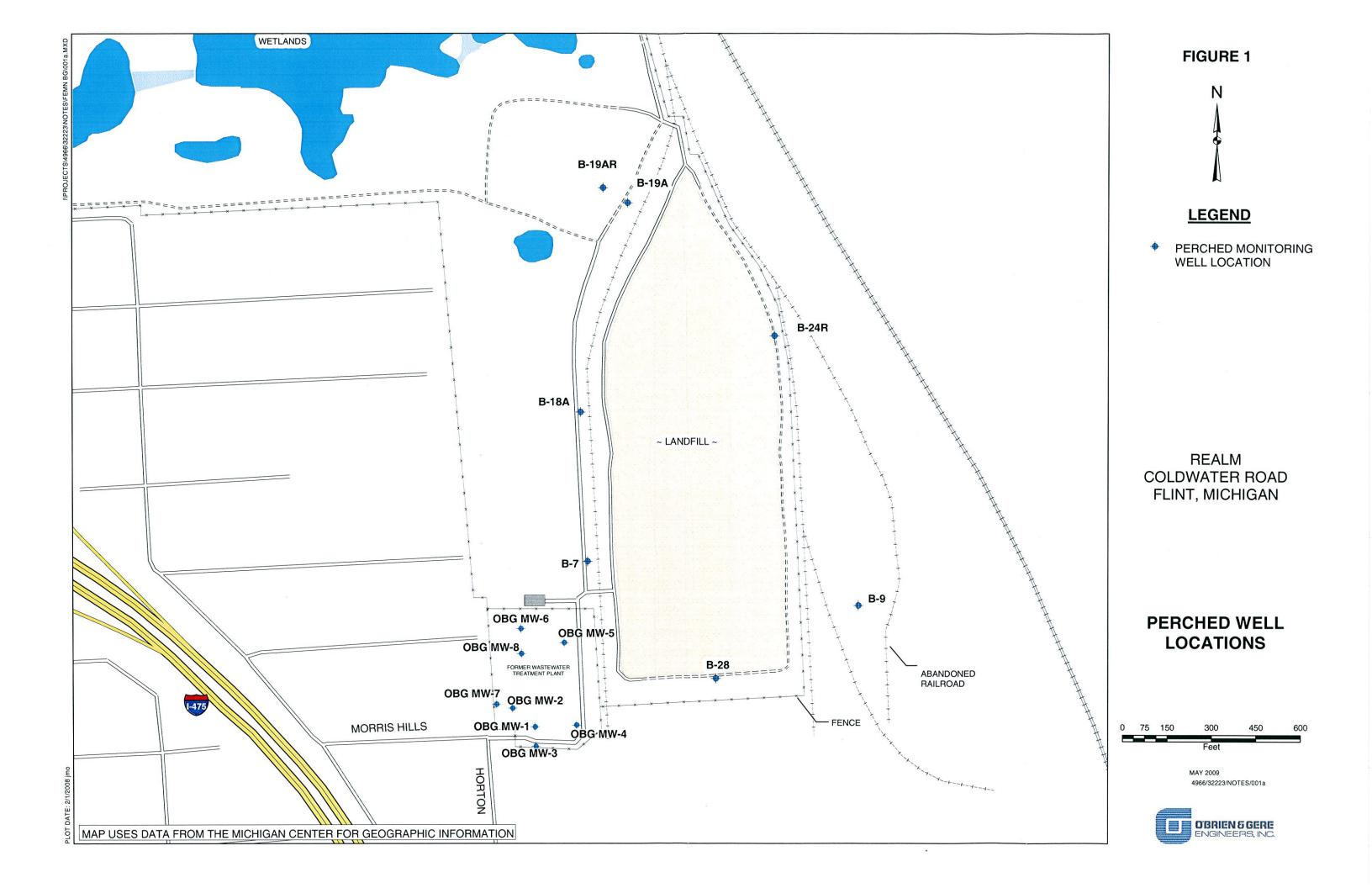
Coldwater Road Facility Ground Water Analytical Results- Fourth Quarter (March 2008) Metals Method 200.8

