

Imagine the result

**Motors Liquidation Company** 

Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Addendum No. 2 - Northend Corrective Measures and Site-wide Groundwater Monitoring

Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City)

MID 005 356 712

inchits. Helen-

Christopher S. Peters, P. G. Vice President

M.M. Micki M. Maki

Associate Project Manager

Revised Resource Conservation and Recovery Act (RCRA) Corrective Measures Proposal

Addendum No. 2 – Northend Corrective Measures and Sitewide Groundwater Monitoring MID 005 356 712

Prepared for: Motors Liquidation Company

Prepared by: ARCADIS 10559 Citation Drive Suite 100 Brighton Michigan 48116 Tel 810.229.8594 Fax 810.229.8837

Our Ref.: B0064410.2010

Date: October 21, 2010

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

| 1. | Introduction                                                                             |                                                                   |    |  |  |  |  |
|----|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----|--|--|--|--|
|    | 1.1                                                                                      | Background                                                        | 1  |  |  |  |  |
|    | 1.2                                                                                      | Corrective Measures History                                       | 1  |  |  |  |  |
|    | 1.3                                                                                      | Overview of RFI Activities                                        | 2  |  |  |  |  |
|    | 1.4                                                                                      | Report Organization                                               | 3  |  |  |  |  |
|    | 1.5                                                                                      | Environmental Setting                                             | 4  |  |  |  |  |
| 2. | . Summary of Human Health Risk Assessments and Selection of AOIs<br>Addressed in the CMP |                                                                   |    |  |  |  |  |
|    | 2.1                                                                                      | Human Health Risk Assessments                                     | 5  |  |  |  |  |
|    |                                                                                          | 2.1.1 RFI Phase II HHRA                                           | 5  |  |  |  |  |
|    |                                                                                          | 2.1.2 Revised 2008 CMP Supplemental HHRA                          | 5  |  |  |  |  |
|    |                                                                                          | 2.1.3 CMP Addendum No. 2 Supplemental HHRA                        | 5  |  |  |  |  |
|    | 2.2                                                                                      | 6                                                                 |    |  |  |  |  |
|    | 2.3                                                                                      | Rationale for Additional AOIs Addressed in this CMP Addendum No.2 |    |  |  |  |  |
| 3. | Interim                                                                                  | Measures                                                          |    |  |  |  |  |
| 4. | Identifi                                                                                 | cation and Evaluation of Remedial Alternatives                    | 10 |  |  |  |  |
|    | 4.1                                                                                      | Multiphase Extraction                                             | 10 |  |  |  |  |
|    | 4.2                                                                                      | LNAPL Recovery Trenches                                           |    |  |  |  |  |
|    | 4.3                                                                                      | Evaluation of Remedial Alternatives                               | 11 |  |  |  |  |
|    |                                                                                          | 4.3.1 Initial Screening of Remedial Alternatives                  | 11 |  |  |  |  |
|    |                                                                                          | 4.3.2 LNAPL Volume and Recoverability                             | 12 |  |  |  |  |
| 5. | Recommended Corrective Measures                                                          |                                                                   |    |  |  |  |  |
|    | 5.1                                                                                      | Site-Wide Use Restrictions                                        | 13 |  |  |  |  |
|    | 5.2                                                                                      | Additional Proposed Corrective Measures                           | 13 |  |  |  |  |

| 5.2.1 | AOI 03-1 Quench Oil Plume          |                                     |    |  |  |  |
|-------|------------------------------------|-------------------------------------|----|--|--|--|
|       | 5.2.1.1                            | AOI Overview                        | 14 |  |  |  |
|       | 5.2.1.2                            | LNAPL Characteristics               | 15 |  |  |  |
|       | 5.2.1.3                            | Rationale for Remedy Selection      | 15 |  |  |  |
|       | 5.2.1.4                            | Estimated Remedy Costs              | 16 |  |  |  |
| 5.2.2 | AOI 10-1/10-4 Hydraulic Oil Plumes |                                     |    |  |  |  |
|       | 5.2.2.1                            | AOI Overview                        | 16 |  |  |  |
|       | 5.2.2.2                            | LNAPL Characteristics               | 17 |  |  |  |
|       | 5.2.2.3                            | Rationale for Remedy Selection      | 18 |  |  |  |
|       | 5.2.2.4                            | Estimated Remedy Costs              | 18 |  |  |  |
| 5.2.3 | AOI 36                             | -1 Mineral Seal/Hydraulic Oil Plume | 19 |  |  |  |
|       | 5.2.3.1                            | AOI Overview                        | 19 |  |  |  |
|       | 5.2.3.2                            | LNAPL Characteristics               | 19 |  |  |  |
|       | 5.2.3.3                            | Rationale for Remedy Selection      | 20 |  |  |  |
|       | 5.2.3.4                            | Estimated Remedy Costs              | 21 |  |  |  |
| 5.2.4 | AOI 36                             | 21                                  |    |  |  |  |
|       | 5.2.4.1                            | AOI Overview                        | 21 |  |  |  |
|       | 5.2.4.2                            | LNAPL Characteristics               | 22 |  |  |  |
|       | 5.2.4.3                            | Rationale for Remedy Selection      | 23 |  |  |  |
|       | 5.2.4.4                            | Estimated Remedy Costs              | 23 |  |  |  |
| 5.2.5 | AOI 36-                            | -5 Fuel Oil Plume                   | 23 |  |  |  |
|       | 5.2.5.1                            | AOI Overview                        | 23 |  |  |  |
|       | 5.2.5.2                            | LNAPL Characteristics               | 24 |  |  |  |

5.3

|                                                                       |       | 5.2.5.3                         | Rationale for Remedy Selection    | 24 |  |  |
|-----------------------------------------------------------------------|-------|---------------------------------|-----------------------------------|----|--|--|
|                                                                       |       | 5.2.5.4                         | Estimated Remedy Costs            | 25 |  |  |
|                                                                       | 5.2.6 | AOI 83/                         | 84-4 Cutting Oil Plume            |    |  |  |
|                                                                       |       | 5.2.6.1                         | AOI Overview                      | 25 |  |  |
|                                                                       |       | 5.2.6.2                         | LNAPL Characteristics             | 25 |  |  |
|                                                                       |       | 5.2.6.3                         | Rationale for Remedy Selection    | 26 |  |  |
|                                                                       |       | 5.2.6.4                         | Estimated Remedy Costs            | 26 |  |  |
|                                                                       | 5.2.7 | AOI 86-                         | 1 Fuel Oil Plume                  | 27 |  |  |
|                                                                       |       | 5.2.7.1                         | AOI Overview                      | 27 |  |  |
|                                                                       |       | 5.2.7.2                         | LNAPL Characteristics             | 27 |  |  |
|                                                                       |       | 5.2.7.3                         | Rationale for Remedy Selection    | 28 |  |  |
|                                                                       |       | 5.2.7.4                         | Estimated Remedy Costs            | 28 |  |  |
| Summary of Modifications to Measures Proposed in the Revised 2008 CMP |       |                                 |                                   |    |  |  |
|                                                                       | 5.3.1 | AOI 5-1/05-5 Cutting Oil Plumes |                                   |    |  |  |
|                                                                       |       | 5.3.1.1                         | AOI Overview                      | 29 |  |  |
|                                                                       |       | 5.3.1.2                         | LNAPL Characteristics             | 30 |  |  |
|                                                                       |       | 5.3.1.3                         | Rationale for Remedy Modification | 31 |  |  |
|                                                                       |       | 5.3.1.4                         | Estimated Modified Remedy Costs   | 31 |  |  |
| 5.3.2                                                                 |       | AOI 36-1 Gasoline Plume         |                                   |    |  |  |
|                                                                       |       | 5.3.2.1                         | AOI Overview                      | 31 |  |  |
|                                                                       |       | 5.3.2.2                         | LNAPL Characteristics             | 32 |  |  |
|                                                                       |       | 5.3.2.3                         | Rationale for Remedy Modification | 33 |  |  |
|                                                                       |       | 5.3.2.4                         | Estimated Modified Remedy Costs   | 34 |  |  |

| 5.3.3 | AOI 81-          | -2 LNAPL (Cutting Oil Plume)      | 34 |  |  |  |
|-------|------------------|-----------------------------------|----|--|--|--|
|       | 5.3.3.1          | AOI Overview                      | 34 |  |  |  |
|       | 5.3.3.2          | LNAPL Characteristics             | 34 |  |  |  |
|       | 5.3.3.3          | Rationale for Remedy Modification | 35 |  |  |  |
|       | 5.3.3.4          | Estimated Modified Remedy Costs   | 35 |  |  |  |
| 5.3.4 | AOI 81-2 Soil    |                                   |    |  |  |  |
|       | 5.3.4.1          | AOI Overview                      | 36 |  |  |  |
|       | 5.3.4.2          | Revised 2008 CMP Selected Remedy  | 36 |  |  |  |
|       | 5.3.4.3          | Rationale for Remedy Modification | 37 |  |  |  |
|       | 5.3.4.4          | Estimated Modified Remedy Costs   | 37 |  |  |  |
| 5.3.5 | AOI 83/          | /84-2 LNAPL (Cutting Oil Plume)   | 37 |  |  |  |
|       | 5.3.5.1          | AOI Overview                      | 37 |  |  |  |
|       | 5.3.5.2          | LNAPL Characteristics             | 38 |  |  |  |
|       | 5.3.5.3          | Rationale for Remedy Modification | 38 |  |  |  |
|       | 5.3.5.4          | Estimated Modified Remedy Costs   | 39 |  |  |  |
| 5.3.6 | AOI 83/84-3 Soil |                                   |    |  |  |  |
|       | 5.3.6.1          | AOI Overview                      | 39 |  |  |  |
|       | 5.3.6.2          | Revised 2008 CMP Selected Remedy  | 40 |  |  |  |
|       | 5.3.6.3          | Rationale for Remedy Modification | 40 |  |  |  |
|       | 5.3.6.4          | Estimated Modified Remedy Costs   | 40 |  |  |  |
| 5.3.7 | Outfall          | 002 Storm Sewer                   | 41 |  |  |  |
|       | 5.3.7.1          | AOI Overview                      | 41 |  |  |  |
|       | 5.3.7.2          | Revised 2008 CMP Selected Remedy  | 41 |  |  |  |

|    |                                 |                                              | 5.3.7.3   | Rationale for Remedy Modification                  | 41 |
|----|---------------------------------|----------------------------------------------|-----------|----------------------------------------------------|----|
|    |                                 |                                              | 5.3.7.4   | Estimated Modified Remedy Costs                    | 42 |
|    |                                 | 5.3.8                                        | Outfall   | 003 and Outfall 004 Storm Sewers                   | 42 |
|    |                                 |                                              | 5.3.8.1   | AOI Overview                                       | 42 |
|    |                                 |                                              | 5.3.8.2   | Revised 2008 CMP Selected Remedy                   | 43 |
|    |                                 |                                              | 5.3.8.3   | Rationale for Remedy Modification                  | 43 |
|    |                                 |                                              | 5.3.8.4   | Estimated Modified Remedy Costs                    | 44 |
|    |                                 | 5.3.9                                        | Outfall   | 005 Storm Sewer                                    | 44 |
|    |                                 |                                              | 5.3.9.1   | AOI Overview                                       | 44 |
|    |                                 |                                              | 5.3.9.2   | Revised 2008 CMP Selected Remedy                   | 44 |
|    |                                 |                                              | 5.3.9.3   | Rationale for Remedy Modification                  | 44 |
|    |                                 |                                              | 5.3.9.4   | Estimated Modified Remedy Costs                    | 45 |
|    | 5.4                             | Summ                                         | ary of Un | nodified Measures Proposed in the Revised 2008 CMP | 45 |
|    |                                 | 5.4.1 AOI 81-1 Soil                          |           |                                                    | 45 |
|    |                                 |                                              | 5.4.1.1   | AOI Overview                                       | 45 |
|    |                                 |                                              | 5.4.1.2   | Revised 2008 CMP Selected Remedy                   | 46 |
|    |                                 |                                              | 5.4.1.3   | Estimated Modified Remedy Costs                    | 46 |
|    |                                 | 5.4.2 AOI 83/84-2 Soil                       |           |                                                    | 46 |
|    |                                 |                                              | 5.4.2.1   | AOI Overview                                       | 46 |
|    |                                 |                                              | 5.4.2.2   | Revised 2008 CMP Selected Remedy                   | 47 |
|    |                                 |                                              | 5.4.2.3   | Estimated Modified Remedy Costs                    | 47 |
| 6. | 6. Groundwater Monitoring Plans |                                              |           | 48                                                 |    |
|    | 6.1                             | Site-wide Annual Groundwater Monitoring Plan |           |                                                    | 48 |

#### **Table of Contents**

| 8. | References                              |         |                                        | 58                                              |    |
|----|-----------------------------------------|---------|----------------------------------------|-------------------------------------------------|----|
| 7. | Schedu                                  | le      |                                        |                                                 | 57 |
|    | 6.3                                     | Field S | Sampling I                             | Plan/ Quality Assurance Plan                    | 55 |
|    |                                         | 6.2.5   | Conting                                | ency Plan                                       | 55 |
|    |                                         | 6.2.4   | Reporti                                | ng                                              | 54 |
|    |                                         | 6.2.3   | Analytic                               | al Methods                                      | 53 |
|    |                                         | 6.2.2   | Storm S                                | Sewer Outfall Sampling Parameters and Frequency | 52 |
|    |                                         | 6.2.1   | NPMP I                                 | Monitoring Points                               | 52 |
|    | 6.2 NPDES Plus Monitoring Plan Overview |         |                                        | 51                                              |    |
|    |                                         | 6.1.5   | Conting                                | ency Plan                                       | 51 |
|    |                                         | 6.1.4   | Reporti                                | ng                                              | 51 |
|    |                                         | 6.1.3   | Monitor                                | ing Network Inspection and Maintenance          | 50 |
|    |                                         |         | 6.1.2.2                                | Laboratory Analysis                             | 50 |
|    |                                         |         | 6.1.2.1                                | Groundwater Sample Locations                    | 49 |
|    |                                         | 6.1.2   | Groundwater Quality Monitoring Program |                                                 | 49 |
|    |                                         | 6.1.1   | Ground                                 | 48                                              |    |

#### LIST OF TABLES

- Table 1 General LNAPL Screening Factors and Technology Selection
- Table 2 AOI Summary of Impacts, Health-Risks, and Recommended Corrective Measures
- Table 3 LNAPL Volume Calculations
- Table 4 AOI-Specific LNAPL Screening Factors and Technology Selection
- Table 5 Groundwater and LNAPL Elevation Monitoring Locations Northend
- Table 6 Groundwater and LNAPL Elevation Monitoring Locations Southend
- Table 7 Groundwater Quality Monitoring Locations
- Table 8 NPMP Monitoring Points and Analyses

#### LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 LNAPL Thickness Contours Northend
- Figure 3 Proposed Corrective Measures Northend
- Figure 4 Groundwater Monitoring Locations Northend
- Figure 5 Groundwater Monitoring Locations Southend
- Figure 6 NPMP Monitoring Points

#### APPENDIX

Appendix A - Human Health Risk Assessment for the Redevelopment Construction Worker

#### 1. Introduction

#### 1.1 Background

This report was prepared by ARCADIS on behalf of the Motors Liquidation Company (MLC), formerly known as General Motors Corporation (GMC), for the former GMC North American Operations facility (otherwise known as Buick City) (the Site), located in Flint, Michigan. On June 1, 2009, GMC filed for Chapter 11 protection under U.S. bankruptcy code. On July 10, 2009, GMC was renamed Motors Liquidation Company (MLC). On the same day some of the operating assets of GMC were sold to a newly formed company, "General Motors Company". General Motors Company changed its name to General Motors LLC (GM LLC) on October 16, 2009. Assets not sold to GM LLC remain the property of the MLC, in its capacity as a debtor-in-possession in the bankruptcy case. Currently, GM LLC manufactures automotive components at the northern portion of the Site (also known as the GM Powertrain Flint North facility) under a lease with MLC. MLC retains the requirements and responsibilities associated with EPA I.D. # MID 005 356 712.

On March 2, 2000 (modified November 8, 2001), the United States Environmental Protection Agency (USEPA) and GMC entered into a Resource Conservation and Recovery Act (RCRA) Section 3008(h) Administrative Order on Consent (AOC) R8H-5-00-02 for the Site. The AOC instructs GMC to investigate and, as necessary, stabilize and remediate releases of hazardous waste or hazardous constituents at or from the Site in accordance with the RCRA and relevant USEPA corrective action guidance documentation.

#### 1.2 Corrective Measures History

This *RCRA Revised Corrective Measures Proposal Addendum No. 2 - Northend Corrective Measures and Site-wide Groundwater Monitoring* (CMP Addendum No. 2) was prepared to address corrective measures for the area of the Site located North of Leith Street (Northend) and Site-wide groundwater monitoring. This CMP Addendum No. 2 supersedes the corrective measures for the Northend of the Site and Site-wide groundwater monitoring proposed in the *RCRA Revised Corrective Measures Proposal* (2008 Revised CMP) prepared by ARCADIS and submitted to the USEPA on May 1, 2008 as well as the *RCRA Corrective Measures Proposal* prepared by Blasland, Bouck & Lee, Inc., an ARCADIS Company (BBL), and submitted to the USEPA on December 22, 2006 (December 2006 CMP).

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Addendum No.2 – Northend Corrective Measures and Site-wide Groundwater Monitoring MID 005 356 712

The December 2006 CMP was submitted to fulfill conditions set forth under Section VI.3 of the AOC. The USEPA provided GMC via letter dated April 17, 2007 comments on the December 2006 CMP. GMC responded to USEPA's comments via letter dated October 10, 2007. The 2008 Revised CMP incorporated GMC's October 10, 2007 responses to USEPA's April 17, 2007 comments on the December 2006 CMP, as well as information discussed with USEPA during a project status meeting held at USEPA's offices in Chicago, Illinois on December 13, 2007, with representatives from USEPA, GMC, ARCADIS, and ENVIRON attending (minutes dated January 10, 2008).

Based on subsequent discussions with the USEPA, and given changes anticipated for the disposition of buildings in the Northend of Buick City, MLC has revised the proposed corrective measures to address the occurrence of light non-aqueous phase liquid (LNAPL) at the Northend of the Site and has modified the Site-wide groundwater monitoring plan to include analysis of groundwater discharging to the Flint River via the site storm sewers. This CMP Addendum No. 2 summarizes the interim measures (IMs) initiated in the Northend of the Site prior to and since the effective date of the AOC, describes the final proposed corrective measures for AOI's at the Northend of the Site not included in the Revised 2008 CMP, describes modified corrective measures for LNAPL areas previously addressed in the Revised 2008 CMP, discusses the rationale for the selection of those modified corrective measures, and presents the modified Site-wide groundwater monitoring plan, including an "NPDES Plus" monitoring plan for the site storm sewers.

#### **1.3 Overview of RFI Activities**

To fulfill the conditions set forth under Section VI.1 of the AOC, GMC completed activities necessary to identify and define the nature and extent of releases of hazardous waste or hazardous constituents at or from the Site. These activities have been presented in the following documents:

- Description of Current Conditions for Areas South of Leith Street (BBL, 2000a) (SEDOCC);
- Description of Current Conditions for Areas North of Leith Street (BBL, 2000b) (NEDOCC);
- RCRA Facility Investigation Work Plan (BBL, 2001) (RFI Work Plan);

- Resource Conservation and Recovery Act Facility Investigation Phase I Report (BBL, 2002a) (RFI Phase I Report);
- Resource Conservation and Recovery Act Facility Investigation Phase II Report (BBL, 2004 & BBL, 2006) (RFI Phase II Report).

The investigation activities and risk assessments included in these documents serve as the basis for much of this CMP Addendum No. 2, and are incorporated by reference herein. As needed, information previously presented in the SEDOCC, NEDOCC, RFI Phase I Report, and RFI Phase II Report is referenced, restated, or summarized. These documents present a more comprehensive understanding of the Site and the RFI activities that have been conducted at the Site.

#### 1.4 Report Organization

This CMP Addendum No. 2 is organized as follows:

- Section 1 presents a general overview of background and Site information.
- Section 2 provides a summary of human health risk assessments and selection of AOIs addressed in the CMP.
- Section 3 provides a summary of former and current IMs in the Northend of the Site.
- Section 4 provides an evaluation of remedial alternatives.
- Section 5 provides a discussion of the additional corrective measures proposed for LNAPL areas located at the Northend of the Site as well as modified corrective measures for LNAPL areas previously included in the Revised 2008 CMP.
- Section 6 provides a summary of the Site-wide enhanced groundwater monitoring program and the NPDES Plus Monitoring program.
- Section 7 presents the schedule for performing the proposed corrective measures.
- Section 8 lists references used in this document.

Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Addendum No.2 – Northend Corrective Measures and Site-wide Groundwater Monitoring MID 005 356 712

#### 1.5 Environmental Setting

Information regarding the environmental setting of the Site (e.g. topography, climate, hydrology, geology, hydrogeology, surface water drainage) has previously been presented in the Section 2 of the Revised 2008 CMP, Section 3 of the RFI Phase I Report, and Section 3 of the RFI Phase II Report. With the exception of current Site operations (discussed below), the environmental setting information has not changed substantially since the preparation of the Revised 2008 CMP and therefore is not repeated in this document.

The Site currently consists of three active manufacturing complexes (Factories 05, 10, and 81) with the remainder of the Site buildings in various stages of decommissioning in preparation for demolition. Since the completion of the Revised 2008 CMP, manufacturing operations have ceased in Factory 36, where demolition activities have begun. Current Site operations in Factories 5, 10 and 81 include machining of ferrous and nonferrous metals, heat treating, and assembly of torque converters and transmission components. GM LLC continues to operate the on-site industrial wastewater treatment facility.

# 2. Summary of Human Health Risk Assessments and Selection of AOIs Addressed in the CMP

#### 2.1 Human Health Risk Assessments

A human health risk assessment (HHRA) was performed as part of the RFI (Section 6 of the RFI Phase II Report). The following sections briefly describe those components of the RFI Phase II Report, as well as supplemental risk evaluations, which were performed since the RFI Phase II Report was submitted.

#### 2.1.1 RFI Phase II HHRA

The scope of the RFI Phase II HHRA is summarized in the conceptual site model (CSM) shown in Table 6.1 of the RFI Phase II Report. The CSM identifies the scenarios for potential human exposure under current and reasonably expected future conditions at and around the Site in terms of the potentially exposed populations, the environmental media to which they could be exposed, and the potential routes of exposure. The CSM was developed based on the available Site information and data. The scenarios for potential human exposure were discussed in Section 6.3 of the RFI Phase II Report.

#### 2.1.2 Revised 2008 CMP Supplemental HHRA

In the Revised 2008 CMP the HHRA was supplemented with an evaluation of potential exposures to groundwater in the event that areas downgradient of the Site are developed for residential use. This supplemental evaluation is provided in Appendix A of the Revised 2008 CMP in a memorandum entitled "Supplemental Evaluation of Potential Residential Exposure to Groundwater".

#### 2.1.3 CMP Addendum No. 2 Supplemental HHRA

The RFI Phase II HHRA did not include an evaluation of the risks for the redevelopment construction worker working in the Northend of the Site because at that time no redevelopment of the Northend was anticipated. The buildings remaining on the Northend are scheduled for demolition and the future use of Site is now uncertain. As such, an evaluation of this receptor is warranted. This supplemental evaluation is provided in Appendix A of this report.

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

#### 2.2 Rationale for Selection of AOIs Addressed in the Revised 2008 CMP

Section 8 of the RFI Phase II Report divided the Site AOIs covered by the RFI into following three categories:

- AOIs requiring no further action;
- AOIs that do not contain LNAPL and require action based on the HHRA; and
- AOIs that contain LNAPL.

Tables 8-1 through 8-3 from the RFI Phase II Report were based on the assumption that the future use of the Southend would be residential. However, following completion of the RFI Phase II Report it was determined that the future use of the Southend would be restricted to Michigan Part 201 Industrial and Commercial II, III & IV use scenarios by implementing a deed restriction, even though there are AOIs that meet residential criteria. As such, the entire Site is evaluated based on Industrial and Commercial II, III, and IV use scenarios.

In the Revised 2008 CMP the AOIs were re-grouped into the following three categories:

- AOIs requiring no further action beyond groundwater and land use restrictions;
- AOIs that require further action because they contain PCBs at levels regulated by TSCA; and
- AOIs that require further action based on the RFI.

Tables presented in the Revised 2008 CMP (Tables 3-1, 3-2, and 3-3) summarize the Site AOIs divided per these three categories, respectively, and replace Tables 8-1 through 8-3 of the RFI Phase II Report. The AOIs listed in Revised 2008 CMP were carried forward for evaluation of remedial measures. As discussed in Section 6 of the RFI Phase II Report, the risk estimates for all relevant receptors in each exposure area were compared to the USEPA cumulative cancer risk limit of 10<sup>-4</sup> and hazard index (HI) limit of 1 for determining whether corrective measures are warranted for each AOI. For lead, the arithmetic mean concentration in each exposure area was compared to the MDEQ industrial lead direct contact criterion of 900 mg/kg. Further action at a Site

Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

AOI was determined by the results of the HHRA and/or the presence of TSCAregulated LNAPL plumes.

The Revised 2008 CMP Appendix A presented a supplemental human health risk evaluation, involving hypothetical future residential exposures to groundwater via vapor intrusion and non-potable use downgradient of the Site. The estimated risks from these routes of exposure did not exceed the USEPA cumulative cancer risk limit of 10<sup>-4</sup> or the HI limit of 1. Thus, this evaluation concluded that further action to address downgradient groundwater was not necessary.

#### 2.3 Rationale for Additional AOIs Addressed in this CMP Addendum No.2

The Revised 2008 CMP proposed corrective measures for the AOIs identified during RFI activities as having either: 1) LNAPL in which TSCA-regulated levels of PCBs were detected; or 2) estimated risks higher than USEPA's acceptable risk limits via exposure to hazardous constituents in soil, groundwater, or LNAPL. However, based on additional discussions with the USEPA in 2009, MLC agreed to actively remediate AOIs containing LNAPL as part of the corrective measures for the Site.

Additionally, as discussed in Section 2.1.3, the RFI Phase II HHRA did not include an evaluation of the risks for the redevelopment construction worker working in the Northend of the Site because at that time no redevelopment of the Northend was anticipated. Because GM LLC is terminating manufacturing operations in late 2010, the buildings remaining on the Northend are scheduled for demolition and the future use of Site is now uncertain. As such, an evaluation of this receptor is warranted. This supplemental evaluation is provided in Appendix A.

The redevelopment construction worker evaluation identified four AOIs (81-1, 81-2, 83/84-2, and 83/84-3) where risk management practices are recommended. For these AOIs, it is recommended that a land-use restriction be attached to the Site to require that a Health and Safety Plan be prepared prior to commencing construction. These AOIs are further discussed in Section 5.

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Addendum No.2 – Northend Corrective Measures and Site-wide Groundwater Monitoring MID 005 356 712

#### 3. Interim Measures

As discussed in the RFI Phase II Report, various LNAPL plumes have been observed at the Site, and an LNAPL monitoring program was conducted for several years to measure the depth of LNAPL and to remove LNAPL from the wells, with the results being reported via Quarterly LNAPL Monitoring Reports that were submitted to the USEPA and Michigan Department of Environmental Quality (MDEQ). This program was completed in December 2004 and the final monitoring report was submitted to the USEPA on January 19, 2005. As a result of this program, the various LNAPL plumes identified at the Site have been demonstrated to be relatively stable; however, MLC chose to implement certain interim measures (IMs) to collect LNAPL until final remedial activities were to be proposed.

Interim Measure remedial actions were implemented to recover LNAPL at several of the LNAPL areas located in the Northend of the Site that were delineated during the RFI Phase I and Phase II investigations. Several of the IM remediation systems are no longer in operation due to declining system performance over time. The previous IM remedial actions in the Northend of the Site include:

- Factory 03 Product Recovery Sump (AOI 03-1)
- Factory 05 Building 43 Product Recovery Wells (AOI 05-5)
- Former Tank Farm 37 Product Recovery System (AOI 36-5)
- Building 32 Recovery Well (AOI 83/84-2)
- Building 87/Leith Street Overpass Product Recovery Wells (AOI 86-1)

Several LNAPL recovery systems were still operating in the Northend of the Site in 2010; however, the rate of LNAPL recovery by these systems had become negligible due to the lack of recoverable LNAPL within the capture zone of the systems. Due to the fact that the systems were removing no or negligible amounts of LNAPL; MLC has initiated the following actions with respect to these IMs:

The Factory 36 Area Exterior Product Recovery and Treatment System (AOI 36-2) was shut down to accommodate the decommissioning and demolition activities associated with Factory 36. It should be noted, however, that the system was no longer collecting LNAPL.

- The following IMs have been terminated as of October 1, 2010:
  - Factory 05 Product Recovery Trench (AOI 05-1)
  - Factory 81 Area Product Recovery System (AOI 81-2)
- The following IMs will be terminated following the shutdown of manufacturing operations in Factory 10 at the end of October 2010:
  - Factory 10 Groundwater Treatment System (AOI 10-1)
  - Factory 10 Scrap yard Area Product Recovery Trench (AOI 10-4)

A second IM associated with Building 87/Leith Street Overpass (AOI 86-1) will remain in operation. This IM consists of a foundation drain and P-traps located adjacent to the Leith Street overpass. The P-traps were installed in the retaining wall drainage system to prevent LNAPL migration into the Outfall 005 storm sewer system.

Section 5 of this CMP Addendum No. 2 presents corrective measures to address each of the LNAPL areas located in the Northend of the Site.

Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

#### 4. Identification and Evaluation of Remedial Alternatives

The corrective measure objectives for the North end are as follows:

- 1. Protect human health;
- 2. Reduce contaminant source mass;
- 3. Eliminate the potential for future LNAPL migration by reducing LNAPL saturation.

MLC has identified two readily implementable LNAPL recovery technologies that satisfy the corrective measure objectives. These technologies include multiphase extraction and LNAPL recovery trenches, as discussed in further detail below.

#### 4.1 Multiphase Extraction

Multiphase extraction (MPE) employs combined LNAPL/groundwater extraction and vacuum application to a recovery well screened across both the vadose and saturated zones. LNAPL and groundwater may be extracted via an in-well liquid pump or via vacuum pumping. Applying a vacuum to the vadose zone as a component of LNAPL/groundwater extraction increases the net effective hydraulic gradient toward the extraction well, thereby reducing the groundwater-table deflection necessary to establish an LNAPL capture zone. Additionally, air flow through the smear zone and vadose zone induced by the application of vacuum enhances recovery of volatile LNAPL components and promotes aerobic biodegradation within the impacted areas.

MPE technology is applicable for fine to medium grain geologic settings such as silty sand or fine to medium sand. Lower permeability geologic settings such as silty clays and clay have limited pneumatic conductivity, which limits the effective MPE zone of influence. Conversely high permeability geologic setting such as coarse sands and gravels may also limit the effective MPE zone of influence due to the large air and groundwater extraction flow rates that may be necessary to induce sufficient hydraulic gradient to induce LNAPL movement towards the extraction well.

#### 4.2 LNAPL Recovery Trenches

LNAPL recovery trenches serve as collection points for LNAPL recovery via gravity drainage. Trenches excavated into LNAPL-smeared soils are filled with high-permeability granular material. LNAPL drains from the LNAPL-smeared soil and

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

accumulates in the granular trench material. Accumulated LNAPL is manually or automatically extracted from recovery sumps installed in the granular material.

#### 4.3 Evaluation of Remedial Alternatives

#### 4.3.1 Initial Screening of Remedial Alternatives

The considered remedial alternatives are effective in reducing the toxicity, mobility, and volume of wastes and both are readily implementable. Both alternatives will be outfitted with appropriate emission controls to eliminate unacceptable community and worker exposure. Therefore, the remedial alternative evaluation predominantly considers the effectiveness of remedial alternatives for addressing the variable LNAPL types and geologic settings found at the site and the cost effectiveness of remedy implementation.

The applicability of the LNAPL remedial alternatives for each AOI were screened by reviewing geologic descriptions, calculating AOI-specific total and potentially recoverable LNAPL volumes, and reviewing available data on the LNAPL type. The influence of each of these factors on technology selection is summarized in **Table 1**. Descriptions of AOI-specific geologic setting and LNAPL type were derived from the RFI Phase I and II reports. A description of the methodology used to calculate LNAPL volume and recoverability is presented in Section 4.3.2 below.

The LNAPL remedial alternatives considered here were selected as baseline presumptive remedies for addressing LNAPL impacts. Select enhanced LNAPL remediation technologies will be bench and pilot-scale tested to 1) assess remedial technology applicability and effectiveness; and 2) to collect design data to form the remedial system basis of design. Multiple bench-scale studies will be conducted to assess LNAPL remedial technology performance on the variable soil types and LNAPL types present at the Site. Bench-scale testing is expected to include the evaluation of physical LNAPL recovery via multi–phase extraction (MPE)/recovery trenches, surfactants, thermal remediation, In-Situ chemical Oxidation (ISCO), and enhanced bioremediation. The results of the bench and field-scale testing may be used to select an alternate remedial technology if it is determine that that technology provides superior contaminant reduction and cost effectiveness to MPE and/or LNAPL Recovery Trenches. Some of the bench scale work from remedial efforts on LNAPL in the Southend of the site will be applicable to the LNAPL areas in the Northend.

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

#### 4.3.2 LNAPL Volume and Recoverability

Site-specific LNAPL volumes and recoverability were estimated through the use of site data and advanced LNAPL volume calculations developed through the joint work of a number of research universities and private organizations. An ARCADIS-generated LNAPL volume calculation spreadsheet was used to model the expected LNAPL saturation and corresponding specific LNAPL volumes (expressed in terms of gallons per square foot of LNAPL-impacted aquifer) based on input of the physical properties of the product and aquifer matrix and field observations of the degree of LNAPL impact.

In order to calculate the LNAPL volumes and recoverability, the following inputs were required: the area of LNAPL extent; the thickness of LNAPL in monitoring wells; water/LNAPL physical properties data; and soil properties data. The LNAPL area and thickness inputs were based on contours from maximum LNAPL thicknesses as shown on Figure 2. The LNAPL smear zone was assumed to be 1.5 times the observed LNAPL thickness in monitoring wells to account for fluctuations in the groundwater table, which would leave residual LNAPL locked in pore spaces over a greater vertical extent than would be assumed using LNAPL thickness in well measurements. The fluid properties data include LNAPL and groundwater density, LNAPL and groundwater viscosity, and interfacial tensions of air, LNAPL, and groundwater. The fluid properties inputs were site-specific values based on samples collected and analyzed in 2001 - 2003, as well as assumed values, where noted. The soil properties inputs were taken from the American Petroleum Institute (API) database values and literature values based on soil types identified in each area on site soil boring logs. The required soil properties data include porosity, van Genuchten fitting parameters alpha and beta, irreducible water saturation, and residual LNAPL saturation.

Details of the LNAPL, fluid, and soil properties used to determine LNAPL volume and recoverability at each LNAPL area are discussed in Sections 5.2 and 5.3.

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

#### 5. Recommended Corrective Measures

This section presents a summary of the recommended Northend corrective measures based on currently available information. These corrective measures were evaluated with the consideration that certain baseline Site-wide use restrictions will be applied as part of the overall final corrective action for the Site. **Table 2** summarizes the impacts, health risks, and recommended corrective measures identified for each of the AOIs discussed in Sections 5.2, 5.3, and 5.4.

#### 5.1 Site-Wide Use Restrictions

Corrective measures were evaluated with the consideration that certain Baseline Sitewide Use Restrictions would be applied as part of the overall final corrective action for the Site. Baseline restrictions will consist of a restrictive covenant that will be established to prohibit the use of groundwater for any purpose, beyond sampling and other related investigatory testing, and to limit future use of the Site to Part 201 Industrial or Commercial II, III, and IV use only. Additional restrictions above these baseline restrictions may be applied for certain onsite areas, as appropriate, and determined by the proposed remedy for a particular AOI. These additional restrictions are discussed, as appropriate, in Sections 5.2, 5.3, and 5.4.

Based on information included in the RFI Phase II Report and the supplemental HHRA included in Appendix A of the Revised 2008 CMP, the identified potential for unacceptable exposure to groundwater at down gradient off-property areas relates solely to drinking water use. Thus, MLC proposes to also establish a restrictive covenant for downgradient offsite property that will prohibit the use of corresponding groundwater for potable uses. City of Flint Ordinance 9, Code of Ordinances, Chapter 46-25 already restricts the installation of drinking water wells in the City of Flint, and Michigan Department of Community Health Rules (Act 368, Part 127) also prohibits the use of groundwater at a depth of less than 25 feet below ground surface within all of Genesee County. As such, it is not anticipated that MLC will experience significant difficulty in obtaining the necessary restrictive covenants as described.

#### 5.2 Additional Proposed Corrective Measures

This section discusses the corrective measures proposed for AOIs that were not included in the Revised 2008 CMP. The Revised 2008 CMP proposed corrective measures for the AOIs identified during RFI activities as having either: 1) LNAPL in which TSCA-regulated levels of PCBs were detected; or 2) estimated risks higher than

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

USEPA's acceptable risk limits via exposure to hazardous constituents in soil, groundwater, or LNAPL. The AOIs discussed below do not meet either of these criteria. However, based on additional discussions with the USEPA in 2009, MLC agreed to actively remediate AOIs containing LNAPL as part of the corrective measures for the Site. These additional corrective measures are presented on **Figure 3**. Exceedances of screening criteria for soil and/or groundwater at these AOIs are summarized in **Table 2** and will be addressed either as part of the Baseline Site-wide Use Restrictions as discussed in Section 5.1 and/or with Additional Institutional Controls Above Baseline as discussed in Sections 5.2, 5.3 and 5.4.

5.2.1 AOI 03-1 Quench Oil Plume

#### 5.2.1.1 AOI Overview

AOI 03-1 consists of the overall area of the Factory 03 building complex, including various quenching and cooling oil systems used for various metal forging, quenching, and cooling operations. A quench oil plume was identified in this area. Historically, a roof drain/storm sewer sump located in the southern portion of Building 30A accumulated LNAPL, determined to be S-7 quench oil. As a result, the sump was converted to an IM collection sump with a belt skimmer to recover this oil. This recovery system was successful in recovering free-phase LNAPL only proximate to the recovery sump; hence, operation of this system has been discontinued. LNAPL, believed to be related to this release, is present immediately down gradient at monitoring well 03-03 and is known as the AOI 03-1 quench oil plume.

The physical extent of the AOI 03-1 quench oil plume is approximately 50 feet in diameter. Select monitoring wells in AOI 03-1 were monitored and manually bailed as part of the Site-wide LNAPL monitoring program from 2001 through 2005. A total of approximately 4 gallons of LNAPL was recovered, primarily from monitoring well 03-03.

Based on the HHRA for AOI 03-1 documented in the RFI Phase II Report estimates for potential exposure to subsurface LNAPL in this area does not exceed USEPA's cumulative cancer risk and HI limits. The remedial goal for AOI 03-1 quench oil plume is to remove LNAPL to the extent practicable.

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

#### 5.2.1.2 LNAPL Characteristics

As discussed in Section 4.3.2 the volume of LNAPL and potentially recoverable volume of LNAPL are based on site specific and/or assumed LNAPL, fluid, aquifer, and soil characteristics. A summary of the characteristics used to calculate the LNAPL volume at AOI 03-1 is presented in **Table 3**.

The total area of measurable LNAPL at AOI 03-1 was calculated to be approximately 2,700 square feet based on the LNAPL thicknesses as shown on **Figure 2**.

Based on an evaluation of Site boring logs, the geology in the vicinity of the AOI 03-1 quench oil plume consists primarily of silt. The soil properties data inputs were selected from the API Parameters Database and from well-recognized literature values by averaging values associated with silt.

The results of the evaluation for the AOI 03-1 quench oil plume indicate a total volume of approximately 15,000 gallons of LNAPL with the potentially recoverable LNAPL volume being estimated as approximately 270 gallons. Based on the results of the volume estimation, the potentially recoverable LNAPL is estimated to be approximately 1.8% of the total LNAPL volume.

#### 5.2.1.3 Rationale for Remedy Selection

A review of the screening factors, as presented in **Table 4**, indicate that the geology at the AOI 03-1 quench oil plume is primarily silt; that the potential recoverability of LNAPL is low; that the quench oil is a low volatility petroleum product; and that there were no detected PCBs in the LNAPL. Based on these factors the remedy selected for AOI 03-1 is a passive LNAPL recovery trench.

As summarized on **Table 4**, the proposed recovery trench will be approximately 80 feet long and 15 feet deep and will include three 8-inch diameter sumps to collect LNAPL. The trench length was determined by evaluating the length of the plume perpendicular to the direction of groundwater flow in probable trench locations. The collected LNAPL will be removed from the sumps via a mobile vacuum truck as necessary.

Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

#### 5.2.1.4 Estimated Remedy Costs

Capital costs (which for the purposes of this CMP include work planning, pilot testing, design and installation) for the proposed recovery trench remedy are expected to be approximately \$36,000 with operation, maintenance and monitoring (OM&M) costs over 2 years totaling approximately \$200,000.

#### 5.2.2 AOI 10-1/10-4 Hydraulic Oil Plumes

#### 5.2.2.1 AOI Overview

AOI 10-1 consists of the overall area of Building 20, including its basement area, manufacturing operations, external areas, and several tanks. AOI 10-4 consists of the scrap yard area immediately south of Building 20 and was used for scrap material storage, vehicle dismantling, and vehicle equipment storage.

In 1991, LNAPL was detected on the water table beneath and south of Building 20 within the Factory 10 Area. Fractions of this LNAPL included both water-soluble and insoluble phases of oil containing PCBs. In May 1997, GMC installed a groundwater collection and treatment system as an IM designed to collect and treat soluble product and affected groundwater from this area. Treated groundwater is discharged to the Site storm sewer system under a National Pollutant Discharge Elimination System (NPDES) permit. The treatment system, known as the Factory 10 treatment system, is still in operation.

Subsurface investigations performed in and around the scrap yard area south of Factory 10 identified the presence of LNAPL containing PCBs on the surface of groundwater outside the southeastern corner of Factory 10 and in the adjacent scrap yard area to the south, outside the influence of the LNAPL collection system installed in 1997. As a result, a second product recovery system consisting of a recovery trench, four manholes, and pumps for both product recovery and groundwater drawdown was constructed further down gradient to recover the PCB-containing LNAPL and create hydraulic control at the down gradient plume edge. The collection trench, sumps, manholes, and product piping of a second IM were installed in January and February 2003.

The recovery trench associated with this system is composed of two segments: one segment is approximately 30 feet long and the other is approximately 210 feet long. Both trench segments are approximately 20 feet deep and 1.5 feet wide, and contain a

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

perforated pipe lateral and pea stone backfill. Product and groundwater are pumped from four 4-foot diameter recovery manholes equally spaced along the trench. Collected groundwater and product are treated in the groundwater treatment system in Building 20, because of its PCB handling capability.

The treatment system is currently treating less than 5,000 gallons per day and is recovering approximately 55 gallons of oil per month from the extracted groundwater and water from other sources. Due to the high cost of operation and the fact that the system is no longer effective at removing significant amounts of LNAPL, this treatment system is no longer a sustainable solution and will be dismantled.

Based on the HHRA for AOIs 10-1/10-4 documented in the RFI Phase II Report estimates for potential exposure to subsurface LNAPL in this area does not exceed USEPA's cumulative cancer risk and HI limits. The remedial goal established for the AOIs 10-1/10-4 is to remove LNAPL to the extent practicable.

#### 5.2.2.2 LNAPL Characteristics

As discussed in Section 4.3.2 the volume of LNAPL and potentially recoverable volume of LNAPL are based on site specific and/or assumed LNAPL, fluid and soil characteristics. A summary of the characteristics used to calculate the LNAPL volume at AOIs 10-1/10-4 is presented in **Table 3**.