		OBG MW-2 03/18/2008	OBG MW-3 03/18/2008	OBG MW-4 03/18/2008	OBG MW-5 03/18/2008		OBG MW-7 03/18/2008		Residential Health-Based Drinking Water Criteria	
on	160J	280J	1,180J	130J	1,770J	350J	560J	280J	2,000	1,730
	405	97	5 .050	54	532	322	212	337	860	1,312
langanese Issolved inorganics		51				ULL	LIL			.,;012
on	NS	NS	NS	NS	<u>190</u>	NS	NS	NS	2,000	1,7 <u>30</u>
Manganese	NS	NS	NS	NS	520	NS	NS	NS	860	1,312

Notes:

1) Results and criteria are shown in ug/l (ppb).

2) Samples analyzed by Merit Laboratories, Inc. of East Lansing, Michigan.


3) MDEQ Part 201 Residential Health-Based Drinking Water Protection Criteria as listed in Operational Memorandum #1, dated January 23, 2006.

4) "NS" denotes the well was not sampled for this constituient.

5) Bold type indicates concentration above Site-Specifc Background and Part 201 Residential Health-Based Drinking Water criteria.

6) "J" denotes estimated concentration.

FIGURES

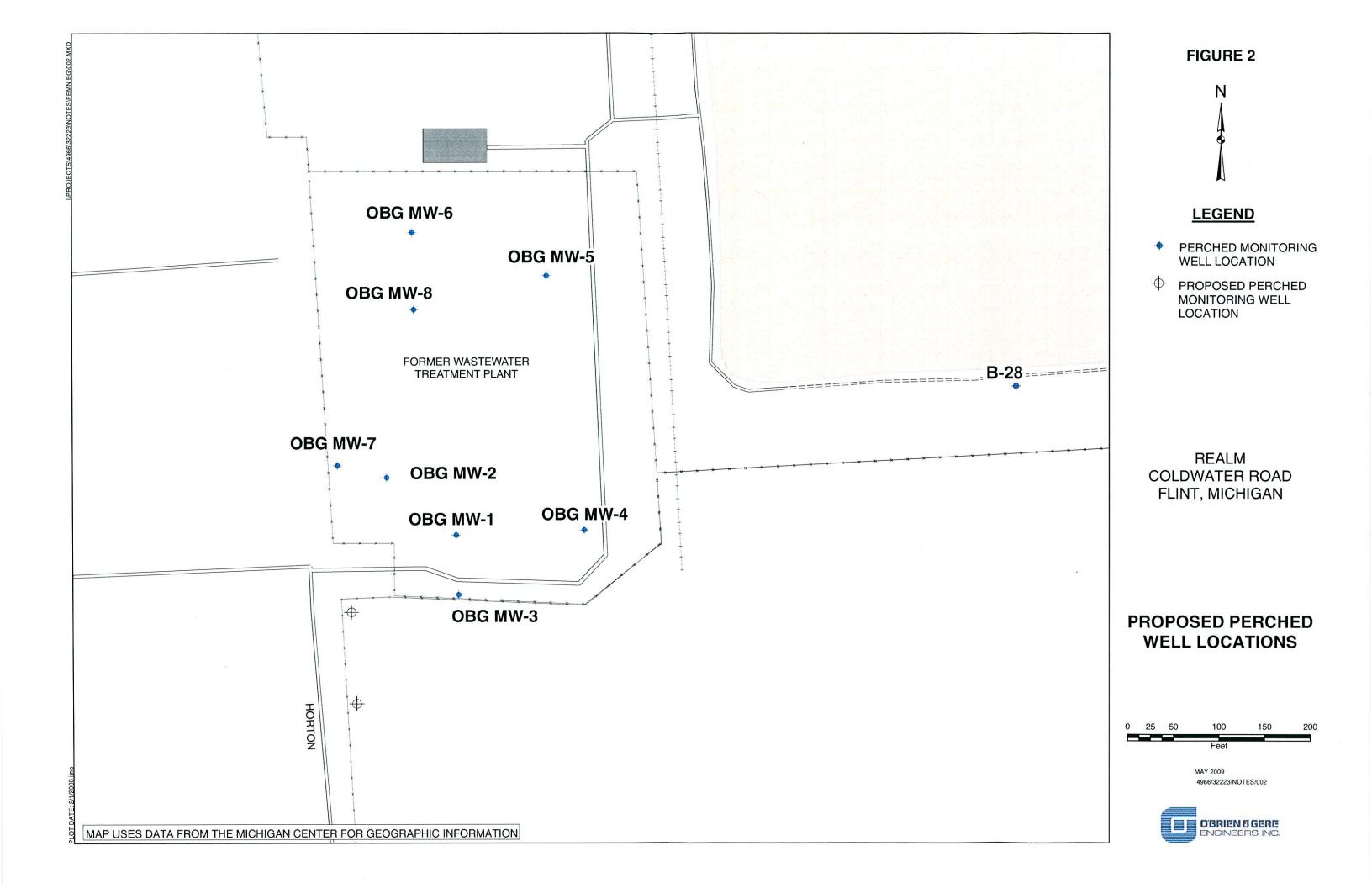


Exhibit A

Site-Specific Background Calculation for Iron

REALM

Coldwater Road Landfill

Former Wastewater Treatment Plant

Groundwater Background Determination for Dissolved Iron

	Iroi	1	
Well	Date Collected	Concentration	Detection
1.4		(ug/l)	
B- 7	Nov-98	10	D
B-7	Nov-99	260	D
B-7	Dec-00	50	D
B-7	Oct-01	330	D
B-7	Nov-02	250	D
B-7	Nov-03	190	D
B-7	Dec-04	180	D
B-7	Jun-05	170	D
B-7	Dec-05	150	D
B-7	Jun-06	190	D
B-7	Jun-07	130	D
B-7	Jun-08	350	D
B-9	Nov-97	650	D
B-9	Nov-99	610	D
B-9	Dec-00	50	D
B-9	Oct-01	940	D
B-9	Dec-04	570	D
B-9	Jun-05	480	D
B-9	Dec-05	320	D
B-9	Jun-06	390	D
B-9	Jun-07	320	D
B-9	Jul-08	780	D
B-18A	Nov-97	380	D
B-18A	Nov-98	240	D
B-18A	Nov-99	180	D
B-18A	Dec-00	10	*
B-18A	Dec-00	40	D
B-18A	Oct-01	350	D
B-18A	Nov-02	190	D
B-18A	Nov-03	160	D
B-18A	Dec-04	900	D
B-18A	Jun-05	170	D
B-18A	Dec-05	390	D
B-18A	Jun-06	170	D

Iron								
Well	Date Collected	Concentration	Detection					
		(ug/l)						
B-18A	Jun-07	110	D					
B-18A	Jun-08	310	D					
B-19AR	Nov-03	20	D					
B-19AR	Dec-04	240	D					
B-19AR	Dec-04	170	D					
B-19AR	Jun-05	1,320	D					
B-19AR	Dec-05	160	D					
B-19AR	Dec-05	150	D					
B-19AR	Jun-06	240	D					
B-19AR	Jun-07	70	D					
B-19AR	Jun-08	380	D					
B-24R	Nov-98	60	D					
B-24R	Jun-05	10,600	D					
B-24R	Dec-05	3,180	D					
B-24R	Jun-06	3,760	D					
B-24R	Jun-07	2,400	D					
B-24R	Jun-08	3,490	D					
B-28	Jun-06	2,380	D					
B-28	Jun-07	1,690	D					
B-28	Jun-08	370	D					

1) Iron data is nonparametric, so background concentration was determined by calculating the 95% Upper Confidence Limit (UCL) was calculated using USEPA approved ProUCL (see attached ProUCL output).

2) "*" denotes one half of the detection limit if non-detected.

3) "D" denotes concentration detected.