The total area of measurable LNAPL at AOIs 10-1/10-4 was calculated to be approximately 160,000 square feet based on the LNAPL thicknesses as shown on **Figure 2.** 

Based on an evaluation of Site boring logs, the geology in the vicinity of the AOI 10-1/10-4 hydraulic oil plumes consist primarily of fine to medium sand. The soil properties data inputs were selected from the API Parameters Database and well recognized literature values associated with fine and medium sands.

The results of the evaluation for the AOI 10-1/10-4 plumes indicate a total volume of approximately 220,000 gallons of LNAPL with the potentially recoverable LNAPL volume being estimated as 9,200 gallons. Based on the results of the volume estimation the potentially recoverable LNAPL is estimated to be approximately 4.1% of the total LNAPL volume.

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

#### 5.2.2.3 Rationale for Remedy Selection

A review of the screening factors, as presented in **Table 4**, indicate that the geology at the AOI 10-1/10-4 hydraulic oil plumes is primarily fine and medium sands; that the potential recoverability of LNAPL is low; that the hydraulic oil is a low volatility petroleum product; and that there were PCBs have been detected in the LNAPL. LNAPL samples collected from the AOI 10-1/10-4 plumes detected PCBs at a maximum concentration of 44 parts per million (ppm).

Based on these factors the remedy selected for the AOI 10-1/10-4 LNAPL plumes is an active LNAPL recovery trench/well skimming system.

The proposed LNAPL recovery trench/well skimming system will consist of recovery trenches, which will total approximately 730 linear feet and will be approximately 15 feet deep (**Table 4**). The trench length was determined by evaluating the length of the plume perpendicular to the direction of groundwater flow in probable trench locations. Four collection sumps with skimmer pumps will be installed in the trenches. The recovered LNAPL and groundwater will be pumped to a treatment system consisting of an oil water separator followed by liquid phase activated carbon. The proposed treatment system will use components of the existing system to the extent possible.

Also, recently an oil grab sample was collected from the Factory 10 basement, located in AOI 10-1. Analytical results detected PCBs in the oil sample at a concentration of 56 ppm. It is anticipated that Additional Institutional Controls Above Baseline will be recommended at this AOI and the deed will be modified to provide notification of the presence of PCBs. Additional LNAPL delineation activities are planned at AOI 10-1 following the completion of building demolition is completed. **Figure 3** shows the approximate area to be covered by the deed restriction; however, the actual extent will be refined based on LNAPL investigation activities prior to establishing the restrictive covenant.

#### 5.2.2.4 Estimated Remedy Costs

Capital costs for the proposed active LNAPL recovery trench/well skimming remedy are expected to be approximately \$570,000 with OM&M costs over 2 years totaling approximately \$260,000. The cost associated restrictive covenant is estimated to be \$5,000 and includes performing a boundary survey of the area and administering the restrictive covenant.

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

#### 5.2.3 AOI 36-1 Mineral Seal/Hydraulic Oil Plume

#### 5.2.3.1 AOI Overview

AOI 36-1 is located in the northern and central portions of Building 36, and is associated with engine manufacturing and metal machining processes. Two LNAPL plumes have been identified in AOI 36-1. The plumes are identified as the AOI 36-1 Mineral Seal/Hydraulic Oil (AOI 36-1 MS/HO) Plume and the AOI 36-1 Gasoline Plume. The AOI 36-1 MS/HO plume is discussed in this section and the AOI 36-1 Gasoline Plume is discussed in Section 5.3.2.

The AOI 36-1 MS/HO plume is located beneath Building 36 and is approximately 500 feet in diameter. Select monitoring wells in the Building 36 area (which includes the AOI 36-1 MS/HO plume, the AOI 36-1 Gasoline Plume, and The AOI 36-2 MS/HO plume) were monitored and manually bailed during the Site-wide LNAPL monitoring program conducted from 2001 through 2005. A total of approximately 150 gallons of LNAPL was recovered from the AOI 36-1 and AOI 36-2 LNAPL areas.

Based on the HHRA for AOI 36-1 documented in the RFI Phase II Report and summarized in Section 3.2 of the Revised 2008 CMP, estimates of potential exposure for construction workers who could contact the AOI 36-1 Gasoline Plume exceed USEPA's cumulative cancer risk and HI limits. In addition, potential exposure of routine workers to vapors from soil and LNAPL via vapor intrusion exceeds USEPA's cumulative cancer risk and HI limits under future commercial/industrial use scenarios that do not require the application of OSHA regulations (non-OSHA use). These risk estimates are primarily attributed to the concentrations of the constituents present in the AOI 36-1 Gasoline plume. Conditions within the current building do meet current OSHA standards related to vapor concentrations in indoor air as discussed in the RFI Phase II Report.

As discussed above, based on the HHRA for AOI 36-1, the risk estimates are primarily attributed to the concentrations of the constituents present in the AOI 36-1 Gasoline Plume. The remedial goal for AOI 36-1 MS/HO LNAPL plume at this AOI is to remove LNAPL to the extent practicable.

#### 5.2.3.2 LNAPL Characteristics

As discussed in Section 4.3.2 above the volume of LNAPL and potentially recoverable volume of LNAPL are based on site specific and/or assumed LNAPL, fluid and soil

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Addendum No.2 – Northend Corrective Measures and Site-wide Groundwater Monitoring MID 005 356 712

characteristics. A summary of the characteristics used to calculate the LNAPL volume at the AOI 36-1 MS/HO plume is presented in **Table 3.** 

The total area of measurable LNAPL at the AOI 36-1MS/HO plume was calculated to be approximately 260,000 square feet based on the LNAPL thicknesses shown on **Figure 2.** 

Based on an evaluation of Site boring logs, the geology in the vicinity of the AOI 36-1 MS/HO plume consists primarily of clays to fine sand. The soil properties data inputs were selected from the API Parameters Database and well recognized literature values associated with clays, silts and fine sands.

The results of the evaluation for the AOI 36-1 MS/HO plume indicate a total volume of approximately 1,050,000 gallons of LNAPL with the potentially recoverable LNAPL volume being estimated as approximately 110,000 gallons. Based on the results of the volume estimation the potentially recoverable LNAPL is estimated to be approximately 10.6% of the total LNAPL volume.

#### 5.2.3.3 Rationale for Remedy Selection

A review of the screening factors, as presented in **Table 4**, indicate that the geology at the AOI 36-1 MS/HO plume is primarily fine sand; that the potential recoverability of LNAPL is greater than 5% of total LNAPL volume; that mineral seal and hydraulic oil have low volatility; and that PCBs have not been detected in the LNAPL. Based on these factors the remedy selected for the AOI 36-1 MS/HO plume is multiphase extraction (MPE) and Additional Institutional Controls Above Baseline.

As summarized on **Table 4**, the proposed recovery well system will consist of up to 225 wells, based on an estimated radius of influence (ROI) of 20 feet. The recovery wells will be constructed to an average depth of 15 feet below ground surface (bgs). Recovered LNAPL and groundwater will be pumped to a treatment system, where it will be treated with an oil water separator followed by granular phase activated carbon.

In addition to the LNAPL MPE system, Additional Institutional Controls Above Baseline will be implemented at AOI 36-1. The additional institutional controls will include limiting excavation, preparing a health and safety plan, and requiring evaluation prior to future building construction. The restrictive covenant will be established to require that proper precautions be taken as necessary in order to address potentially significant

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Addendum No.2 – Northend Corrective Measures and Site-wide Groundwater Monitoring MID 005 356 712

risks to future redevelopment construction workers and from volatilization to indoor air, should a new building be designed and constructed at this AOI.

The restrictions will be implemented as a means of preventing and/or controlling potential exposure pathways to identified potential risks associated with VOC concentrations in associated with LNAPL at this AOI. The potential for unacceptable exposures in the future would be mitigated by establishing in the restrictive covenant additional conditions for future building construction. The additional institutional controls include establishing a restrictive covenant limiting excavations and a requirement to prepare a health and safety plan prior to beginning construction in this area. The restrictive covenant will remain with the property deed in perpetuity, or until the area has been remediated to meet the risk level.

#### 5.2.3.4 Estimated Remedy Costs

Capital costs for the proposed MPE system are expected to be approximately \$2,750,000 with OM&M costs over 5 years totaling approximately \$900,000. The cost associated restrictive covenant is estimated to be \$5,000 and includes performing a boundary survey of the area and administering the restrictive covenant.

#### 5.2.4 AOI 36-2 Exterior Mineral Seal/Hydraulic Oil Plume

#### 5.2.4.1 AOI Overview

AOI 36-2 consists of the basement area located along the eastern side of the central portion of Building 36 and is associated with metal chip processing. A mineral seal/hydraulic oil plume beneath this area has been identified as the AOI 36-2 Exterior Mineral Seal/Hydraulic Oil Plume (AOI 36-2 MS/HO plume). The AOI 36-2 MS/HO plume is located directly down gradient of the basement and is approximately 375 feet long by 175 feet wide. As discussed in Section 5.2.3.1, during the Site-wide LNAPL monitoring program conducted from 2001 through 2005, a total of approximately 150 gallons of LNAPL was recovered through manual bailing of monitoring wells from the AOI 36-2 LNAPL areas.

A groundwater and LNAPL recovery system has been constructed as an IM along the east side of Building 36, and was placed into operation in 2005. The purpose of this IM was to control potential offsite migration of LNAPL and Site-related constituents and to collect free-phase LNAPL. This system consists of three 12-inch diameter wells (installed in 24-inch diameter boreholes) and pumps for both product recovery and

groundwater drawdown. The recovery wells are approximately 20 feet deep. Product and groundwater are recovered from the wells via product recovery pump(s) and groundwater submersible pump(s), respectively. Collected fluids are transferred to a treatment system that is housed in an enclosure located in the area of the wells and ultimately discharged to the Site storm sewer system (Outfall 002) under an NPDES permit.

To date, the existing treatment system has operated as designed and has been effective in controlling potential off-site migration of LNAPL and site-related constituents. However, given the minimal amounts of LNAPL recovered by the system, a more cost-effective approach is proposed below.

Based on the HHRA for AOI 36-2 documented in the RFI Phase II Report, estimates of potential exposure to LNAPL in this area do not exceed USEPA's cumulative cancer risk and HI limits. The remedial goal for the AOI 36-2 MS/HO plume is to remove LNAPL to the extent practicable.

#### 5.2.4.2 LNAPL Characteristics

As discussed in Section 4.3.2 above the volume of LNAPL and potentially recoverable volume of LNAPL are based on site specific and/or assumed LNAPL, fluid and soil characteristics. A summary of the characteristics used to calculate the LNAPL volume at the AOI 36-2 MS/HO plume is presented in **Table 3**.

The total area of measurable LNAPL at the AOI 36-2MS/HO plume was calculated to be approximately 74,000 square feet based on the LNAPL thicknesses as shown on **Figure 2.** 

Based on an evaluation of Site boring logs, the geology in the vicinity of the AOI 36-2 MS/HO plume consists primarily of fine sand. The soil properties data inputs were selected from the API Parameters Database and well recognized literature values associated with fine sand.

The results of the evaluation for the AOI 36-2 MS/HO plume indicate a total volume of approximately 140,000 gallons of LNAPL with the potentially recoverable LNAPL volume being estimated as approximately 9,800 gallons. Based on the results of the volume estimation the potentially recoverable LNAPL is estimated to be approximately 7.1% of the total LNAPL volume.

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

#### 5.2.4.3 Rationale for Remedy Selection

A review of the screening factors, as presented in **Table 4**, indicate that the geology at the AOI 36-2 MS/HO plume is primarily sand; that the potential recoverability of LNAPL is less than 5% of total LNAPL volume; that mineral seal and hydraulic oil have low volatility; and that PCBs have not been detected in the LNAPL. Based on these factors the remedy selected for the AOI 36-2 MS/HO plume is multiphase extraction.

As summarized on **Table 4**, the proposed recovery well system will consist of up to 37 wells, based on an estimated ROI of 25 feet. The recovery wells will be constructed to an average depth of 15 feet bgs. Recovered LNAPL and groundwater will be pumped to a treatment system, where it will be treated with a blower, an oil water separator, an air treatment system, and a water treatment system.

#### 5.2.4.4 Estimated Remedy Costs

Capital costs for the proposed MPE system are expected to be approximately \$600,000 with OM&M costs over 5 years totaling approximately \$700,000.

#### 5.2.5 AOI 36-5 Fuel Oil Plume

#### 5.2.5.1 AOI Overview

AOI 36-5 is located immediately south of Building 36 and is associated with a former UST farm (also known as former Tank Farm 37) and an active contained AST farm. Both the ASTs and USTs contained gasoline, motor oil, hydraulic oil, and other oil products. A fuel oil plume has been identified to be present in this area. The AOI 36-5 plume is located beneath and to the northwest of the current AST farm and is approximately 75 feet in diameter.

Groundwater and LNAPL recovery trenches were installed along the east and south sides of an excavation area that was part of initial abatement measures in February 1990. These trenches were 3 feet wide and filled with gravel from approximately 2 feet bgs to approximately 14 feet bgs and are sloped toward a 26-inch-diameter recovery well/sump located along the south side of the excavation area. This recovery well/sump was installed to a depth of 17 feet bgs with screen placement at 6 to 13 feet bgs. In addition, a second sump was installed south of the newly constructed tank farm and is approximately a 26-inch-diameter and is constructed to 14 feet bgs. Collected fluids were routed to the Site's industrial wastewater treatment facility. This

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

IM is no longer in operation due to the fact that the system was no longer effective at removing significant amounts of LNAPL. In addition, select monitoring wells at the AOI 36-5 plume were monitored and manually bailed during the Site-wide LNAPL monitoring program conducted from 2001 through 2005. A total of approximately 18 gallons of LNAPL was recovered from this plume during the bailing program.

Based on the HHRA for AOI 36-5 documented in the RFI Phase II Report, estimates of potential exposure to LNAPL in this area do not exceed USEPA's cumulative cancer risk and HI limits. The remedial goal for AOI 36-5 is to remove LNAPL to the extent practicable.

#### 5.2.5.2 LNAPL Characteristics

As discussed in Section 4.3.2 above the volume of LNAPL and potentially recoverable volume of LNAPL are based on site specific and/or assumed LNAPL, fluid and soil characteristics. A summary of the characteristics used to calculate the LNAPL volume at the AOI 36-5 plume is presented in **Table 3**.

The total area of measurable LNAPL at AOI 36-5 was calculated to be approximately 14,000 square feet based on the LNAPL thicknesses as shown on **Figure 2**.

Based on an evaluation of Site boring logs, the geology in the vicinity of the AOI 36-5 plume consists primarily of silt. The soil properties data inputs were selected from the API Parameters Database and well recognized literature values associated with silt.

The results of the evaluation for the AOI 36-5 plume indicates a total volume of approximately 19,000 gallons of LNAPL with the potentially recoverable LNAPL volume being estimated as approximately 340 gallons. Based on the results of the volume estimation the potentially recoverable LNAPL is estimated to be approximately 1.8% of the total LNAPL volume.

#### 5.2.5.3 Rationale for Remedy Selection

A review of the screening factors, as presented in **Table 4**, indicate that the geology at the AOI 36-5 fuel oil plume is primarily silt; that the potential recoverability of LNAPL is less than 5% of total LNAPL volume; that fuel oil has a low volatility; and that PCBs have not been detected in the LNAPL. Based on these factors the remedy selected for the AOI 36-5 fuel oil plume is a passive recovery trench.

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

As summarized on **Table 4**, the proposed recovery trench will total approximately 135 feet long and 15 feet deep and will include four 8-inch diameter sumps. The trench length was determined by evaluating the length of the plume perpendicular to the direction of groundwater flow in probable trench locations. The collected LNAPL will be removed from the sumps via a mobile vacuum truck as necessary.

#### 5.2.5.4 Estimated Remedy Costs

Capital costs for the proposed passive recovery trench system are expected to be approximately \$46,000 with OM&M costs over 2 years totaling approximately \$230,000.

#### 5.2.6 AOI 83/84-4 Cutting Oil Plume

#### 5.2.6.1 AOI Overview

AOI 83/84-4 consists of four former "wet", metal machining operations in the central portion of Building 66, including three process oil collection/recirculation sumps, and an inactive rail loading area (including associated sumps along the north side of Building 66C). The AOI 83/84-4 cutting oil plume has been identified in this area.

The physical extent of LNAPL at the AOI 83/84-4 plume is approximately 50 feet in diameter. Select monitoring wells in the Factory 83/84 area (which includes the AOI 83/84-4 and the AOI 83/84-2 plumes) were monitored and manually bailed during the Site-wide LNAPL monitoring program conducted from 2001 through 2005. A total of approximately 17 gallons of LNAPL was recovered from the AOI 83/84-4 and AOI 83/84-2 LNAPL areas.

Based on the HHRA for AOI 83/84-4 documented in the RFI Phase II Report estimates for potential exposure to subsurface LNAPL in this area do not exceed USEPA's cumulative cancer risk and HI limits. The remedial goal for AOI 83/84-3 cutting oil plume is to remove LNAPL to the extent practicable.

#### 5.2.6.2 LNAPL Characteristics

As discussed in Section 4.3.2 above the volume of LNAPL and potentially recoverable volume of LNAPL are based on site specific and/or assumed LNAPL, fluid and soil characteristics. A summary of the characteristics used to calculate the LNAPL volume at AOI 83/84-4 is presented in **Table 3**.

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

The total area of measurable LNAPL at AOI 83/84-4 was calculated to be approximately 3,700 square feet based on the LNAPL thicknesses as shown on **Figure 2.** 

Based on an evaluation of Site boring logs, the geology in the vicinity of the AOI 83/84-4 plume consists primarily of sand. The soil properties data inputs were selected from the API Parameters Database and well recognized literature values associated with sand.

The results of the evaluation for the AOI 83/84-4 cutting oil plume indicate a total volume of approximately 3,300 gallons of LNAPL with the potentially recoverable LNAPL volume being estimated as approximately 100 gallons. Based on the results of the volume estimation the potentially recoverable LNAPL is estimated to be approximately 3.0% of the total LNAPL volume.

#### 5.2.6.3 Rationale for Remedy Selection

A review of the screening factors, as presented in **Table 4**, indicate that the geology at the AOI 83/84-4 cutting oil plume is primarily sand; that the potential recoverability of LNAPL is less than 5% of total LNAPL volume; that cutting oil has a low volatility; and that PCBs have not been detected in the LNAPL. Based on these factors the remedy selected for the AOI 83/84-4 cutting oil plume is a passive recovery trench.

As summarized on **Table 4**, the proposed recovery trench will total approximately 85 feet long and 15 feet deep and will include three 8-inch diameter sumps. The trench length was determined by evaluating the length of the plume perpendicular to the direction of groundwater flow in probable trench locations. The collected LNAPL will be removed from the sumps via a mobile vacuum truck as necessary.

#### 5.2.6.4 Estimated Remedy Costs

Capital costs for the proposed passive recovery trench system are expected to be approximately \$37,000 with OM&M costs over 2 years totaling approximately \$120,000.

#### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

### Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Resource

Addendum No.2 – Northend Corrective Measures and Site-wide Groundwater Monitoring MID 005 356 712

#### 5.2.7 AOI 86-1 Fuel Oil Plume

#### 5.2.7.1 AOI Overview

AOI 86-1 includes the overall area of Building 86 and areas immediately southeast and west of Building 86, collectively associated with a hazardous waste drum accumulation area, a process waste pumping station, a waste transport vehicle storage area, and a former UST farm. Historically a product plume located south of Buildings 86/86A was identified as the AOI 86-1 plume. This plume is likely associated with the former UST farm.

An IM was operated within the AOI 86-1 plume using two product recovery wells in an attempt to eliminate the migration of product into a catch basin connecting to Storm Sewer Outfall 005. These recovery wells were installed adjacent to the Leith Street overpass retaining wall. Recovered product was collected in an oil/water separator and discharged to the Site's industrial wastewater treatment system. This system was successful in recovering free-phase LNAPL in this area, hence operation was discontinued. However, during 2003, LNAPL was observed at two monitoring wells (RFI-86-02 and RFI-86-03) located east of the AOI. Select monitoring wells associated with this plume have been monitored as part of the Site-wide LNAPL monitoring program from 2001 through 2005. A total of approximately 1 gallon of LNAPL was bailed from select monitoring wells located in the AOI 86-1 plume.

Based on the HHRA for AOI 86-1 documented in the RFI Phase II Report estimates for potential exposure to subsurface LNAPL in this area do not exceed USEPA's cumulative cancer risk and HI limits. The remedial goal for AOI 86-1 plume is to remove LNAPL to the extent practicable.

#### 5.2.7.2 LNAPL Characteristics

As discussed in Section 4.3.2 above the volume of LNAPL and potentially recoverable volume of LNAPL are based on site specific and/or assumed LNAPL, fluid and soil characteristics. A summary of the characteristics used to calculate the LNAPL volume at the AOI 86-1 plume are presented in **Table 3**.

The total area of measurable LNAPL at AOI 86-1 was calculated to be approximately 2,300 square feet based on the LNAPL thicknesses as shown on **Figure 2**.

Based on an evaluation of Site boring logs, the geology in the vicinity of the AOI 86-1 LNAPL plume consists primarily of fine to medium sand. The soil properties data inputs were selected from the API Parameters Database and well recognized literature values associated with fine to medium sand.

The results of the evaluation for the AOI 86-1 fuel oil plume indicate a total volume of approximately 2,800 gallons of LNAPL with the potentially recoverable LNAPL volume being estimated as approximately 32 gallons. Based on the results of the volume estimation the potentially recoverable LNAPL is estimated to be approximately 1.2% of the total LNAPL volume.

### 5.2.7.3 Rationale for Remedy Selection

A review of the screening factors, as presented in **Table 4**, indicate that the geology at the AOI 86-1 plume is primarily fine to medium sand; that the potential recoverability of LNAPL is less than 5% of total LNAPL volume; that fuel oil has a low volatility; and that PCBs have not been detected in the LNAPL. Based on these factors the remedy selected for the AOI 86-1 plume is a passive recovery trench.