REALM

Coldwater Road Landfill Former Wastewater Treatment Plant 95% UCL for Dissolved Iron (ProUCL Output)

General UCL Statistics for Data Sets with Non-Detects

User Selected Options	
From File	WorkSheet.wst
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

Note: DL/2 is not a recommended method.

Fe

General Statistics				
Number of Valid Data	54	Number of Detected Data		53
Number of Distinct Detected Data	38	Number of Non-Detect Data		1
		Percent Non-Detects		1.85%
Raw Statistics		Log-transformed Statistics		
Minimum Detected	10	Minimum Detected		2.303
Maximum Detected	10600	Maximum Detected		9.269
Mean of Detected	785.7	Mean of Detected		5.721
SD of Detected	1628	SD of Detected		1.317
Minimum Non-Detect	10	Minimum Non-Detect		2.303
Maximum Non-Detect	10	Maximum Non-Detect		2.303
	N			
UCL Statistics	•			
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected	d Values Only	
Lilliefors Test Statistic	0 226	Lilliefors Test Statistic	u values only	0.142
5% Lilliefors Critical Value		5% Lilliefors Critical Value		0.143 0.122
	0.122		1	0.122
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Lo	ever	
Assuming Normal Distribution		Assuming Lognormal Distribution		
DL/2 Substitution Method		DL/2 Substitution Method		
Mean	771.2	Mean		5.645
SD	1616			1.419
95% DL/2 (t) UCL		95% H-Stat (DL/2) UCL		1171
35,5 64 2 (4) 662	1100	5570 TI 5142 (5572) 662		1471
Maximum Likelihood Estimate(MLE) Method		Log ROS Method		
Mean	751.7	Mean in Log Scale		5.658
SD		SD in Log Scale		1.384
95% MLE (t) UCL		Mean in Original Scale		771.3
95% MLE (Tiku) UCL		SD in Original Scale		1616
		95% Percentile Bootstrap UCL		1163
		95% BCA Bootstrap UCL		1324
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Value	es Only	
k star (bias corrected)	0.622	Data do not follow a Discernable Distribu	ution (0.05)	
Theta Star	1262			
nu star	65.98			
A D Tort Statistic	2 009	Nonnerometric Statistics		
A-D Test Statistic		Nonparametric Statistics		
5% A-D Critical Value		Kaplan-Meier (KM) Method		771 3
K-S Test Statistic 5% K-S Critical Value		Mean		771.3
Data not Gamma Distributed at 5% Significance Level	0.128			1601
Data not Gamma Distributed at 5% Significance Lever		SE of Mean		220
Assuming Commo Distribution		95% KM (t) UCL		1140
Assuming Gamma Distribution		95% KM (z) UCL		1133
Gamma ROS Statistics using Extrapolated Data	4 005 00	95% KM (jackknife) UCL		1139
Minimum	1.00E-09	· · · ·		1533
Maximum	10600	, ,	·	1161
Mean		95% KM (Percentile Bootstrap) UCL		1164
Median		95% KM (Chebyshev) UCL		1730
SD		97.5% KM (Chebyshev) UCL		2145
k star		99% KM (Chebyshev) UCL		2960
Theta star	1744			
Nustar		Potential UCLs to Use		
AppChi2	32.89	95% KM (Chebyshev) UCL	Background=	1730 ug/l (ppb)
95% Gamma Approximate UCL	1119			
95% Adjusted Gamma UCL Note: DI /2 is not a recommended method	1131			
NUL				

Exhibit B

Site-Specific Background Calculation for Manganese

REALM Coldwater Road Landfill Former Wastewater Treatment Plant Groundwater Background Determination for Dissolved Manganese

Well	Mang Date Collected	Concentration (ug/l)	Detection
B-7	Nov-98	424	D
<u>B-7</u>	Nov-99	313	D *
B-7	Nov-02	5	*
<u>B-7</u>	Nov-03	5	
B-7	Dec-04	74	D
B-7	Jun-05	31	D
B-7	Dec-05	50	D
B-7	Jun-06	150	D
B-7	Jun-07	42	D
B-7	Jun-08	10	
<u>B-9</u>	Nov-97	741	D
B-9	Nov-99	1280	D
B-9	Dec-04	248	D
B-9	Jun-05	701	<u> </u>
B-9	Dec-05	410	<u> </u>
B-9	Jun-06	330	D
B-9	Jun-07	1,900	D
B-9	Jul-08	812	
B-18A	Nov-97	62	D
B-18A	Nov-98	128	D
B-18A	Nov-99	155	D
B-18A	Nov-02	26	D *
B-18A	Nov-03	5	
B-18A	Dec-04	363	D
B-18A	Jun-05	80	
B-18A	Dec-05	170	D
B-18A	Jun-06	50	D
B-18A	Jun-07	22	D *
B-18A	Jun-08	5	*
B-19AR	Nov-03	5	
B-19AR	Dec-04	11	D *
B-19AR	Dec-04	5	
B-19AR	Jun-05	228	D *
B-19AR	Dec-05	10	
B-19AR	Jun-06	210	D
B-19AR	Jun-07	21	D
B-19AR	Jun-08	9	D
B-24R	Nov-98	120	D
B-24R	Jun-05	448	D
B-24R	Dec-05	210	0
B-24R	Jun-06	210	D
B-24R	Jun-07	194	D
B-24R	Jun-08	175	0
B-28	Jun-06	210	D
B-28	Jun-07	160	D
B-28	Jun-08	84	D
langanese:	V	= 237 = 125527.87 = 358.21	
ackground =	CV	= 558.21 = 1.51) 1311.64	
vhere: (= mean / = variance iD = standard de :V = coefficient (

Notes:

1) Manganese data is lognormally distributed, so background concentration was determined by calculating the mean plus three standard deviations (see above).

2) "*" denotes one half of the detection limit if non-detected.

3) "D" denotes concentration detected.

Attachment C

Acceptance of Response to Resource Management Division (RMD) March 24, 2009, Letter Comments on the Addendum to the June 1999 Closure Certification Report for the Former WWTP at the Coldwater Road Landfill Facility

STATE OF MICHIGAN

September 26, 2011

LANSING

DAN WYANT DIRECTOR

RECEIVED

SEP 2 8 2011

O'BRIEN & GERE

Mr. Dave Favero RACER Trust 2930 Ecorse Road Ypsilanti, Michigan 48198

Dear Mr. Favero:

SUBJECT: Acceptance of Response to Resource Management Division (RMD) March 24, 2009, letter comments on the Addendum to the June 1999 Closure Certification Report for the Former WWTP; Coldwater Road Landfill Facility, Genesee Township, Michigan; MID 005 356 860

The Department of Environmental Quality (DEQ), RMD, has reviewed the subject document dated July 13, 2009, for the Coldwater Road Landfill Facility, prepared and submitted by O'Brien & Gere Engineers, Inc.

The July 13, 2009, document was reviewed for compliance with Waste Management Division (now RMD) Order No. 64-05-92, effective October 29, 1992, and Part 111, Hazardous Waste Management, and Part 201, Environmental Remediation, of the Natural Resources and Environmental Protection Act, 1994, PA 451, as amended.

Based on this review, the response to the RMD comments is acceptable, and the investigation work can continue.

Should you require further information, please contact me at 517-241-2108; confortir@michigan.gov or DEQ, P.O. Box 30241, Lansing, Michigan 48909-7741.

Sincerely,

Richard A. Conforti, Jr., P.E. Hazardous Waste Section Resource Management Division

cc: Mr. Grant Trigger, RACER Trust

- Mr. Anthony Finch, O'Brien & Gere Engineers, Inc.
- Mr. Jack Schinderle/Mr. John McCabe/Mr. Joe Rogers, DEQ
- Mr. William Yocum, DEQ
- Corrective Action File

360° Engineering and Project Delivery Solutions

All materials printed on recycled paper.