As summarized on **Table 4**, the proposed recovery trench will total approximately 60 feet long and 15 feet deep and will include three 8-inch diameter sumps. The trench length was determined by evaluating the length of the plume perpendicular to the direction of groundwater flow in probable trench locations. The collected LNAPL will be removed from the sumps via a mobile vacuum truck, as necessary.

### 5.2.7.4 Estimated Remedy Costs

Capital costs for the proposed passive recovery trench system are expected to be approximately \$33,000 with OM&M costs over 2 years totaling approximately \$93,000.

5.3 Summary of Modifications to Measures Proposed in the Revised 2008 CMP

This section discusses the modifications to the corrective measures proposed in the Revised 2008 CMP. Based on negotiations with the USEPA, recent changes to the disposition of the buildings in the north end, and an evaluation of current Site data, MLC has modified the remedial alternatives for the AOI 05-1/05-5 cutting oil plumes, the AOI 36-1 gasoline plume, AOI 81-1 (Soil), AOI 81-2 (LNAPL), AOI 83/84-2 (LNAPL), AOI 83/84-3 (Soil), Outfall 002, Outfalls 003/004 and Outfall 005. The corrective measures are presented on **Figure 3**. Exceedances of screening criteria for

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

soil and/or groundwater at these AOIs are summarized in **Table 2** and will be addressed as part of the baseline Site-wide use restrictions as discussed in Section 5.1. Additional restrictions above these baseline restrictions will be applied for certain onsite areas as appropriate and determined by the proposed remedy for a particular AOI.

### 5.3.1 AOI 5-1/05-5 Cutting Oil Plumes

5.3.1.1 AOI Overview

AOI 05-1

AOI 05-1 consists of the basement area along the southeast portion of Building 43, and is associated with a former metal machining chip processing operation.

LNAPL was detected during RFI activities in this area and the physical extent of LNAPL was defined. Investigations performed in 1994 in response to suspected oil releases in Building 43 (Factory 05 Area) detected LNAPL on the water table along the southeast side of Building 43. To address the LNAPL, three recovery trenches were installed in the Building 43 area in early 1995, which are still operating today. These recovery trenches are each approximately 14 feet deep, 3 feet wide, 100 feet long, and backfilled with gravel. LNAPL is recovered from these trenches via 30-inch-diameter recovery wells installed near the midpoint of each recovery trench. Automated belt skimming devices in the recovery wells collect LNAPL from the recovery trenches (with approximately 60% groundwater and 40% LNAPL) and transfer it to a temporary storage tote. Recovered water is periodically allowed to flow back into the recovery well and the recovery LNAPL is later drummed for disposal. The current belt skimming system is inefficient in removing LNAPL from the recovery wells.

Based on the HHRA for AOI 05-1 documented in the RFI Phase II Report and summarized in Section 3.2 of the Revised 2008 CMP, estimates of potential exposure LNAPL in this area do not exceed USEPA's cumulative cancer risk and HI limits. However, PCBs were detected in samples of LNAPL collected from the recovery trench system mentioned above at concentrations up to 111 ppm. The presence of PCBs at this concentration requires compliance with TSCA regulations.

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Addendum No.2 – Northend Corrective Measures and Site-wide Groundwater Monitoring MID 005 356 712

### AOI 05-5

AOI 05-5 is in the northern and east-central portion of Building 43, and consists of active process machinery, collection trenches, and sumps for both "wet" and "dry" operations.

A release of an estimated 4,000 gallons of cutting oil was identified in April 1997. Three 4-inch-diameter groundwater monitoring wells were installed to the east of the tank from which the release was thought to have occurred. Product was identified in two monitoring wells. Two pneumatic free-product recovery pumps were installed as IMs in the wells. The recovered total fluids were later piped to two product storage tanks located within Building 43. The LNAPL later caused malfunction of the recovery pumps. As such, the system is currently not operating.

Based on the HHRA for AOI 05-5 documented in the RFI Phase II Report and summarized in Section 3.2 of the Revised 2008 CMP, estimates of potential exposure to LNAPL in this area do not exceed USEPA's cumulative cancer risk and HI limits. However, PCBs were detected in LNAPL samples collected from well RFI-05-11 at a concentration of 160 ppm and from well RW-05-East at a concentration of 130 ppm. The presence of PCBs at this concentration requires compliance with TSCA regulations.

#### 5.3.1.2 LNAPL Characteristics

As discussed in Section 4.3.2 the volume of LNAPL and potentially recoverable volume of LNAPL are based on site specific and/or assumed LNAPL, fluid and soil characteristics. A summary of the characteristics used to calculate the LNAPL volume at the AOIs 05-1/05-5 plumes are presented in **Table 3**.

The total area of measurable LNAPL at AOIs 05-1/05-5 was calculated to be approximately 110,000 square feet based on the LNAPL thicknesses as shown on **Figure 2.** 

Based on an evaluation of Site boring logs, the geology in the vicinity of the AOIs 05-1/05-5 plumes consists primarily of fine sand. The soil properties data inputs were selected from the API Parameters Database and well recognized literature values associated with fine sand.

The results of the evaluation for the AOIs 05-1/05-5 cutting oil plumes indicate a total volume of approximately 440,000 gallons of LNAPL with the potentially recoverable LNAPL volume being estimated as approximately 79,000 gallons. Based on the results of the volume estimation the potentially recoverable LNAPL is estimated to be approximately 17.8% of the total LNAPL volume.

### 5.3.1.3 Rationale for Remedy Modification

A review of the screening factors, as presented in **Table 4**, indicate that the geology at the AOI 05-1/05-5 plumes is primarily fine sand; that the potential recoverability of LNAPL is greater than 5% of total LNAPL volume; that cutting oil has a low volatility; and that PCBs have been detected at TSCA-levels in the LNAPL. Based on these factors the remedy selected for the AOI 05-1/05-5 cutting oil plumes is MPE and Additional Institutional Controls Above Baseline.

As summarized on **Table 4**, the proposed recovery well system will consist of up to 41 wells, based on an estimated ROI of 30 feet. The recovery wells will be constructed to an average depth of 15 feet bgs. Recovered LNAPL and groundwater will be pumped to a treatment system, where it will be treated with a blower, an oil water separator, an air treatment system, and a water treatment system.

In addition to the LNAPL MPE system, Additional Institutional Controls Above Baseline be implemented at this AOI. The deed will be modified to provide notification of the presence of PCBs at this AOI.

### 5.3.1.4 Estimated Modified Remedy Costs

Capital costs for the proposed passive recovery trench system are expected to be approximately \$450,000 with OM&M costs over 5 years totaling approximately \$2,300,000. The cost associated restrictive covenant is estimated to be \$5,000 and includes performing a boundary survey of the area and administering the restrictive covenant.

#### 5.3.2 AOI 36-1 Gasoline Plume

#### 5.3.2.1 AOI Overview

AOI 36-1 is located in the northern and central portions of Building 36, and is associated with engine manufacturing and metal machining processes. Two LNAPL

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Addendum No.2 – Northend Corrective Measures and Site-wide Groundwater Monitoring MID 005 356 712

plumes have been identified in AOI 36-1. The AOI 36-1 MS/HO plume is discussed in Section 5.2.3. The AOI 36-1 Gasoline plume is presumably due to historical releases associated with engine testing in this area. This plume is located at the interior of Building 36, and is approximately 75 feet in diameter. As discussed in Section 5.2.3.1, during the Site-wide LNAPL monitoring program conducted from 2001 through 2005, a total of approximately 150 gallons of LNAPL was recovered by bailing from selected monitoring wells in the AOI 36-1 and AOI 36-2 LNAPL areas.

Based on the HHRA for AOI 36-1 documented in the RFI Phase II Report and the supplemental risk assessments presented in the Revised 2008 CMP and Appendix A of this CMP Addendum No.2., estimates of potential exposure for construction workers who could contact the gasoline LNAPL plume exceed USEPA's cumulative cancer risk and HI limits. In addition, potential exposure of routine workers to vapors from soil and LNAPL via vapor intrusion exceeds USEPA's cumulative cancer risk and HI limits under future commercial/industrial use scenarios that do not require the application of OSHA regulations (non-OSHA use). These risk estimates are primarily attributed to the concentrations of the constituents present in the gasoline plume. Conditions within the current building <u>do</u> meet current OSHA standards related to vapor concentrations in indoor air as discussed in the RFI Phase II Report.

Therefore, the remedial goal for LNAPL at this AOI is to address the potential exposure to construction and routine workers to VOCs from the gasoline plume and soil.

#### 5.3.2.2 LNAPL Characteristics

As discussed in Section 4.1.1 the volume of LNAPL and potentially recoverable volume of LNAPL are based on site specific and/or assumed LNAPL, fluid and soil characteristics. A summary of the characteristics used to calculate the LNAPL volume at the AOI 36-1 Gasoline Plume is presented in **Table 3**.

The total area of measurable LNAPL at AOI 36-1 Gasoline Plume was calculated to be approximately 6,100 square feet based on the LNAPL thicknesses as shown on **Figure 2.** 

Based on an evaluation of Site boring logs, the geology in the vicinity of the AOI 36-1 Gasoline Plume consists primarily of fine sand. The soil properties data inputs were selected from the API Parameters Database and well recognized literature values associated with fine sand.

Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Addendum No.2 – Northend Corrective Measures and Site-wide Groundwater Monitoring MID 005 356 712

The results of the evaluation for the AOI 36-1 Gasoline Plume indicate a total volume of approximately 5,000 gallons of LNAPL with the potentially recoverable LNAPL volume being estimated as approximately 130 gallons. Based on the results of the volume estimation the potentially recoverable LNAPL is estimated to be approximately 2.6% of the total LNAPL volume.

#### 5.3.2.3 Rationale for Remedy Modification

A review of the screening factors, as presented in **Table 4**, indicate that the geology at the AOI 36-1 Gasoline Plume is primarily fine sand; that the potential recoverability of LNAPL is less than 5% of total LNAPL volume; that gasoline has a high volatility; and that PCBs have not been detected in the LNAPL. Furthermore, the LNAPL is the likely source of the gasoline-related compounds (primarily benzene) in the adjacent dissolved-phase plume. Based on these factors the remedy selected for the AOI 36-1 Gasoline Plume is MPE and Additional Institutional Controls Above Baseline.

As summarized on **Table 4**, the proposed recovery well system will consist of up to 4 wells, based on an estimated ROI of 30 feet. The recovery wells will be constructed to an average depth of 15 feet bgs. Recovered LNAPL and groundwater will be pumped to treatment system, where it will be treated with a blower, an oil water separator, an air treatment system, and a water treatment system.

In addition to the LNAPL MPE, Additional Institutional Controls Above Baseline will be implemented at this AOI. The additional institutional controls above baseline include establishing a restrictive covenant to limit excavation, prepare a Health and Safety Plan, and require evaluation prior to future building construction. The restrictive covenant will be established to require that proper precautions be taken as necessary in order to address potentially significant risks to future redevelopment construction workers and to future workers from volatilization to indoor air, should a new building be constructed at this AOI.

The restrictions will be implemented as a means of preventing and/or controlling potential exposure pathways to identified potential risks associated with VOC concentrations in associated with LNAPL at this AOI. The restrictive covenant will remain with the property deed in perpetuity, or until the area has been remediated to meet the risk level.

#### 5.3.2.4 Estimated Modified Remedy Costs

Capital costs for the proposed passive recovery trench system are expected to be approximately \$500,000 with OM&M costs over 5 years totaling approximately \$690,000. The cost associated restrictive covenant is included in Section 5.2.3.4.

### 5.3.3 AOI 81-2 LNAPL (Cutting Oil Plume)

#### 5.3.3.1 AOI Overview

AOI 81-2 consists of active metal welding and machining, and torque converter assembly operations performed in Buildings 70, 70B, 71, 71A, 72, 73, 73A, 73B, and 74. The AOI 81-2 area was used for storage of foundry sand and steel from the manufacturing process. Subsequent subsurface investigations in this area indicated the presence of LNAPL containing PCBs. An LNAPL recovery trench was installed as an IM in the area in 1996. This recovery trench is approximately 9 feet deep, 3 feet wide, 200 feet long, and includes perforated pipes and gravel backfill, which is still active today. LNAPL is recovered from the trenches via a 4-foot-diameter recovery well installed near the midpoint of the recovery trench. An automated belt skimming device in the recovery well collects product from the recovery trench and transfers it to a temporary storage tank. The collected product is then transferred to the groundwater treatment facility in Factory 10. This system has become ineffective in removing significant quantities of LNAPL due to the lack of recoverable LNAPL within the capture zone of the system. A portion of this LNAPL plume exists outside the area of influence of the existing LNAPL recovery system.

Based on the HHRA for AOI 81-2 documented in the RFI Phase II Report and summarized in Section 3.2 of the Revised 2008 CMP, estimates of potential exposure to subsurface LNAPL in this area do not exceed USEPA's cumulative cancer risk and HI limits. However, PCBs have been detected in LNAPL at this AOI at concentrations greater than 100 ppm. The presence of PCBs at this concentration requires compliance with TSCA regulations.

### 5.3.3.2 LNAPL Characteristics

As discussed in Section 4.3.2 the volume of LNAPL and potentially recoverable volume of LNAPL are based on site specific and/or assumed LNAPL, fluid and soil characteristics. A summary of the characteristics used to calculate the LNAPL volume at AOI 81-2 is presented in **Table 3**.

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Addendum No.2 – Northend Corrective Measures and Site-wide Groundwater Monitoring MID 005 356 712

The total area of measurable LNAPL at AOI 81-2 was calculated to be approximately 45,000 square feet based on the LNAPL thicknesses as shown on **Figure 2**.

Based on an evaluation of Site boring logs, the geology in the vicinity of the AOI 81-2 plume consists primarily of silt and clay. The soil properties data inputs were selected from the API Parameters Database and well recognized literature values associated with silt and clay.

The results of the evaluation for the AOI 81-2 cutting oil plume indicate a total volume of approximately 150,000 gallons of LNAPL with the potentially recoverable LNAPL volume being estimated as approximately 600 gallons. Based on the results of the volume estimation the potentially recoverable LNAPL is estimated to be approximately 0.4% of the total LNAPL volume.

#### 5.3.3.3 Rationale for Remedy Modification

A review of the screening factors, as presented in **Table 4**, indicate that the geology at the AOI 81-2 cutting oil plume is primarily silt and clay; that the potential recoverability of LNAPL is less than 5% of total LNAPL volume; that cutting oil has a low volatility; and that PCBs have been detected at TSCA-levels in the LNAPL. Based on these factors the remedy selected for the AOI 81-2 is a passive recovery trench and Additional Institutional Controls above Baseline.

As summarized on **Table 4**, the proposed recovery trench will total approximately 310 feet long and 15 feet deep and will include three 8-inch diameter sumps. The trench length was determined by evaluating the length of the plume perpendicular to the direction of groundwater flow in probable trench locations. The collected LNAPL will be removed from the sumps via a mobile vacuum truck as necessary.

In addition to the LNAPL passive recovery system, Additional Institutional Controls Above Baseline will be implemented at this AOI. The deed will be modified to provide notification of the presence of PCBs at this AOI.

#### 5.3.3.4 Estimated Modified Remedy Costs

Capital costs for the proposed passive recovery trench system are expected to be approximately \$125,000 with OM&M costs over 2 years totaling approximately \$360,000. The cost associated restrictive covenant is estimated to be \$5,000 and

includes performing a boundary survey of the area and administering the restrictive covenant.

### 5.3.4 AOI 81-2 Soil

### 5.3.4.1 AOI Overview

As discussed in Section 5.3.3, AOI 81-2 consists of active metal welding and machining, and torque converter assembly operations performed in Buildings 70, 70B, 71, 71A, 72, 73, 73A, 73B, and 74. The RFI soil data from AOI 81-2 indicate that screening criteria were exceeded for several VOCs and inorganic constituents, and the RFI groundwater data indicate that screening criteria were exceeded for lead and manganese. Compounds exceeding screening criteria at this AOI are contained in a former process pit located immediately beneath the operational floor in the northwest corner of Building 71A (i.e., less than 3 feet below ground surface).

Based on the HHRA for AOI 81-2 documented in the RFI Phase II Report and summarized in Section 3.2 of the Revised 2008 CMP, estimates of potential exposure to groundwater in this area do not exceed USEPA's cumulative cancer risk and HI limits. However, estimates of potential exposure of routine workers to soil via direct contact in this area exceeds the USEPA HI limit. In addition, estimates of potential exposure of routine workers to vapors from soil via vapor intrusion exceeds USEPA's HI limit under future commercial/industrial use scenarios that do not require the application of OSHA regulations (non-OSHA use). Conditions within the current building do meet current OSHA standards related to vapor intrusion as discussed in the RFI Phase II Report. Additionally, the Human Health Risk Assessment for the Redevelopment Construction Worker (Appendix A) also identified VOCs in soil at RFI-81-38 as a concern for the redevelopment construction worker.

The remedial goal for soil at this AOI is to address potentially significant exposures to concentrations of certain VOCs in soil in a near-surface soil sample at the RFI-81-38.

### 5.3.4.2 Revised 2008 CMP Selected Remedy

The selected remedy for this AOI proposed in the Revised 2008 CMP is Engineering Controls and Additional Institutional Controls above Baseline. This remedy involves implementing engineering controls and additional institutional controls that would provide protection from direct contact and vapor intrusion exposure to future Site users. The engineering controls include maintaining the surface cover consistent with

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

existing conditions. The additional institutional controls above baseline include establishing a restrictive covenant to limit excavation, prepare a health and safety plan, and require evaluation prior to future building construction. The restrictive covenant will be established to require that proper precautions be taken, as necessary, in order to address potentially unacceptable exposures to future redevelopment construction workers and to future workers from volatilization to indoor air, should a new building be designed and constructed at this AOI. The restrictive covenant will remain with the property deed in perpetuity, or until the area has been remediated to meet the risk level.

This remedy provides adequate protection for human health, and is easily implemented and reliable. These controls would be implemented as a means of preventing and/or controlling potential exposure pathways to identified potential risks associated with VOC concentrations in near-surface soils (up to 4 feet bgs) at this AOI. This remedy provides adequate protection from potential risk to human health based on the risk assessment included in the RFI Phase II Report and Appendix A of this CMP Addendum No. 2.

### 5.3.4.3 Rationale for Remedy Modification

The proposed remedy modification includes enlarging the area to be restricted, maintained and inspected in order to be more conservative. The revised extents of the AOI 81-2 area are shown on **Figure 3.** In additional as negotiated with the USEPA the maintenance and inspection of the surface cover will continue for 50 years.

### 5.3.4.4 Estimated Modified Remedy Costs

The O&M cost for this alternative is approximately \$220,000, assuming a life cycle of 50 years. The annual cost is assumed to be \$4,400.

### 5.3.5 AOI 83/84-2 LNAPL (Cutting Oil Plume)

### 5.3.5.1 AOI Overview

AOI 83/84-2 is located in the currently inactive Factory 83/84 area, and consists of areas of various former and existing machining operations in Building 32 (including two basements), with both "wet" and "dry" operations. LNAPL has been observed at AOI 83/84-2 floating on the surface of groundwater at select monitoring well locations. The physical extent of LNAPL has been defined to be approximately 150 feet in diameter.

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Based on the HHRA for AOI 83/84-2 documented in the RFI Phase II Report and summarized in Section 3.2 of the Revised 2008 CMP, estimates for potential exposure to subsurface LNAPL in this area do not exceed USEPA's cumulative cancer risk and HI limits. However, PCBs were detected in LNAPL samples collected from monitoring wells RFI-83/84-06 and RFI-83/84-49 at concentrations as high as 62 mg/kg. The presence of PCBs at this concentration requires compliance with TSCA regulations.

Corrective measures addressing the soil exceedances identified at AOI 83/84-2 are discussed in Section 5.4.2.

### 5.3.5.2 LNAPL Characteristics

As discussed in Section 3.1.1 the volume of LNAPL and potentially recoverable volume of LNAPL are based on site specific and/or assumed LNAPL, fluid and soil characteristics. A summary of the characteristics used to calculate the LNAPL volume at AOI 83/84-2 is presented in **Table 3**.

The total area of measurable LNAPL at AOI 83/84-2 was calculated to be approximately 17,000 square feet based on the LNAPL thicknesses as shown on **Figure 2.** 

Based on an evaluation of Site boring logs, the geology in the vicinity of the AOI 83/84-2 cutting oil plume consists primarily of fine to medium sand. The soil properties data inputs were selected from the API Parameters Database and well recognized literature values associated with fine to medium sand.

The results of the evaluation for the AOI 83/84-2 cutting oil plume indicate a total volume of approximately 34,000 gallons of LNAPL with the potentially recoverable LNAPL volume being estimated as approximately 1,000 gallons. Based on the results of the volume estimation the potentially recoverable LNAPL is estimated to be approximately 3.1% of the total LNAPL volume.

#### 5.3.5.3 Rationale for Remedy Modification

A review of the screening factors, as presented in **Table 4**, indicate that the geology at the AOI 83/84-2 cutting oil plume is primarily fine to medium sand; that the potential recoverability of LNAPL is less than 5% of total LNAPL volume; that cutting oil has a low volatility; and that PCBs have been detected at TSCA-levels in the LNAPL. Based

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Addendum No.2 – Northend Corrective Measures and Site-wide Groundwater Monitoring MID 005 356 712

on these factors the remedy selected for the AOI 83/84-2 is MPE and Additional Institutional Controls Above Baseline.

As summarized on **Table 4**, the proposed recovery well system will consist of up to 13 wells, based on an estimated ROI of 20 feet. The recovery wells will be constructed to an average depth of 15 feet bgs. Recovered LNAPL and groundwater will be pumped to a treatment system, where it will be treated with a blower, an oil water separator, an air treatment system, and a water treatment system.

In addition to the LNAPL MPE system, Additional Institutional Controls Above Baseline will be implemented at this AOI. The deed will be modified to provide notification of the presence of PCBs at this AOI.

#### 5.3.5.4 Estimated Modified Remedy Costs

Capital costs for the proposed MPE system are expected to be approximately \$500,000 with OM&M costs over 5 years totaling approximately \$710,000. The cost associated restrictive covenant is estimated to be \$5,000 and includes performing a boundary survey of the area and administering the restrictive covenant.

#### 5.3.6 AOI 83/84-3 Soil

### 5.3.6.1 AOI Overview

AOI 83/84-3 consists of areas of various former and existing machining operations in Buildings 66A/66D (both "wet" and "dry" operations). The RFI soil data from AOI 83/84-3 indicate that screening criteria were exceeded for lead, and the RFI groundwater data indicate that screening criteria were exceeded for beryllium and lead.

Based on the HHRA for AOI 83/84-3 documented in the RFI Phase II Report estimates of potential exposure to groundwater in this area do not exceed USEPA's cumulative cancer risk and HI limits. However, mean lead concentrations in surface and depth-averaged soil exceed 900 mg/kg (i.e., MDEQ industrial direct contact criterion). Therefore, the remedial goal for this area is to address the potential exposure to lead concentrations in soil greater than 900 mg/kg. Additionally, the Human Health Risk Assessment for the Redevelopment Construction Worker (Appendix A) also identified lead as a concern for the redevelopment construction worker.

### 5.3.6.2 Revised 2008 CMP Selected Remedy

The selected remedy for this AOI presented in the Revised 2008 CMP is Engineering Controls and Additional Institutional Controls above Baseline. This remedy involves implementing engineering controls and additional institutional controls that would provide protection from direct contact to future Site users. The engineering controls include maintaining the surface cover consistent with existing conditions. The institutional controls include establishing a restrictive covenant limiting excavations within the area of soil exceeding 900 mg/kg for lead and a requirement to prepare a health and safety plan prior to beginning construction in this area. These restrictions would run with the property in perpetuity, or until soil containing lead concentrations above 900 mg/kg has been remediated for the appropriate use scenarios. Per GMC's November 21, 2004 response to USEPA's Specific Comment No. 21 of the March 2004 RFI Phase II Report, additional delineation of eastern boundary of contamination in this area will be performed prior to establishing the restrictive covenant.

This remedy protects human health, and is easily implemented and reliable. These controls would be implemented as a means of preventing and/or controlling potential exposure pathways to identified potential risks associated with lead concentrations in soils (up to 6 feet bgs) at this AOI. This remedy provides adequate protection from potential risk to human health based on the risk assessment included in the RFI Phase II Report. The potential for unacceptable exposures in the future would be mitigated by establishing in the deed limits on future excavation within the area of soil exceeding 900 mg/kg for lead.

### 5.3.6.3 Rationale for Remedy Modification

The proposed remedy modification includes enlarging the area to be restricted, maintained and inspected in order to be more conservative. The revised extents of the AOI 83/84-3 area are shown on **Figure 3.** In additional as negotiated with the USEPA the maintenance and inspection of the surface cover will continue for 50 years.

### 5.3.6.4 Estimated Modified Remedy Costs

The O&M cost for this alternative is approximately \$220,000, assuming a life cycle of 50 years. The annual cost is assumed to be \$4,400.

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

### 5.3.7 Outfall 002 Storm Sewer

### 5.3.7.1 AOI Overview

As discussed in Sections 3.3.1 and 4.1 of Appendix I of the RFI Phase II Report, evidence of historical groundwater infiltration into Outfall 002 storm sewers has been observed as mineral deposits at pipe joints during video inspection of proposed stretches of the pipe system. Also, the portion of the Outfall 002 storm sewer system between manholes 2-20 and 2-22 runs underneath Stewart Ave. and through an LNAPL area associated with the former Tank Farm 37 UST system (AOI 36-5).

Based on the RFI risk assessment, no unacceptable human health risks were identified for this area. However, certain VOCs were detected in water samples collected from manholes 2-19 and 2-20. The detected VOCs were similar to those detected in groundwater samples surrounding the Outfall 002 storm sewer system in this area. These results suggest that some infiltration of impacted groundwater may be occurring. Groundwater in the area upstream of manhole 2-20 contains concentrations of trichloroethene (TCE), and vinyl chloride, as well as LNAPL, and may be the source of the VOCs detected in the sewer. An inspection of the sewer system revealed no evidence of LNAPL infiltration in the area. Nonetheless, corrective measures are evaluated below for addressing this potential LNAPL infiltration to this sewer system in the area of the former Tank Farm UST system.

### 5.3.7.2 Revised 2008 CMP Selected Remedy

The selected remedy for this AOI presented in the Revised 2008 CMP was **Storm Sewer Lining**. Although unacceptable human health risks from potential exposure have not been identified for this area, this alternative limits the potential for migration of LNAPL and groundwater into the Outfall 002 storm sewer system. An Interim Measure Work Plan was submitted to the USEPA on February 13, 2008, for implementing the selected alternative. The USEPA approved the interim measure in a letter to GMC dated April 8, 2008. The approved interim measure has not been installed to date.

### 5.3.7.3 Rationale for Remedy Modification

Subsequent to the sewer lining IM approval, further evaluation of the Outfall 002 storm sewer in the vicinity of manholes MH 2-20 and MH 2-22 showed several smaller pipes transecting the Outfall 002 storm sewer main. As such, lining of the sewer was determined to be not technically feasible.

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

In addition, since the GMC bankruptcy, Building 36 is now undergoing demolition. Following the demolition of Building 36, remedial alternatives will be implemented to begin removing LNAPL in the Outfall 002 drainage area. These plumes include the AOI 36-1 MS/HO plume, the AOI 36-1 Gasoline plume, the AOI 36-2 MS/HO plume, and the AOI 36-5 Fuel Oil plume. During demolition and LNAPL source removal activities, booms placed in select manholes as well as at the Outfall 002 discharge point at the Flint River will continue to be monitored for changes in the amount of product being recovered. This information will be used to perform an evaluation of an in-line oil water separator or placing permanent bulkheads in the Outfall 002 storm sewer to eliminate the pathway for groundwater and LNAPL infiltration.

### 5.3.7.4 Estimated Modified Remedy Costs

Costs have not been determined as the final corrective measure for Outfall 002 has not been determined.

### 5.3.8 Outfall 003 and Outfall 004 Storm Sewers

### 5.3.8.1 AOI Overview

A storm sewer investigation was conducted at the Site in 2002 and was reported in the RFI Phase II Report (BBL, 2006a). The storm sewer investigation indicated that LNAPL has been found to be infiltrating into the Outfall 003 and 004 storm sewer systems.

Oil removal systems are in operation at the Outfall 003 and 004 storm sewer systems, which involves the collection of oil sheens using floating oil booms at the outfall, and periodic pumping of the collected material into a tanker truck. The collected oil/water mixture is processed at the Factory 10 Groundwater Recovery and Treatment System.

Although this current system is effective in mitigating LNAPL sheens to the Flint River, it requires substantial operations and maintenance to monitor, collect, and treat the collected LNAPL sheens. As such, this system has been evaluated in comparison with other alternatives.

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

### 5.3.8.2 Revised 2008 CMP Selected Remedy

The selected remedy for this AOI presented in the Revised 2008 CMP was End-of-Pipe Treatment System, due to the technical feasibility of this alternative. This alternative is expected to remove LNAPL sheens prior to discharge to the outfall. In addition, this alternative is expected to require less maintenance and operational needs, and provide a higher degree of reliability than continued operation of the current floating boom containment system.

An Interim Measure Work Plan was submitted to the USEPA on February 13, 2008, for implementing the selected alternative. The USEPA approved the interim measure in a letter to GMC dated March 14, 2008.

### 5.3.8.3 Rationale for Remedy Modification

The revised design for the Outfall 003 and Outfall 004 storm sewer systems is expected to more effectively and cost efficiently address potential LNAPL migration into the storm sewers at various locations for Outfall 003 and 004. The revised Outfall 003 and 004 storm water diversion and treatment system design diverts the dry weather flow and first flush of storm events from the Outfalls 003 and 004 storm sewers to a common "BaySaver"™ debris removal system and then into an oil/water separator for treatment, prior to discharge to the Flint River. Each diversion structure will be equipped with a trash rack to prevent large floatable trash from entering the "BaySaver" ™ and oil/water separator. The "BaySaver" ™ system consists of two manholes that are designed to remove trash and suspended solids that are able to flow through the trash rack. They are also capable of removing a portion of the floating oil and grease. Water exiting the BaySaver will then be consolidated into a common pipe and routed to an oil/water separator that is designed to remove oil from the dry weather flow and wet weather first flush flow. The diversion structures, "BaySaver" ™ debris removal system, and oil/water separator will be monitored and maintained on a regular basis and trash and oil will be removed via vacuum truck as necessary.

The Outfall 003/004 treatment system construction began in late September 2010 and is expected to be completed in November 2010. In addition, as MLC moves forward with demolition of the various buildings at the Northend, storm sewer bulkheading will be evaluated to systematically eliminate the storm sewers as a pathway for LNAPL migration.

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

### 5.3.8.4 Estimated Modified Remedy Costs

Capital costs for the proposed storm water treatment and diversion system are expected to be approximately \$1,160,000 with OM&M costs over 50 years totaling approximately \$3,000,000.

### 5.3.9 Outfall 005 Storm Sewer

### 5.3.9.1 AOI Overview

Visible sheens have previously been observed at Outfall 005. Inspections of the Outfall 005 storm sewer system revealed that the likely source of the sheens was infiltration into the system near French drain manholes located near the Leith Street underpass. P-traps were installed in two French drain manholes between September and December 2004. The P-traps were installed in the retaining wall drainage system to prevent LNAPL migration into the Outfall 005 storm sewer system.

### 5.3.9.2 Revised 2008 CMP Selected Remedy

The proposed corrective measure for this AOI presented in the Revised 2008 CMP was Periodic Monitoring to ensure that the P-traps are operating as designed and holding back the LNAPL from entering the French drain. Annual site visits were proposed.

### 5.3.9.3 Rationale for Remedy Modification

Further evaluation of the Outfall 005 storm sewer in the vicinity of manholes MH 5-5 and MH 5-6 conducted in the Spring of 2010 indicated that oil is likely infiltrating the storm sewer between these manholes.

Following the demolition of Factory 83/84 and Building 86, remedial alternatives will be implemented to begin removing LNAPL in and adjacent to the Outfall 005 drainage area. These plumes include the AOI 83/84-2 cutting oil plume and AOI 86-1 fuel oil plumes. During demolition and LNAPL source removal activities booms placed in select manholes as well as at the Outfall 005 discharge point at the Flint River will continue to be monitored for changes in the amount of LNAPL being recovered. This information will be used to perform an evaluation of possible corrective measures for Outfall 005, which may include placing permanent bulkheads in the Outfall 005 storm

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

sewer. In addition, as buildings are demolished, select storm sewer lines will be bulkheaded to reduce the amount of LNAPL migration via the storm sewers.

### 5.3.9.4 Estimated Modified Remedy Costs

Costs have not been determined as the final corrective measure for Outfall 005 has not been determined.

#### 5.4 Summary of Unmodified Measures Proposed in the Revised 2008 CMP

This section provides a summary of the selected corrective measures presented in the Revised 2008 CMP, which have not been modified since the Revised 2008 CMP. This section is provided for informational purposes. Exceedances of screening criteria for soil and/or groundwater at these AOIs are summarized in **Table 2** and will be addressed as part of the baseline Site-wide use restrictions as discussed in Section 5.1. Additional restrictions above these baseline restrictions will be applied for certain onsite areas as appropriate and determined by the proposed remedy for a particular AOI.

### 5.4.1 AOI 81-1 Soil

### 5.4.1.1 AOI Overview

AOI 81-1 consists of the basement area beneath the southern and central portions of Building 71B, and is associated with three metal machining chip/cooling and cutting oil filtration/processing operations, as well as an inactive hydraulic elevator, several process waste sumps and tanks, a drum storage area, and a 90-day hazardous waste accumulation area (inactive). The RFI soil data from AOI 81-1 indicate that screening criteria were exceeded for lead.

Based on the HHRA for AOI 81-1 documented in the RFI Phase II Report, mean lead concentrations in deep (depth-averaged) soil exceed 900 mg/kg (i.e., MDEQ industrial direct contact criterion). Therefore, the remedial goal for this area is to address the potential exposure to lead in soil greater than 900 mg/kg. Additionally, the HHRA for the Redevelopment Construction Worker (Appendix A) also identified lead as a concern for the redevelopment construction worker.

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Addendum No.2 – Northend Corrective Measures and Site-wide Groundwater Monitoring MID 005 356 712

### 5.4.1.2 Revised 2008 CMP Selected Remedy

The selected remedy for this AOI proposed in the Revised 2008 CMP is Additional Institutional Controls above Baseline. This remedy involves implementing additional institutional controls that would provide protection from direct contact to future Site users. The additional institutional controls include establishing a restrictive covenant limiting excavations and a requirement to prepare a health and safety plan prior to future building construction in this area. The restrictive covenant would identify conditions for conducting excavations within the area of soil exceeding 900 mg/kg for lead, and would run with the property in perpetuity, or until soil containing lead concentrations above 900 mg/kg has been remediated.

This remedy provides adequate protection for human health, and is easily implemented and reliable. The institutional controls would be implemented as a means of preventing and/or controlling potential exposure pathways to identified potential risks associated with lead concentrations in deep soil (approximately 10 feet bgs) at this AOI. This remedy provides adequate protection from potential risk to human health based on the risk assessment included in the RFI Phase II Report. The potential for unacceptable exposures in the future would be mitigated by establishing in the deed limits on future excavation within the area of soil exceeding 900 mg/kg for lead.

### 5.4.1.3 Estimated Modified Remedy Costs

The cost associated with this remedy is estimated to be \$5,000 and includes performing a boundary survey of the area and administering the restrictive covenant.

#### 5.4.2 AOI 83/84-2 Soil

### 5.4.2.1 AOI Overview

AOI 83/84-2 is located in the currently inactive Factory 83/84 area, and consists of areas of various former and existing machining operations in Building 32 (including two basements), including both "wet" and "dry" operations. The RFI soil data from AOI 83/84-2 indicate that industrial screening criteria were exceeded for several PAHs and inorganic constituents, and the RFI groundwater data indicate that screening criteria were exceeded for several VOCs and inorganic constituents.

LNAPL was also observed at this AOI and is addressed in Section 5.3.5.

Based on the HHRA for AOI 83/34-2 documented in the RFI Phase II Report, estimates of potential exposure to groundwater in this area do not exceed USEPA's cumulative cancer risk and HI limits. However, mean lead concentrations in deep soil (up to 9 feet bgs) exceed 900 mg/kg (i.e., MDEQ industrial direct contract criterion). Therefore, the remedial goal for soil at this AOI is to address the lead concentrations in soil greater than 900 mg/kg. Additionally, the HHRA for the Redevelopment Construction Worker (Appendix A) identified chromium as a concern for the redevelopment construction worker. The chromium concentration exceeded the health based goal for redevelopment construction workers at one location within this AOI from 1-3 feet bgs.

#### 5.4.2.2 Revised 2008 CMP Selected Remedy

The selected remedy for this AOI presented in the Revised 2008 CMP is Additional Institutional Controls above Baseline. This remedy involves implementing additional institutional controls that would provide protection from direct contact to future Site users. The additional institutional control include establishing a restrictive covenant limiting excavations within the area of soil exceeding 900 mg/kg for lead, and would run with the property in perpetuity, or until soil containing lead concentrations above 900 mg/kg has been remediated. Additionally, the restrictive covenant will require the preparation of a health and safety plan prior to future building construction in this area.

This remedy provides adequate protection for human health, and is easily implemented and reliable. These controls would be implemented as a means of preventing and/or controlling potential exposure pathways to identified potential exposure associated with lead concentrations in deeper soils (up to 9 feet bgs) and chromium in shallow soils (1-3 feet bgs) at this AOI. This remedy provides adequate protection from potential risk to human health based on the risk assessment included in the RFI Phase II Report. The potential for unacceptable exposures in the future would be mitigated by establishing in the deed limits on future excavation within the area of soil exceeding 900 mg/kg for lead.

#### 5.4.2.3 Estimated Modified Remedy Costs

The cost associated with this remedy is estimated to be \$5,000 and includes performing a boundary survey of the area and administering the restrictive covenant.

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

### 6. Groundwater Monitoring Plans

This section summarizes the revised site-wide annual groundwater monitoring plan and the NPDES Plus Monitoring plan (NPMP) as presented in the *Corrective Measures Implementation (CMI) Work Plan for the Southend of the Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City)*(CMI Work Plan) (ARCADIS, 2010).

6.1 Site-wide Annual Groundwater Monitoring Plan

A groundwater monitoring program that includes the following components will be implemented:

- annual monitoring of groundwater and LNAPL elevations; and,
- annual groundwater quality monitoring.

The purpose of the groundwater and LNAPL elevation monitoring will be to monitor for possible shifts in the groundwater flow pattern or in the distribution of LNAPL at the Site. The groundwater quality monitoring will provide groundwater quality data, primarily at the down-gradient edge of the Site.

The LNAPL monitoring program should be considered preliminary at this time. Additional LNAPL monitoring wells may be installed in support of remedial measures and future monitoring.

6.1.1 Groundwater and LNAPL Elevation Monitoring Program

Groundwater level and LNAPL presence and thickness measurements will be made annually. On a one-time basis, an attempt will be made to collect measurements at each of the 147 locations listed in **Table 5** (Northend) and 131 locations listed in **Table 6** (Southend). The monitoring well locations for the Northend and Southend are shown on **Figures 4 and 5**, respectively. A reduced list of wells will be selected in future years. It is recognized that some wells may not be accessible due to well damage or loss, and the need to replace or substitute an alternate location will be evaluated on an annual basis. Water level and LNAPL measurements will be compiled for inclusion in the annual report (see below) to document groundwater flow directions and the extent and thickness of the LNAPL. The monitoring wells included in the program specifically to monitor for the presence and/or thickness of LNAPL are identified on **Figures 4 and**  Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

**5.** This portion of the monitoring program will be revised in the future as remedial actions are completed.

### 6.1.2 Groundwater Quality Monitoring Program

#### 6.1.2.1 Groundwater Sample Locations

Forty-six (46) monitoring wells have been selected for inclusion in the groundwater monitoring program (**Table 7**). The monitoring locations included in the groundwater quality monitoring program and the specific analyses to be completed at each sampled location are shown in **Table 7**. **Table 7** also includes justification for the inclusion of each monitoring well in the sampling program. Monitoring wells have been included in the sampling program based on analytical data generated as part of the Phase I and II RFI reports, the CA 750 Groundwater Monitoring Program, and the 2008 Revised CMP.

The following considerations were used to develop this groundwater sampling program:

- Samples will be collected near the down-gradient edge of areas previously found to be associated with concentrations above the relevant generic MDNRE PA 451, Part 201 screening criteria. For example, if a plume exhibiting elevated benzene concentrations was identified during a previous sampling event at a series of wells, the well or wells located close to the downgradient extent of the benzene-impacted area will be sampled.
- Samples will be collected along the edge of the Site, down-gradient of areas previously associated with concentrations above the pertinent generic MDNRE criteria, and at down-gradient offsite locations.
- Samples will be collected at locations in proximity to the Flint River with historical detections above the GSI criteria.
- Three monitoring wells have been included in the monitoring program to monitor possible discharges to the storm sewers in the MP010 drainage area. Cyanide was detected above GSI criteria in the grab samples collected from MP010 and MP013 in March 2010. Cyanide was not detected above GSI criteria in monitoring wells in the MP013 drainage area; however it was

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

detected above GSI in the monitoring wells in the MP010 drainage area. These locations are identified in **Table 7**.

### 6.1.2.2 Laboratory Analysis

Groundwater samples will be collected, analyzed, and validated using methods and procedures that are consistent with those employed previously at the Site, as described in the Site's Field Sampling Plan and Quality Assurance Project Plan (FSP/QAPP) (Appendix C of the *RCRA Facility Investigation Work Plan* [BBL, 2001]) (RFI Work Plan); Addendum No. 1 to Appendix C of the March 30, 2001 RCRA Facility Investigation Work Plan – Field Sampling Plan/Quality Assurance Project Plan (BBL, 2005a);and Addendum No. 2 to Appendix C of the March 30, 2001 RCRA Facility Investigation Work Plan – Field Sampling Plan/Quality Assurance Project Plan (BBL, 2005a); and Addendum No. 2 to Appendix C of the March 30, 2001 RCRA Facility Investigation Work Plan – Field Sampling Plan/Quality Assurance Project Plan (BBL, 2005b), except as modified below

Laboratory analyses will be completed for the organic constituent group(s) or individual inorganic constituents of interest at each selected sampling location. This approach was taken to avoid the unnecessary expense of analyzing each sample for the entire Project Analyte List (PAL), while still providing monitoring data. To support the groundwater analyses one sample delivery group (SDG) of these samples will be reported by the laboratory at Level 3 and the remainder at Level 2 as defined in Section 6.3. The data will undergo verification/validation as described in the FSP/QAPP based on USEPA (1995) approach for data review on one SDG at a Tier II and the remainder at Tier I.

To maintain consistency with prior sampling efforts, the samples collected for inorganic and PCB analyses will be submitted for dissolved and/or total inorganic and dissolved and/or total PCBs analyses based on the turbidity of the sample. If the turbidity is less than 10 nephelometric turbidity units (NTUs), the sample will be submitted for total inorganic or total PCB analyses only. If sample turbidity is above 10 NTUs, samples will be filtered. Both unfiltered and filtered aliquots will be submitted for total and dissolved inorganic and PCB analyses, respectively. Monitoring wells will be sampled using low-flow purge and sampling methods in an effort to reduce turbidity in the samples.

6.1.3 Monitoring Network Inspection and Maintenance

Monitoring wells included in the CMI groundwater monitoring program will be inspected annually. The inspection will include an assessment of the physical condition of the

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

monitoring well protective casing, j-plug and lock, and confirmation of the total depth of the monitoring well. Repairs will be completed in a timely manner as needed.

### 6.1.4 Reporting

An annual report will be prepared to document the monitoring program results. The report will describe the objectives and scope of the sampling event, and will summarize the procedures used to complete the sampling. Results will be presented in summary tables and also on analytical data box figures to show the data distribution. The annual report will also provide any recommendations regarding changes to the number of wells being monitored, frequency of measurements and analytical sampling, and the analytical parameters. The annual report will present recommendations regarding changes to optimize the cost-effective operation of the recovery systems based on the monitoring data. The annual report will also include proposed well substitutions and replacements, necessitated by site redevelopment activities. Substantial modifications to the monitoring program will be presented to the USEPA for approval prior to implementation.

### 6.1.5 Contingency Plan

If constituents of concern show a statistically significant increasing trend in concentrations for two consecutive monitoring events and concentrations are approaching criteria, a response plan will be developed for submittal to the USEPA. The response plan may include the sampling or installation of down-gradient monitoring wells or increased sampling frequency.

### 6.2 NPDES Plus Monitoring Plan Overview

The "NPDES Plus" monitoring program (NPMP) will be implemented at the Site to ensure compliance with Michigan Part 201 GSI criteria for the long-term protection of the Flint River. The USEPA and MDNRE have agreed to the approach of sampling of the storm sewers as a means to address GSI potential GSI impacts. As discussed in further detail below, the NPMP will consist of collecting monthly samples from 11 Site storm sewers to ensure that groundwater infiltrating into the Site storm sewers does not impact the Flint River.

To achieve the program objectives the storm sewer samples will be collected as grab samples during dry weather flow conditions. Sampling during dry weather flow

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

conditions will provide the most accurate assessment of the condition of the groundwater infiltrating the storm sewers.

### 6.2.1 NPMP Monitoring Points

Storm sewers associated with the following National Pollutant Discharge Elimination System (NPDES) outfalls are included in the NPMP: Outfalls 001, 002, 003, 004, 005, 006, 007, 009, 010, 011, and 013. Outfalls 008 and 012 are not included in the NPMP. The Outfall 008 storm sewer has been permanently bulkheaded immediately downstream of Monitoring Point 008. The bulkhead was installed because of a no flow condition due to the collapsed storm sewer line. Outfall 008 no longer receives drainage from the Site; therefore, it is not included in the NPMP. During a previous dry weather sampling activity an attempt was made to collect a sample from Monitoring Point 012, located on the Outfall 012 storm sewer. However, there was only a small puddle of water in the storm sewer at the time of sampling indicating that significant groundwater infiltration to Outfall 012 is unlikely; therefore, Outfall 012 is not included in the NPMP.

Samples will be collected from the monitoring point locations identified for each of the storm sewers as shown on **Figure 6.** The NPMP monitoring points are co-located with the monitoring points which have been identified in the current and previous Site NPDES permits, with the exception of Outfall 011. Due to access issues the monitoring point for Outfall 011 is the discharge point of the outfall to the Flint River.

The sampling locations will be reevaluated at the end of each year. If storm sewers are permanently bulkheaded thereby eliminating the GSI pathway into the sewers, the respective monitoring points will be removed from the NPMP.

#### 6.2.2 Storm Sewer Outfall Sampling Parameters and Frequency

The monitoring points included in the NPMP; the specific analyses to be completed at each monitoring point; and the rationale used to determine the analyses are presented on **Table 8.** The following considerations were used to define this sampling program:

 Historical Site groundwater data were compared to criteria to identify potential sources of impacted groundwater in the NPMP drainage areas. Storm sewer samples collected in support of the 2010 NPDES permit renewal application were analyzed for the analytical suites of compounds (metals, volatile organic

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Recovery Act (RCRA) Revised Corrective Measures Proposal

Resource

Conservation and

Addendum No.2 – Northend Corrective Measures and Site-wide Groundwater Monitoring MID 005 356 712

compounds [VOCs] and semi-volatile organic compounds [SVOCs]) that were detected in nearby groundwater samples at concentrations exceeding criteria.

- Storm sewer samples collected in support of the 2010 NPDES permit renewal application collected from sewers whose drainage areas contained LNAPL were analyzed for oil and grease and samples collected from sewers whose drainage areas contained PCB -impacted LNAPL were analyzed for PCBs.
- If constituents of concern are detected in storm sewers with contributions from off-site at concentrations greater than Part 201 GSI criteria, these sewers will be sampled at the sewer headwaters to determine if any of these constituents of concern originate from off-site sources.
- The analytical results from the samples collected from the NPMP monitoring points in support of the 2010 NPDES permit renewal application were reviewed.

NPMP sampling activities will be conducted at the Site on a monthly basis for the first year. After the first quarter of monitoring, the monitoring locations, analytical parameters, and frequencies will be reevaluated to determine if modifications to the plan are warranted. Proposed modifications to the plan will be included in the annual report and implemented following USEPA approval.

Although SVOCs were not detected in any of the samples collected in support of the 2010 NPDES permit renewal, the NPMP will include analyzing one round of samples for SVOCs during each of the first three years of the program. The purpose of these samples is to monitor the storm sewers for possible infiltration of SVOC impacted groundwater and to confirm that SVOC concentrations (if detected) are below GSI criteria in the storm sewers.

### 6.2.3 Analytical Methods

The NPMP samples will be collected during dry weather flow as either grab or 24hour composite samples as indicated on **Table 8.** The samples will be collected and analyzed using the procedures as described in the Site's Field Sampling Plan and Quality Assurance Project Plan (Appendix C of the *RCRA Facility Investigation Work Plan* [BBL, 2001]) (RFI Work Plan); Addendum No. 1 to Appendix C of the March 30, 2001 RCRA Facility Investigation Work Plan – Field Sampling Plan/Quality Assurance Project Plan (BBL, 2005a);and Addendum No. 2 to Appendix C of the March 30, 2001

RCRA Facility Investigation Work Plan – Field Sampling Plan/Quality Assurance Project Plan (BBL, 2005b), except as modified in Section 6.1.2.2. The storm sewer samples will be submitted for laboratory analysis of Target Compound List (TCL) VOCs, SVOCs, PCBs, cyanide, and/or select metals as summarized in **Table 8.** Samples will be analyzed using the following methods:

- VOCs EPA Method 8260B (MDNRE List)
- SVOCs EPA Method 8270C (MDNRE List)
- PCBs EPA method 608
- Total Metals EPA Method 200.8
- Mercury EPA Method 1631 E
- Cyanide EPA Method 335.4/4500-CN-E

To support the NPMP sample analyses will be reported by the laboratory at Level 2, as defined in Section 6.3. These data will not be subjected to any verification/validation.

#### 6.2.4 Reporting

An annual report will be prepared to document the NPMP sampling results. The first annual report will summarize NPMP sampling activities completed in 2009 and will be submitted to the USEPA by April 1, 2011. Subsequent annual reports will be completed and submitted to the USEPA by April 1 of the following calendar year.

The annual report will describe the objectives and scope of the sampling event, and will summarize the procedures used to complete the sampling. Analytical results will be presented in summary tables including a comparison to GSI criteria. Figures and graphs monitoring constituents of concern (COC) concentrations will be included as appropriate.

The annual report will also provide recommendations regarding changes to the outfalls being monitored, the frequency of analytical sampling, and/or the analytical parameters. Substantial modifications to the NPMP will be presented in the annual report and will be implemented following USEPA approval.

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

### 6.2.5 Contingency Plan

In the event that a COC, which historically has been detected below GSI criteria, is detected at a concentration that exceeds GSI criteria, the result will be confirmed by re-sampling for that constituent. If the re-sampling confirms the exceedance the USEPA will be notified to discuss potential actions to address the exceedance.

If COCs show a statistically significant increasing trend in concentrations for two consecutive monitoring events or exceed GSI criteria, a response plan will be developed for submittal to the USEPA. The response plan may include, but not necessarily limited to, some or all of the following:

- Increased sampling frequency or additional sampling locations to further evaluate potential impacts.
- Additional monitoring well sampling and analysis in the identified area(s) of impact.
- Development of plans to address the identified impacts.
- 6.3 Field Sampling Plan/ Quality Assurance Plan

Samples collected during the annual groundwater sampling event and monthly NPMP sampling events will be collected, analyzed, and verified/validated in accordance with protocols presented in the FSP/QAPP provided as Appendix C of the RFI Work Plan as described in the Site's FSP/QAPP (Appendix C of the *RCRA Facility Investigation Work Plan* [BBL, 2001]) (RFI Work Plan); Addendum No. 1 to Appendix C of the March 30, 2001 RCRA Facility Investigation Work Plan – Field Sampling Plan/Quality Assurance Project Plan (BBL, 2005a);and Addendum No. 2 to Appendix C of the March 30, 2001 RCRA Facility Investigation Work Plan – Field Sampling Plan/Quality Assurance Project Plan (BBL, 2005b). and in the *Health and Safety Plan* (HASP) provided as Appendix E of the RFI Work Plan, except as described in Sections 6.1.2.2, 6.2 and below.

The three levels of laboratory data reporting have been defined as follows:

*Level 1 – Minimal Reporting:* Minimal or "results only" reporting is used for analyses that, either due to their nature (i.e., field monitoring) or the intended data use (i.e.,

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

preliminary screening), do not generate or require extensive supporting documentation.

*Level 2 – Modified Reporting:* Modified reporting is used for analyses that are performed following standard USEPA-approved methods and QA/QC protocols and that, based on the intended data use, require some supporting documentation but not, however, full "Contract Laboratory Program-type" (CLP-type) reporting. These reports will include but are not limited to forms that summarizes the following quality control/quality assurance: method blanks, laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs) percent recoveries (%R) / relative percent difference (RPD), matrix spikes (MS)/matrix spike duplicates (MSDs) results as %R and RPD (as method appropriate), laboratory duplicates, and surrogate recoveries as %R.

*Level 3 – Full Reporting:* Full "CLP-type" reporting is used for those analyses that, based on intended data use, require full documentation. These laboratory reports will include but not limited to the forms stated in Level 2 reporting. In addition, they will include supporting raw instrument data are sufficient to meet the requirements to support full data validation.

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

### 7. Schedule

Consistent with the streamlined manner in which MLC has conducted all of the phases of corrective action for this Site, MLC is proceeding with various aspects of remedies proposed for corrective action outlined in the preceding sections of this Northend CMP as interim measures. Specifically, MLC has provided Interim Measure Work Plans (IMWPs) and USEPA has approved IMWP for the following corrective measure, and MLC plans to implement the related construction activities later this year:

 Installation of an oil-water separator along the Outfall 003 and 004 storm sewer systems

As much of the construction work as practicable pertaining to the remedies proposed in the preceding sections of this Addendum CMP will be completed within eight years after USEPA selects the final remedies, and all remedies will be completed within a reasonable period of time to protect human health. Remediation activities are expected to continue for the next 16 years.

MLC will continue to report project updates, including changes to the above schedule of activities, to USEPA via quarterly reports that will be submitted by the 15th day of every month following a quarter.

### Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

#### 8. References

- ARCADIS. BBL. 2006. Resource Conservation and Recovery Act (RCRA) Corrective Measures Proposal. December 22, 2006.
- ARCADIS. BBL. 2008. Revised Corrective Measures Proposal. May 1, 2008.
- ARCADIS. 2008. Interim Measure Work Plan. February 13, 2008.
- ARCADIS. 2009. 4<sup>TH</sup> Quarter 2008 CA 750 Groundwater Monitoring Report. April, 15, 2009.
- ARCADIS. 2009. RCRA Revised Corrective Measures Proposal Addendum No. 2 -Northend and Site- wide Groundwater. October 22, 2009.
- ARCADIS. 2010. Corrective Measures Implementation Work Plan. July 15, 2010.
- BBL. 2000. Description of Current Conditions for Areas North of Leith Street. November 26, 2000.
- BBL. 2000. Description of Current Conditions for Areas South of Leith Street. May 30, 2000.
- BBL. 2001. Resource Conservation and Recovery Act Facility Investigation Work Plan. March 30, 2001.
- BBL, 2002. Resource Conservation and Recovery Act Facility Investigation Phase I Report. June 28, 2002.
- BBL, 2004. Resource Conservation and Recovery Act Facility Investigation Phase II Report. March 16, 2004
- BBL. 2005a. Addendum No. 1 to Appendix C of the March 30, 2001 RCRA Facility Investigation Work Plan – Field Sampling Plan/Quality Assurance Project Plan. May 13, 2005.
- BBL. 2005b. Addendum No.2 to Appendix C of the March 30, 2001 RCRA Facility Investigation Work Plan– Field Sampling Plan/Quality Assurance Project Plan.
   November 7, 2005.BBL, 2006. Resource Conservation and Recovery Act Facility Investigation Phase II Report. July 14, 2006.

Resource Conservation and Recovery Act (RCRA) Revised Corrective Measures Proposal

Tables

# Table 1 General LNAPL Screening Factors and Technology Selection

### Motors Liquidation Company RCRA Revised Corrective Measures Proposal Addendum No. 2 -Northend and Site-wide Groundwater Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City) Flint, Michigan

| Screening Factor                        | MPE Preferred                                        | LNAPL Recovery Trench Preferred                                                            |
|-----------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Geologic Setting                        | Fine to Medium Sand                                  | Silt and Clay                                                                              |
| Potentially Recoverable<br>LNAPL Volume | ,                                                    | Potentially recoverable LNAPL volume<br>greater than five percent of total LNAPL<br>volume |
| LNAPL Type                              | High volatility petroleum products, e.g.<br>gasoline | Low volatility petroleum products, e.g. cutting oils                                       |
| PCB-Containing LNAPL                    | PCB content greater than 50 parts per million        | PCB content less than 50 parts per million                                                 |

#### Table 2

#### AOI Summary of Impacts, Health-Risks, and Recommended Corrective Measures

#### Motors Liquidation Company

RCRA Revised Corrective Measures Proposal

Addendum No. 2 -Northend and Site-wide Groundwater

Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City)

Flint, Michigan

|           |                                                       |      | Do Analytical Results                         | Exceed Screeni | ng Criteria                                          |       | an Health Risk Asses            |             | Recommended Corrective Measures                                                                               |                                                                                                                                                                                                                  |                                       |  |  |
|-----------|-------------------------------------------------------|------|-----------------------------------------------|----------------|------------------------------------------------------|-------|---------------------------------|-------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|
| AOI       | LNAPL Plume (if Present)                              | Soil | Constituents<br>Exceeding Criteria in<br>Soil | Groundwater    | Constituents<br>Exceeding Criteria in<br>Groundwater | LNAPL | Soil                            | Groundwater | LNAPL                                                                                                         | Soil                                                                                                                                                                                                             | Groundwater                           |  |  |
| 03-1      | AOI 03-1 Quench Oil Plume                             | Yes  | Benzo(a)pyrene<br>Manganese                   | Yes            | Several VOCs and<br>Inorganic Constituents           | No    | No                              | No          | Passive LNAPL Recovery<br>Trench                                                                              | Baseline Site-wide Use<br>Restriction                                                                                                                                                                            | Baseline Site-wide Use<br>Restriction |  |  |
| 10-1/10-4 | AOI 10-1 Hydraulic Oil Plume                          | Yes  | Arsenic<br>Chromium<br>Lead<br>Manganese      | Yes            | Several VOCs and<br>Inorganic Constituents           | No    | No                              | No          | Active LNAPL Recovery<br>Trench/Well Skimming                                                                 | Baseline Site-wide Use<br>Restriction                                                                                                                                                                            | Baseline Site-wide Use<br>Restriction |  |  |
|           | AOI 10-4 Hydraulic Oil Plume                          | No   | NA                                            | Yes            | Benzene<br>Vinyl Chloride                            | No    | No                              | No          |                                                                                                               | NA                                                                                                                                                                                                               | Baseline Site-wide Use<br>Restriction |  |  |
|           | AOI 36-1 Mineral<br>Seal/Hydraulic Oil Plume          |      |                                               |                |                                                      | No    | Yes - Primarily                 |             | Multi-Phase Extraction                                                                                        | Baseline Site-wide Use<br>Restriction                                                                                                                                                                            | Baseline Site-wide Use<br>Restriction |  |  |
| 36-1      | AOI 36-1 Gasoline Plume                               | Yes  | Several VOCs and<br>Inorganic Constituents    | Yes            | Several VOCs and<br>Inorganic Constituents           | Yes   | AOI 36-1 Gasoline<br>Plume Area |             | Multi-Phase Extraction                                                                                        | Additional Controls Above<br>Baseline to Limit<br>Excavation and Prohibit<br>Non-OSHA Use in                                                                                                                     | Baseline Site-wide Use<br>Restriction |  |  |
| 36-2      | AOI 36-2 Exterior Mineral<br>Seal/Hydraulic Oil Plume | No   | NA                                            | Yes            | Several VOCs and<br>Inorganic Constituents           | No    | No                              | No          | Multi-Phase Extraction                                                                                        | Baseline Site-wide Use<br>Restriction                                                                                                                                                                            | Baseline Site-wide Use<br>Restriction |  |  |
| 36-5      | AOI 36-5 Fuel Oil Plume                               | No   | NA                                            | Yes            | Several VOCs and<br>Inorganic Constituents           | No    | No                              | No          | Passive LNAPL Recovery<br>Trench                                                                              | Baseline Site-wide Use<br>Restriction                                                                                                                                                                            | Baseline Site-wide Use<br>Restriction |  |  |
| 83/84-4   | AOI 83/84-4 Cutting Oil Plume                         | No   | NA                                            | Yes            | Arsenic<br>Beyllium<br>Lead                          | No    | No                              | No          | Passive LNAPL Recovery<br>Trench                                                                              | Baseline Site-wide Use<br>Restriction                                                                                                                                                                            | Baseline Site-wide Use<br>Restriction |  |  |
| 86-1      | AOI 86-1 Fuel Oil Plume                               | Yes  | Arsenic<br>Manganese                          | Yes            | Several VOCs and<br>Inorganic Constituents           | No    | No                              | No          | Passive LNAPL Recovery<br>Trench                                                                              | Baseline Site-wide Use<br>Restriction                                                                                                                                                                            | Baseline Site-wide Use<br>Restriction |  |  |
|           | AOI 05-1 Cutting Oil Plume                            | Yes  | Lead<br>Manganese                             | No             | NA                                                   | No    | No                              | No          | Multi-Phase Extraction<br>and Additional<br>Institutional Controls<br>above Baseline to Notify                | Baseline Site-wide Use<br>Restriction                                                                                                                                                                            | Baseline Site-wide Use<br>Restriction |  |  |
| 05-1/05-5 | AOI 05-5 Cutting Oil Plume                            | No   | NA                                            | Yes            | Arsenic<br>Nickel                                    | No    | No No                           |             | Multi-Phase Extraction<br>and Additional<br>Institutional Controls<br>above Baseline to Notify                |                                                                                                                                                                                                                  | Baseline Site-wide Use<br>Restriction |  |  |
| 81-2      | AOI 81-2 Cutting Oil Plume                            | Yes  | Several VOCs and<br>Inorganic Constituents    | Yes            | Lead<br>Manganese                                    | No    | Yes                             | No          | Passive LNAPL Recovery<br>Trench                                                                              | Engineering and Additional<br>Institutional Controls Above<br>Baseline to Limit<br>Excavation and Maintain a<br>Surface Cover Consistent<br>with Current Conditions<br>and Prohibit non-OSHA<br>use in Buildings | Baseline Site-wide Use<br>Restriction |  |  |
| 83/84-2   | AOI 83/84-2 Cutting Oil Plume                         | Yes  | Several PAHs and<br>Inorganic Constituents    | Yes            | Several VOCs and<br>Inorganic Constituents           | No    | Yes                             | No          | Multiphase Extraction and<br>Additional Institutional<br>Controls Above baseline<br>to Notify of PCBs Present | Additional Institutional<br>Controls Above Baseline to<br>Limit Excavation                                                                                                                                       | Baseline Site-wide Use<br>Restriction |  |  |
| 83/84-3   | NA                                                    | Yes  | Lead                                          | Yes            | Beryllium<br>Lead                                    | NA    | Yes                             | No          | NA                                                                                                            | Engineering and Additional<br>institutional Controls Above<br>Baseline to Limit<br>Excavation and Maintain a<br>Surface Cover Consistent<br>with Existing Conditions                                             | Baseline Site-wide Use<br>Restriction |  |  |
| 81-1      | NA                                                    | Yes  | Lead                                          | Yes            | Vinyl Chloride<br>Arsenic<br>Lead                    | NA    | Yes                             | No          | NA                                                                                                            | Additional Controls Above<br>Baseline to Limit<br>Excavation                                                                                                                                                     | Baseline Site-wide Use<br>Restriction |  |  |

1. Based on the Human-Health Risk Assesment presented in the RFI Phase II Report dated July 14, 2006. Please note that Redevelopment Construction Worker Exposure Pathway was not evaluated for the Northend in this Risk Assessment.

#### Table 3

#### LNAPL Volume Calculations

#### Motors Liquidation Company

#### RCRA Revised Corrective Measures Proposal Addendum No. 2 -Northend and Site-wide Groundwater Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City) Flint, Michigan

|                                                         |                                  |                                |                     |                 |                  | Fluid Propert                  | ties: |                                | Aquifer Properties:           |                |          |                                 |                                | Soil                    | Summary of Volume Calculations:  |                                        |                                             |
|---------------------------------------------------------|----------------------------------|--------------------------------|---------------------|-----------------|------------------|--------------------------------|-------|--------------------------------|-------------------------------|----------------|----------|---------------------------------|--------------------------------|-------------------------|----------------------------------|----------------------------------------|---------------------------------------------|
| LNAPL Plume Designation                                 | Total Area of<br>Measurable NAPL | NAPL Type                      | Soil Type           | NAPL<br>Density | Water<br>Density | Surface<br>Tension<br>dynes/cm |       | LNAPL-Water<br>IFT<br>dynes/cm | vanGenuchten<br>alpha<br>1/cm | vanGenuchten N | Porosity | Irreducible Water<br>Saturation | Residual<br>NAPL<br>Saturation | Retention<br>Model Used | Total LNAPL<br>Volume<br>gallons | Recoverable<br>LNAPL Volume<br>gallons | Recoverable Portion<br>of Total Volume<br>% |
| AOI 03-1 - Quench Oil Plume                             | 2,662                            | Quench Oil                     | silt                | 0.8984          | 0.9982           | 65                             | 24    | 4.5                            | 4.96E-03                      | 1.76           | 0.50     | 0.17                            | 0.50                           | Mualem                  | 15,274                           | 268                                    | 1.8%                                        |
| AOI 10-1/10-4 - Hydraulic Oil<br>Plumes - 20-168 Plume  | 3,196                            | Hydraulic Oil                  | fine sand           | 0.9223          | 0.9982           | 65                             | 27    | 18                             | 2.54E-02                      | 3.17           | 0.45     | 0.12                            | 0.24                           | Burdine                 | 2,635                            | 4                                      | 0.2%                                        |
| AOI 10-1/10-4 - Hydraulic Oil<br>Plumes - large plume   | 154,608                          | Hydraulic Oil                  | fine to medium sand | 0.9223          | 0.9982           | 65                             | 27    | 18                             | 2.22E-02                      | 2.73           | 0.41     | 0.20                            | 0.20                           | Burdine                 | 221,474                          | 9,171                                  | 4.1%                                        |
| AOI 36-1 - Mineral Seal and<br>Hydraulic Oil Plume      | 256,669                          | Mineral Seal and Hydraulic Oil | silt and clay       | 0.9223          | 0.9982           | 65                             | 27    | 18                             | 7.65E-03                      | 2.48           | 0.43     | 0.48                            | 0.35                           | Mualem                  | 1,311,088                        | 3,897                                  | 0.3%                                        |
| AOI 36-1 - Mineral Seal and<br>Hydraulic Oil Plume      | 256,669                          | Mineral Seal and Hydraulic Oil | fine sand           | 0.9223          | 0.9982           | 65                             | 27    | 18                             | 2.54E-02                      | 3.17           | 0.45     | 0.12                            | 0.24                           | Burdine                 | 1,048,630                        | 110,660                                | 10.6%                                       |
| AOI 36-1 - Mineral Seal and<br>Hydraulic Oil Plume      | 256,669                          | Mineral Seal and Hydraulic Oil | sand                | 0.9223          | 0.9982           | 65                             | 27    | 18                             | 2.14E-02                      | 2.64           | 0.41     | 0.21                            | 0.16                           | Burdine                 | 621,828                          | 52,046                                 | 8.4%                                        |
| AOI 36-2 - Exterior Mineral<br>Seal/Hydraulic Oil Plume | 74,323                           | Mineral Seal and Hydraulic Oil | silty sand          | 0.8984          | 0.9982           | 65                             | 27    | 24                             | 2.75E-02                      | 2.16           | 0.43     | 0.31                            | 0.34                           | Mualem                  | 305,367                          | 19,279                                 | 6.3%                                        |
| AOI 36-2 - Exterior Mineral<br>Seal/Hydraulic Oil Plume | 74,323                           | Mineral Seal and Hydraulic Oil | sand                | 0.8984          | 0.9982           | 65                             | 27    | 24                             | 2.14E-02                      | 2.64           | 0.41     | 0.21                            | 0.16                           | Burdine                 | 138,543                          | 9,773                                  | 7.1%                                        |
| AOI 36-5 - Fuel Oil Plume                               | 13,587                           | Fuel Oil                       | silt                | 0.8684          | 0.9982           | 65                             | 25    | 18                             | 4.96E-03                      | 1.76           | 0.50     | 0.17                            | 0.16                           | Mualem                  | 18,972                           | 335                                    | 1.8%                                        |
| AOI 83/84-4 - Cutting Oil<br>Plume                      | 3,738                            | Cutting Oil                    | silt                | 0.8784          | 0.9982           | 65                             | 29    | 17                             | 4.96E-03                      | 1.76           | 0.50     | 0.17                            | 0.50                           | Mualem                  | 12,324                           | 19                                     | 0.2%                                        |
| AOI 83/84-4 - Cutting Oil<br>Plume                      | 3,738                            | Cutting Oil                    | sand                | 0.8784          | 0.9982           | 65                             | 29    | 17                             | 2.14E-02                      | 2.64           | 0.41     | 0.21                            | 0.16                           | Burdine                 | 3,330                            | 101                                    | 3.0%                                        |
| AOI 86-1 - Unknown Fuel Type<br>Plume                   | 1,887                            | Unknown                        | fine to medium sand | 0.8984          | 0.9982           | 65                             | 27    | 22                             | 2.22E-02                      | 2.73           | 0.41     | 0.20                            | 0.20                           | Burdine                 | 2,662                            | 32                                     | 1.2%                                        |
| AOI 86-1 (RFI-86-03) -<br>Unknown Fuel Type Plume       | 447                              | Unknown                        | fine to medium sand | 0.8684          | 0.9982           | 65                             | 27    | 16                             | 2.22E-02                      | 2.73           | 0.41     | 0.20                            | 0.20                           | Burdine                 | 125                              | 0                                      | 0.0%                                        |
| AOI 05-1 - Cutting Oil Plume                            | 109,848                          | Cutting Oil                    | fine sand           | 0.8917          | 0.9982           | 65                             | 29    | 14.33                          | 2.54E-02                      | 3.17           | 0.45     | 0.12                            | 0.24                           | Burdine                 | 427,154                          | 76,236                                 | 17.8%                                       |
| AOI 05-5 - Cutting Oil Plume                            | 3,350                            | Cutting Oil                    | fine sand           | 0.8917          | 0.9982           | 65                             | 29    | 14.33                          | 2.54E-02                      | 3.17           | 0.45     | 0.12                            | 0.24                           | Burdine                 | 15,876                           | 2,679                                  | 16.9%                                       |
| AOI 36-1 - Gasoline Plume                               | 6,137                            | Gasoline                       | fine sand           | 0.7487          | 0.9982           | 65                             | 21    | 29                             | 2.54E-02                      | 3.17           | 0.45     | 0.12                            | 0.19                           | Burdine                 | 4,981                            | 132                                    | 2.6%                                        |
| AOI 81-2 - Cutting Oil Plume                            | 45,161                           | Cutting Oil                    | silt and clay       | 0.9084          | 0.9982           | 65                             | 29    | 16.62                          | 7.65E-03                      | 2.48           | 0.43     | 0.48                            | 0.36                           | Mualem                  | 147,568                          | 591                                    | 0.4%                                        |
| AOI 83/84-2 - Cutting Oil<br>Plume                      | 17,084                           | Cutting Oil                    | fine to medium sand | 0.8934          | 0.9982           | 65                             | 29    | 25                             | 2.22E-02                      | 2.73           | 0.41     | 0.20                            | 0.20                           | Burdine                 | 33,834                           | 1,046                                  | 3.1%                                        |

#### Assumptions

-Soil type was generated from interpretation and assimilation of site soil boring logs.

-When plume-specific fluid properties are not available, then the average of that fluid type is applied.

-Water density and surface tension are universally-applied at 0.9982 g/cc and 65 dynes/cm.

-Air-LNAPL interfacial tensions were derived from Mercer and Cohen, 1990 primarily and then from previous lab experience with similar fluid types. Details follow:

-Fuel Oil assumed to be No. 2 Fuel Oil in Mercer and Cohen, 1990.

-Used laboratory results for Cutting Oil from another site.

-Could not find a reasonable source for Quench Oil; used engineering best judgement.

-Quench Oil's site-specific LNAPL-Water IFT of 2.8 dynes/cm was too low to provide reasonable results from the model. IFT and LNAPL Impact Thickness in the Subsurface were graphed to find the "break-point" at which output became reasonable yet conservative. This break-point occurred at an IFT of 4.5 dynes/cm. -AOI 82-1 Cutting Oil's site-specific LNAPL-Water IFT of 5.6 dynes/cm was too low to provide reasonable results from the model. Therefore, the site-wide and site-specific average of 16.62 dynes/cm for cutting oil was applied to AOI 82-1 calculations.

-Used engineering best judgement for the unknown fuel type (similar A-O IFT as other fuels with O-W IFTs in the same range of 16-22 dynes/cm).

-See Selected Aquifer Properties tab for all assumptions made for irreducible water saturation, porosity, and van Genuchten parameters.

-For residual saturation values, the following assumptions were made from Mercer and Cohen, 1990:

-Used equation Sor = R/(n\*1000) when only R is given.

-Gasoline: applied low end of Sr 0.19-0.6 for fine sand.

-Fuel Oil: applied R=80 for silt to fine sand and R=50 for fine to medium sand

-Grouped Mineral Oil, Hydraulic Oil, Quench Oil, and Cutting Oil together and referenced Mineral Oil. Loess=silt; glacial till=clay; ottawa sand (dm. 0.18mm)=fine sand; ottawa sand (dm. 0.25mm)=medium sand; fine-v.coarse ottawa sand=sand -Used engineering best judgement for the unknown fuel type (similar Sor to the other fuels in fine to medium sand).

## Table 4 AOI-Specific LNAPL Screening Factors and Technology Selection

### Motors Liquidation Company

RCRA Revised Corrective Measures Proposal

Addendum No. 2 -Northend and Site-wide Groundwater

Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City)

Flint, Michigan

|                                                    |                        |                                   |                                           | Summary                       | of Volume Calcula                      | tions:                                         |                         |                               |                            |                                         |                       |
|----------------------------------------------------|------------------------|-----------------------------------|-------------------------------------------|-------------------------------|----------------------------------------|------------------------------------------------|-------------------------|-------------------------------|----------------------------|-----------------------------------------|-----------------------|
| Area                                               | Soil Type              | NAPL Type                         | Total Area of<br>Measurable NAPL<br>sq ft | Total LNAPL Volume<br>gallons | Recoverable<br>LNAPL Volume<br>gallons | Recoverable<br>Portion of Total<br>Volume<br>% | Recovery Approach       | Number of<br>Extraction Wells | Recovery Well<br>ROI<br>ft | Linear Feet of<br>Recovery Trench<br>ft | Years of<br>Operation |
| AOI 03-1 Quench Oil Plume                          | silt                   | Quench Oil                        | 2,662                                     | 15,274                        | 268                                    | 1.8%                                           | Passive Recovery Trench | NA                            | NA                         | 80                                      | 2                     |
| AOIs 10-1/10-4 Hydraulic Oil Plumes                | Fine to Medium<br>Sand | Hydraulic Oil                     | 157,805                                   | 224,109                       | 9,175                                  | 4.1%                                           | Active Recovery Trench  | NA                            | NA                         | 730                                     | 2                     |
| AOI 36-1 - Mineral Seal and Hydraulic Oil Plume    | fine sand              | Mineral Seal and<br>Hydraulic Oil | 256,669                                   | 1,048,630                     | 110,660                                | 10.6%                                          | MPE                     | 225                           | 20                         | NA                                      | 5                     |
| AOI 36-2 Exterior Mineral Seal/Hydraulic Oil Plume | sand                   | Mineral Seal and<br>Hydraulic Oil | 74,323                                    | 138,543                       | 9,773                                  | 7.1%                                           | MPE                     | 39                            | 25                         | NA                                      | 5                     |
| AOI 36-5 - Fuel Oil Plume                          | silt                   | Fuel Oil                          | 13,587                                    | 18,972                        | 335                                    | 1.8%                                           | Passive Recovery Trench | NA                            | NA                         | 135                                     | 2                     |
| AOI 83/84-4 Cutting Oil Plume                      | sand                   | Cutting Oil                       | 3,738                                     | 3,330                         | 101                                    | 3.0%                                           | Passive Recovery Trench | NA                            | NA                         | 85                                      | 2                     |
| AOI 86-1 Fuel Oil Plume                            | fine to medium sand    | Unknown                           | 2,333                                     | 2,787                         | 32                                     | 1.2%                                           | Passive Recovery Trench | NA                            | NA                         | 60                                      | 2                     |
| AOIs 05-1/05-5 Cutting Oil Plumes                  | fine sand              | Cutting Oil                       | 113,198                                   | 443,030                       | 78,915                                 | 17.8%                                          | MPE                     | 41                            | 30                         | NA                                      | 5                     |
| AOI 36-1 - Gasoline Plume                          | fine sand              | Gasoline                          | 6,137                                     | 4,981                         | 132                                    | 2.6%                                           | MPE                     | 4                             | 30                         | NA                                      | 5                     |
| AOI 81-2 Cutting Oil Plume                         | silt and clay          | Cutting Oil                       | 45,161                                    | 147,568                       | 591                                    | 0.4%                                           | Passive Recovery Trench | NA                            | NA                         | 310                                     | 2                     |
| AOI 83/84-2 Cutting Oil Plume                      | fine to medium sand    | Cutting Oil                       | 17,084                                    | 33,834                        | 1,046                                  | 3.1%                                           | MPE                     | 13                            | 20                         | NA                                      | 5                     |
| Totals                                             | 692,698                | 2,081,059                         | 211,028                                   | 10.14%                        |                                        |                                                |                         |                               |                            |                                         |                       |

### Groundwater and LNAPL Elevation Monitoring Locations - Northend

#### Motors Liquidation Company RCRA Revised Corrective Measures Proposal Addendum No. 2 -Northend and Site-wide Groundwater Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City) Flint, Michigan

| Area of<br>Interest<br>(AOI) | Location                | Comments                                                                               |
|------------------------------|-------------------------|----------------------------------------------------------------------------------------|
|                              |                         |                                                                                        |
| 03-1<br>03-1                 | 03-03R<br>03-105R3      | LNAPL Monitoring Program Location                                                      |
|                              |                         | LNAPL Monitoring Program Location                                                      |
| 03-1                         | RFI-03-02               | LNAPL Monitoring Program Location                                                      |
| 03-1<br>03-1                 | RFI-03-03               | Groundwater Elevation Monitoring Location                                              |
|                              | 70-109                  | Groundwater Elevation Monitoring Location                                              |
| 03-1<br>05-1                 | 70-100<br>43-161        | Groundwater Elevation Monitoring Location                                              |
|                              |                         | LNAPL Monitoring Program Location                                                      |
| 05-1                         | 43-165                  | LNAPL Monitoring Program Location                                                      |
| 05-1<br>05-1                 | <u>43-166</u><br>43-167 | LNAPL Monitoring Program Location                                                      |
|                              |                         | LNAPL Monitoring Program Location                                                      |
| 05-1<br>05-1                 | RFI-05-13<br>RFI-05-14  | LNAPL Monitoring Program Location                                                      |
|                              |                         | LNAPL Monitoring Program Location                                                      |
| 05-4                         | 43-103                  | Groundwater Elevation Monitoring Location                                              |
| 05-5                         | RFI-05-06               | LNAPL Monitoring Program Location                                                      |
| 05-5                         | RFI-05-08               | Groundwater Elevation Monitoring Location                                              |
| 05-5                         | RW-05 North             | LNAPL Monitoring Program Location                                                      |
| 05-6                         | 43-140                  | Groundwater Elevation Monitoring Location                                              |
| 05-6                         | 43-242                  | Groundwater Elevation Monitoring Location                                              |
| 07-1<br>07-1                 | RFI-07-03               | Groundwater Elevation Monitoring Location                                              |
| -                            | OW-3D                   | Groundwater Elevation Monitoring Location                                              |
| 07-1<br>07-1                 | OW-3S<br>OW-5           | Groundwater Elevation Monitoring Location                                              |
|                              |                         | Groundwater Elevation Monitoring Location                                              |
| 07-1                         | OW-40                   | Groundwater Elevation Monitoring Location                                              |
| 07-1<br>07-1                 | GM-2                    | Groundwater Elevation Monitoring Location                                              |
| -                            | GM-3                    | Groundwater Elevation Monitoring Location                                              |
| 07-1<br>07-1                 | GM-4                    | Groundwater Elevation Monitoring Location                                              |
| -                            | GM-5                    | Groundwater Elevation Monitoring Location                                              |
| 07-1                         | GM-6                    | Groundwater Elevation Monitoring Location                                              |
| 07-1                         | GM-7                    | Groundwater Elevation Monitoring Location                                              |
| 07-1<br>07-1                 | <u>GM-8</u><br>GM-9     | Groundwater Elevation Monitoring Location<br>Groundwater Elevation Monitoring Location |
|                              |                         |                                                                                        |
| 07-1<br>07-1                 | GM-10<br>GM-11          | Groundwater Elevation Monitoring Location                                              |
| 07-1                         | GM-12                   | Groundwater Elevation Monitoring Location                                              |
| 07-1                         | 07-01                   | Groundwater Elevation Monitoring Location                                              |
|                              |                         | Groundwater Elevation Monitoring Location                                              |
| 07-3                         | RFI-07-08               | Groundwater Elevation Monitoring Location                                              |
| 07-3<br>10-1                 | RFI-85-14<br>20-144     | Groundwater Elevation Monitoring Location<br>Groundwater Elevation Monitoring Location |
| 10-1                         | RFI-10-24               |                                                                                        |
| 10-2                         | RFI-10-24<br>RFI-10-26  | Groundwater Elevation Monitoring Location                                              |
| 10-2                         | RFI-10-20               | Groundwater Elevation Monitoring Location<br>Groundwater Elevation Monitoring Location |
| 10-2                         | RFI-10-29<br>RFI-10-33  |                                                                                        |
| 10-2                         | RFI-10-35               | Groundwater Elevation Monitoring Location                                              |
|                              | DEL 10.00               | Groundwater Elevation Monitoring Location                                              |
| 10-2                         | RFI-10-36               | Groundwater Elevation Monitoring Location                                              |
| 10-3                         | RFI-10-07<br>RFI-10-28  | Groundwater Elevation Monitoring Location<br>Groundwater Elevation Monitoring Location |
| 10-3<br>10-4                 | 20-145                  | Groundwater Elevation Monitoring Location                                              |
| 10-4                         | 20-145                  | LNAPL Monitoring Program Location                                                      |
| 10-4                         | 20-162                  | LNAPL Monitoring Program Location                                                      |
| 10-4                         | 20-162<br>20-163R       | LNAPL Monitoring Program Location                                                      |
| 10-4                         | 20-1638                 | LNAPL Monitoring Program Location                                                      |
| 10-4                         | 20-108<br>20-FP10R      | Groundwater Elevation Monitoring Location                                              |
| 10-4                         | 20-FP11R                | LNAPL Monitoring Program Location                                                      |
| 10-4                         | 20-FP11R<br>20-FP8      | LNAPL Monitoring Program Location                                                      |
| 10-4                         | 20-FP9R                 | LNAPL Monitoring Program Location                                                      |
| 10-4                         | RFI-03-04               | LNAPL Monitoring Program Location                                                      |
| See Notes on Page 3.         | INI I=00=0 <del>4</del> |                                                                                        |

See Notes on Page 3.

### Groundwater and LNAPL Elevation Monitoring Locations - Northend

#### Motors Liquidation Company RCRA Revised Corrective Measures Proposal Addendum No. 2 -Northend and Site-wide Groundwater Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City) Flint, Michigan

| Area of<br>Interest<br>(AOI) | Location          | Comments                                                            |
|------------------------------|-------------------|---------------------------------------------------------------------|
| 36-1                         | 36-FP2            | LNAPL Monitoring Program Location                                   |
| 36-1                         | 36-FP3            | LNAPL Monitoring Program Location                                   |
| 36-1                         | 36-FP4            | LNAPL Monitoring Program Location                                   |
| 36-1                         | 36-FP6            | LNAPL Monitoring Program Location                                   |
| 36-1                         | 36-FP7            | LNAPL Monitoring Program Location                                   |
| 36-1                         | 36-FP8            | LNAPL Monitoring Program Location                                   |
| 36-1                         | RFI-36-04         | LNAPL Monitoring Program Location                                   |
| 36-1                         | RFI-36-05         | LNAPL Monitoring Program Location                                   |
| 36-1                         | RFI-36-06         | LNAPL Monitoring Program Location                                   |
| 36-1                         | RFI-36-07         | LNAPL Monitoring Program Location                                   |
| 36-1                         | RFI-36-20         | Groundwater Elevation Monitoring Location                           |
| 36-1                         | RFI-36-25R        | Groundwater Elevation Monitoring Location                           |
| 36-1                         | RFI-36-29R        | LNAPL Monitoring Program Location                                   |
| 36-1                         | RFI-36-46         | Groundwater Elevation Monitoring Location                           |
| 36-1                         | RFI-36-47         | Groundwater Elevation Monitoring Location                           |
| 36-1                         | RFI-36-48         | Groundwater Elevation Monitoring Location                           |
| 36-1                         | RFI-36-49         | LNAPL Monitoring Program Location                                   |
| 36-1                         | RFI-36-55         | Groundwater Elevation Monitoring Location                           |
| 36-1                         | RFI-36-56         | Groundwater Elevation Monitoring Location                           |
| 36-1                         | RW-1              | LNAPL Monitoring Program Location                                   |
| 36-1                         | RW-3              | LNAPL Monitoring Program Location                                   |
| 36-2                         | RFI-36-19         | Groundwater Elevation Monitoring Location                           |
| 36-2                         | RFI-36-37         | Groundwater Elevation Monitoring Location                           |
| 36-4                         | RFI-36-12         | Groundwater Elevation Monitoring Location                           |
| 36-5                         | 20-500R           | Groundwater Elevation Monitoring Location                           |
| 36-5<br>36-5                 | 20-502<br>20-503  | LNAPL Monitoring Program Location                                   |
| 36-5                         | 20-506            | LNAPL Monitoring Program Location                                   |
| 36-5                         | 37-RW-NORTH       | LNAPL Monitoring Program Location                                   |
| 36-5                         | 37-RW-SOUTH       | LNAPL Monitoring Program Location                                   |
| 36-5                         | RFI-36-13         | LNAPL Monitoring Program Location                                   |
| 36-5                         | RFI-36-14         | Groundwater Elevation Monitoring Location                           |
| 38-1                         | RFI-38-04         | Groundwater Elevation Monitoring Location                           |
| 38-1                         | RFI-38-05         | Groundwater Elevation Monitoring Location                           |
| 38-1                         | 36-101            | Groundwater Elevation Monitoring Location                           |
| 38-1                         | 38-120            | Groundwater Elevation Monitoring Location                           |
| 38-1                         | 36-121            | Groundwater Elevation Monitoring Location                           |
| 55-1                         | 55-1              | Groundwater Elevation Monitoring Location                           |
| 55-1                         | 55-2              | Groundwater Elevation Monitoring Location                           |
| 55-1                         | RFI-55-01         | Groundwater Elevation Monitoring Location                           |
| 55-1                         | RFI-55-02         | Groundwater Elevation Monitoring Location                           |
| 55-1                         | RFI-55-12         | Groundwater Elevation Monitoring Location                           |
| 65-1                         | 43-141            | Groundwater Elevation Monitoring Location                           |
| 81-1                         | RFI-81-02         | Groundwater Elevation Monitoring Location                           |
| 81-1                         | RFI-81-35         | Groundwater Elevation Monitoring Location                           |
| 81-1                         | RFI-81-43         | LNAPL Monitoring Program Location                                   |
| 81-2                         | 70-101            | LNAPL Monitoring Program Location LNAPL Monitoring Program Location |
| 81-2<br>81-2                 | 70-103<br>70-105  | LNAPL Monitoring Program Location                                   |
| 81-2                         | 70-105            | LNAPL Monitoring Program Location                                   |
| 81-2                         | 70-107<br>70-107R | LNAPL Monitoring Program Location                                   |
| 81-2                         | 70-108R           | LNAPL Monitoring Program Location                                   |
| 81-2                         | 70-163            | Groundwater Elevation Monitoring Location                           |
| 81-2                         | 70-164            | LNAPL Monitoring Program Location                                   |
| 81-2                         | 70-165            | Groundwater Elevation Monitoring Location                           |
| 81-2                         | RFI-81-03         | Groundwater Elevation Monitoring Location                           |
| 81-2                         | RFI-81-21         | Groundwater Elevation Monitoring Location                           |
| 81-2                         | RFI-81-45         | Groundwater Elevation Monitoring Location                           |
| See Notes on Page 3.         |                   |                                                                     |

See Notes on Page 3.

### Groundwater and LNAPL Elevation Monitoring Locations - Northend

#### Motors Liquidation Company RCRA Revised Corrective Measures Proposal Addendum No. 2 -Northend and Site-wide Groundwater Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City) Flint, Michigan

| Area of<br>Interest<br>(AOI) | Location     | Comments                                  |
|------------------------------|--------------|-------------------------------------------|
| 81-2                         | RFI-81-49    | LNAPL Monitoring Program Location         |
| 81-2                         | RFI-81-50    | Groundwater Elevation Monitoring Location |
| 81-3                         | RFI-81-07    | Groundwater Elevation Monitoring Location |
| 81-3                         | RFI-81-08    | Groundwater Elevation Monitoring Location |
| 81-3                         | RFI-81-33    | Groundwater Elevation Monitoring Location |
| 81-3                         | RFI-81-51    | Groundwater Elevation Monitoring Location |
| 83/84-1                      | RFI-83/84-01 | Groundwater Elevation Monitoring Location |
| 83/84-1                      | RFI-83/84-03 | LNAPL Monitoring Program Location         |
| 83/84-1                      | RFI-83/84-07 | LNAPL Monitoring Program Location         |
| 83/84-1                      | RFI-83/84-29 | Groundwater Elevation Monitoring Location |
| 83/84-2                      | RFI-83/84-04 | LNAPL Monitoring Program Location         |
| 83/84-2                      | RFI-83/84-05 | LNAPL Monitoring Program Location         |
| 83/84-2                      | RFI-83/84-23 | LNAPL Monitoring Program Location         |
| 83/84-2                      | RFI-83/84-28 | LNAPL Monitoring Program Location         |
| 83/84-2                      | RFI-83/84-38 | LNAPL Monitoring Program Location         |
| 83/84-2                      | RFI-83/84-53 | Groundwater Elevation Monitoring Location |
| 83/84-4                      | RFI-83/84-54 | Groundwater Elevation Monitoring Location |
| 83/84-7                      | 88-7         | Groundwater Elevation Monitoring Location |
| 83/84-7                      | RFI-83/84-11 | Groundwater Elevation Monitoring Location |
| 85-1                         | RFI-85-02R   | LNAPL Monitoring Program Location         |
| 85-1                         | RFI-85-04R   | Groundwater Elevation Monitoring Location |
| 85-1                         | RFI-85-05    | Groundwater Elevation Monitoring Location |
| 86-1                         | 87-FP1       | LNAPL Monitoring Program Location         |
| 86-1                         | 87-FPD2      | Groundwater Elevation Monitoring Location |
| 86-1                         | 87-FPD3      | Groundwater Elevation Monitoring Location |
| 86-1                         | MW-00-FP6    | LNAPL Monitoring Program Location         |
| 86-1                         | RFI-86-02    | LNAPL Monitoring Program Location         |
| 86-1                         | RFI-86-03    | LNAPL Monitoring Program Location         |
| 86-1                         | RFI-86-06D   | LNAPL Monitoring Program Location         |
| 86-1                         | RFI-86-06S   | LNAPL Monitoring Program Location         |
| 86-1                         | RFI-86-08R   | Groundwater Elevation Monitoring Location |
| 86-1                         | RFI-86-16R   | Groundwater Elevation Monitoring Location |

Note:

Measurements will be collected on an annual basis.

### Groundwater and LNAPL Elevation Monitoring Locations - Southend

#### Motors Liquidation Company RCRA Revised Corrective Measures Proposal Addendum No. 2 -Northend and Site-wide Groundwater Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City) Flint, Michigan

| Area of<br>Interest |                         |                                                                                        |
|---------------------|-------------------------|----------------------------------------------------------------------------------------|
| (AOI)               | Location                | Comments                                                                               |
| 02-B                | RFI-02-12               | Groundwater Elevation Monitoring Location                                              |
| 02-B                | RFI-02-14               | LNAPL Monitoring Program Location                                                      |
| 02-B                | RFI-02-15               | LNAPL Monitoring Program Location                                                      |
| 02-B                | RFI-02-16               | LNAPL Monitoring Program Location                                                      |
| 02-B                | RFI-02-17               | LNAPL Monitoring Program Location                                                      |
| 02-B                | RFI-02-18               | LNAPL Monitoring Program Location                                                      |
| 02-B                | RFI-02-19               | LNAPL Monitoring Program Location                                                      |
| 02-B                | RFI-02-23               | LNAPL Monitoring Program Location                                                      |
| 02-B                | RFI-02-24               | Groundwater Elevation Monitoring Location                                              |
| 02-E                | RFI-02-05               | Groundwater Elevation Monitoring Location                                              |
| 02-F                | RFI-02-07               | Groundwater Elevation Monitoring Location                                              |
| 02-F                | RFI-02-13               | Groundwater Elevation Monitoring Location                                              |
| 02-F                | RFI-86-01R              | Groundwater Elevation Monitoring Location                                              |
| 04-D                | 04-1                    | Groundwater Elevation Monitoring Location                                              |
| 04-D                | 04-3                    | Groundwater Elevation Monitoring Location                                              |
| 04-D                | 04-4                    | Groundwater Elevation Monitoring Location                                              |
| 09-A                | MW-16                   | Groundwater Elevation Monitoring Location                                              |
| 09-A                | MW-17                   | Groundwater Elevation Monitoring Location                                              |
| 09-A                | MW-18                   | Groundwater Elevation Monitoring Location                                              |
| 09-A                | MW-19                   | Groundwater Elevation Monitoring Location                                              |
| 09-A                | MW-13<br>MW-25          | Groundwater Elevation Monitoring Location                                              |
| 09-A                | RFI-09-04R              | Groundwater Elevation Monitoring Location                                              |
| 09-A                | RFI-09-49R              | Groundwater Elevation Monitoring Location                                              |
| 09-A                | RFI-09-53               | Groundwater Elevation Monitoring Location                                              |
| 09-A                | RFI-09-56               | Groundwater Elevation Monitoring Location                                              |
| 09-A                | RFI-09-57               | Groundwater Elevation Monitoring Location                                              |
| 09-A                | RFI-09-58               | Groundwater Elevation Monitoring Location                                              |
| 09-A                | MW-26                   |                                                                                        |
| 09-A                | RFI-9-46                | Groundwater Elevation Monitoring Location<br>Groundwater Elevation Monitoring Location |
| 09-B                | 11-6-2                  | Č Č                                                                                    |
|                     |                         | Groundwater Elevation Monitoring Location                                              |
| 09-B                | 31-1                    | Groundwater Elevation Monitoring Location                                              |
| 09-B                | 31-3                    | Groundwater Elevation Monitoring Location                                              |
| 09-B<br>09-B        | 31-4D<br>31-4S          | Groundwater Elevation Monitoring Location                                              |
|                     |                         | Groundwater Elevation Monitoring Location                                              |
| 09-B<br>09-B        | 31-5                    | Groundwater Elevation Monitoring Location                                              |
|                     | 31-8<br>MW-23           | LNAPL Monitoring Program Location                                                      |
| 09-B                | RFI-09-14               | Groundwater Elevation Monitoring Location                                              |
| 09-B                |                         | Groundwater Elevation Monitoring Location                                              |
| 09-B                | RFI-09-40R              | LNAPL Monitoring Program Location                                                      |
| 09-B                | RFI-09-44               | LNAPL Monitoring Program Location                                                      |
| 09-B                | RFI-09-45R<br>RFI-09-46 | LNAPL Monitoring Program Location                                                      |
| 09-B                | RFI-09-46<br>RFI-09-48  | Groundwater Elevation Monitoring Location                                              |
| 09-B                |                         | Groundwater Elevation Monitoring Location                                              |
| 09-B                | RFI-09-52               | LNAPL Monitoring Program Location                                                      |
| 12-A                | RFI-12-01R              | LNAPL Monitoring Program Location                                                      |
| 12-A                | RFI-12-02/02R           | LNAPL Monitoring Program Location                                                      |
| 12-A                | RFI-12-07R2             | LNAPL Monitoring Program Location                                                      |

See Notes on Page 3.

### Groundwater and LNAPL Elevation Monitoring Locations - Southend

#### Motors Liquidation Company RCRA Revised Corrective Measures Proposal Addendum No. 2 -Northend and Site-wide Groundwater Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City) Flint, Michigan

| Area of<br>Interest |             |                                           |
|---------------------|-------------|-------------------------------------------|
| (AOI)               | Location    | Comments                                  |
| 12-A                | RFI-12-09R  | LNAPL Monitoring Program Location         |
| 12-A                | RFI-12-15   | LNAPL Monitoring Program Location         |
| 12-A                | RFI-12-21   | Groundwater Elevation Monitoring Location |
| 12-A                | RFI-12-22R  | LNAPL Monitoring Program Location         |
| 12-A                | RFI-12-24   | Groundwater Elevation Monitoring Location |
| 12-A                | RFI-12-25   | Groundwater Elevation Monitoring Location |
| 12-A                | RFI-12-26   | LNAPL Monitoring Program Location         |
| 12-A                | RFI-12-27   | LNAPL Monitoring Program Location         |
| 12-C                | RFI-12-11D  | LNAPL Monitoring Program Location         |
| 12-C                | RFI-12-11S  | LNAPL Monitoring Program Location         |
| 12-C                | RFI-12-14R  | LNAPL Monitoring Program Location         |
| 12-C                | RFI-12-23   | LNAPL Monitoring Program Location         |
| 12-C                | RFI-12-33   | Groundwater Elevation Monitoring Location |
| 12-C                | RFI-12-34   | Groundwater Elevation Monitoring Location |
| 12-C                | RFI-12-35   | Groundwater Elevation Monitoring Location |
| 12-C                | RFI-12-36   | Groundwater Elevation Monitoring Location |
| 12-C                | RFI-12-38   | LNAPL Monitoring Program Location         |
| 12-C                | RFI-12-40   | LNAPL Monitoring Program Location         |
| 12-C                | RFI-12-41   | LNAPL Monitoring Program Location         |
| 16-A                | RFI-16-01   | Groundwater Elevation Monitoring Location |
| 16-C                | 40-302      | LNAPL Monitoring Program Location         |
| 16-C                | RFI-16-04R  | LNAPL Monitoring Program Location         |
| 16-C                | RFI-16-07   | LNAPL Monitoring Program Location         |
| 16-C                | RFI-16-08   | LNAPL Monitoring Program Location         |
| 16-C                | RFI-16-09   | LNAPL Monitoring Program Location         |
| 16-C                | RFI-16-10   | LNAPL Monitoring Program Location         |
| 16-C                | RFI-16-12   | Groundwater Elevation Monitoring Location |
| 16-C                | RFI-16-20   | LNAPL Monitoring Program Location         |
| 16-C                | RFI-16-24   | Groundwater Elevation Monitoring Location |
| 17-A                | RFI-17-02   | Groundwater Elevation Monitoring Location |
| 23-A                | RFI-23-02R  | Groundwater Elevation Monitoring Location |
| 44-A                | RFI-44-05   | Groundwater Elevation Monitoring Location |
| 40-A                | 40-3        | Groundwater Elevation Monitoring Location |
| 40-A                | 40-6R       | Groundwater Elevation Monitoring Location |
| 40-A                | RFI-40-01R2 | Groundwater Elevation Monitoring Location |
| 40-A                | RFI-40-07   | Groundwater Elevation Monitoring Location |
| 40-A                | RFI-40-09   | Groundwater Elevation Monitoring Location |
| 40-A                | RFI-40-15   | Groundwater Elevation Monitoring Location |
| 40-B                | 40-07R2     | LNAPL Monitoring Program Location         |
| 40-B                | RFI-40-02R  | LNAPL Monitoring Program Location         |
| 40-B                | RFI-40-10R  | LNAPL Monitoring Program Location         |
| 40-B                | RFI-40-12R  | LNAPL Monitoring Program Location         |
| 40-B                | RFI-40-13   | Groundwater Elevation Monitoring Location |
| 40-B                | RFI-40-14R  | LNAPL Monitoring Program Location         |
| 40-B                | RFI-40-20   | LNAPL Monitoring Program Location         |
| 40-B                | RFI-40-25   | LNAPL Monitoring Program Location         |
| 40-B                | RFI-40-26   | LNAPL Monitoring Program Location         |
| 40-C                | RFI-40-03   | Groundwater Elevation Monitoring Location |
| 40-D                | 40-303R     | Groundwater Elevation Monitoring Location |
| 40-D                | 40-304      | Groundwater Elevation Monitoring Location |

See Notes on Page 3.

### Groundwater and LNAPL Elevation Monitoring Locations - Southend

#### Motors Liquidation Company RCRA Revised Corrective Measures Proposal Addendum No. 2 -Northend and Site-wide Groundwater Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City) Flint, Michigan

| Area of           |             |                                           |
|-------------------|-------------|-------------------------------------------|
| Interest<br>(AOI) | Location    | Comments                                  |
| 40-D              | 40-305      | Groundwater Elevation Monitoring Location |
| 40-D              | RFI-40-04   | Groundwater Elevation Monitoring Location |
| 44-A              | 04-120      | Groundwater Elevation Monitoring Location |
| 44-A              | 04-140      | Groundwater Elevation Monitoring Location |
| 44-A              | 04-160      | Groundwater Elevation Monitoring Location |
| 84-A              | RFI-84-06R  | Groundwater Elevation Monitoring Location |
| 84-A              | MW-23       | Groundwater Elevation Monitoring Location |
| 84-D              | 84-6R2D     | Groundwater Elevation Monitoring Location |
| 84-D              | 84-7D       | Groundwater Elevation Monitoring Location |
| 84-D              | RFI-17-02D  | Groundwater Elevation Monitoring Location |
| 84-D              | RFI-84-03S  | Groundwater Elevation Monitoring Location |
| 84-D              | RFI-84-04D  | Groundwater Elevation Monitoring Location |
| 84-D              | RFI-84-04I  | Groundwater Elevation Monitoring Location |
| 84-D              | RFI-84-05   | Groundwater Elevation Monitoring Location |
| 84-D              | RFI-84-06RD | Groundwater Elevation Monitoring Location |
| 84-D              | RFI-84-07S  | Groundwater Elevation Monitoring Location |
| 84-D              | RFI-84-09D  | Groundwater Elevation Monitoring Location |
| 84-D              | RFI-84-09S  | Groundwater Elevation Monitoring Location |
| 84-D              | RFI-84-11S  | Groundwater Elevation Monitoring Location |
| 84-D              | RFI-84-12   | Groundwater Elevation Monitoring Location |
| 84-D              | RFI-84-8S   | Groundwater Elevation Monitoring Location |
| 84-D              | RFI-40-11   | Groundwater Elevation Monitoring Location |
| 86-1              | RFI-02-08R  | Groundwater Elevation Monitoring Location |
| 86-1              | RFI-86-01R  | Groundwater Elevation Monitoring Location |
| 94-B              | RFI-94-08   | Groundwater Elevation Monitoring Location |
| 94-B              | RFI-94-11   | Groundwater Elevation Monitoring Location |
| 94-B              | 94-100      | Groundwater Elevation Monitoring Location |
| 94-D              | RFI-02-22   | Groundwater Elevation Monitoring Location |
| 94-D              | RFI-94-05   | Groundwater Elevation Monitoring Location |
| BD01              | BD01-01     | Groundwater Elevation Monitoring Location |
| BD01              | BD01-02R    | Groundwater Elevation Monitoring Location |
| BD01              | BD01-03     | Groundwater Elevation Monitoring Location |
| BD01              | BD01-04     | Groundwater Elevation Monitoring Location |
| Harriet Street    | ACSP-B2AR   | Groundwater Elevation Monitoring Location |

Note:

Measurements will be collected on an annual basis.

#### Table 7 Groundwater Quality Monitoring Locations

#### Motors Liquidation Company RCRA Revised Corrective Measures Proposal Addendum No. 2 -Northend and Site-wide Groundwater Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City) Flint, Michigan

| Area of<br>Interest | Sampling    | Groundwater<br>Analytical           |                                                                                              |
|---------------------|-------------|-------------------------------------|----------------------------------------------------------------------------------------------|
| (AOI)               | Location    | Parameters                          | Sampling Rationale                                                                           |
| North of Leith      |             | Falalleters                         | Samping Ratonale                                                                             |
| 7-03                | 07-01       | VOCs                                | Sentinel location downgradient of LNAPL plume.                                               |
| 10-2                | RFI-10-24   | VOCs                                | Off-site; sentinel location at downgradient edge of VOC impacted area                        |
| 10-2                | RFI-10-24   | VOCs                                | Off-site; sentinel location at downgradient edge of VOC impacted area                        |
| 10-2                | RFI-10-33   | VOCs                                | Off-site; sentinel location at downgradient edge of VOC impacted area                        |
| 10-2                | RFI-10-35   | VOCs                                | Off-site; sentinel location at downgradient edge of VOC impacted area                        |
| 10-2                | RFI-10-36   | VOCs                                | Off-site; sentinel location at downgradient edge of VOC impacted area                        |
| 10-3                | 20-500R     | VOCs                                | Sentinel location at downgradient edge of VOC impacted area                                  |
| 10-3                | RFI-10-28   | VOCs                                | Off-site: sentinel location at downgradient edge of VOC impacted area                        |
| 10-4                | 20-FP10R    | VOCs                                | Sentinel location at downgradient edge of VOC impacted area                                  |
| 10-4                | RFI-10-26   | VOCs                                | Sentinel location at downgradient edge of VOC impacted area                                  |
| 36-1                | RFI-36-04   | VOCs                                | Monitoring VOCs downgradient of LNAPL plume.                                                 |
| 36-1                | RFI-36-19   | VOCs                                | Off-site: sentinel location at downgradient edge of VOC impacted area                        |
| 36-1                | RFI-36-37   | VOCs                                | Off-site: sentinel location at downgradient edge of VOC impacted area                        |
| 36-1                | RFI-36-47   | VOCs                                | Off-site; sentinel location at downgradient edge of VOC impacted area                        |
| 36-1                | RFI-36-48   | VOCs                                | Off-site; sentinel location at downgradient edge of VOC impacted area                        |
| 36-1                | RFI-36-55   | VOCs                                | Off-site: sentinel location at downgradient edge of VOC impacted area                        |
| 36-1                | RFI-36-56   | VOCs                                | Off-site; sentinel location at downgradient edge of VOC impacted area                        |
| 36-1                | RFI-36-20   | VOCs                                | Sentinel location at downgradient edge of VOC impacted area                                  |
| 36-5                | RFI-36-14   | VOCs                                | Sentinel location downgradient of LNAPL plume.                                               |
| 81-2                | 70-165      | VOCs and lead                       | Sentinel location downgradient of LNAPL plume and historical lead exceedance.                |
| 81-2                | RFI-81-50   | VOCs                                | Sentinel location downgradient of LNAPL plume.                                               |
| 81-3                | RFI-81-08   | VOCs                                | Sentinel location at downgradient edge of VOC plume                                          |
| 86-1                | RFI-86-16R  | VOCs                                | Off-site; sentinel location at downgradient edge of VOC impacted area                        |
| 86-1                | RFI-86-01R  | VOCs, lead, and manganese           | Sentinel location at downgradient edge of VOC and inorganic impacted area                    |
| South of Leith      |             |                                     |                                                                                              |
| 02-E                | RFI-02-05   | VOCs                                | Sentinel location at downgradient edge of VOC impacted area                                  |
| 04-D                | 04-4        | Cyanide                             | Sentinel location upgradient of storm sewer                                                  |
| 04-D                | 04-3        | Cyanide                             | Sentinel location upgradient of storm sewer                                                  |
| 09-A                | RFI-09-04R  | VOCs                                | Monitoring TCE to confirm stable concentrations.                                             |
| 09-A                | RFI-09-53   | VOCs                                | Monitoring to confirm stable concentrations of VOCs.                                         |
| 09-A                | MW-26       | VOCs                                | Off-site; sentinel location to confirm VOC plume has not migrated                            |
| 09-B                | RFI-09-14   | VOCs                                | Off-site; sentinel location at downgradient edge of VOC impacted area                        |
| 09-B                | RFI-09-48   | VOCs                                | Sentinel location at downgradient edge of VOC impacted area.                                 |
| 09-B                | RFI-09-46   | VOCs                                | Monitoring benzene concentrations to confirm stable concentrations                           |
| 17-A                | RFI-17-02   | VOCs and selenium                   | Sentinel location at downgradient edge of VOC impacted area and GSI monitoring point         |
| 40-D                | 40-304      | VOCs and PCBs                       | Sentinel location downgradient of building 40 Tunnel (PCBs required by 9/13/2005 EPA letter) |
| 44-A                | RFI-44-05   | Cyanide                             | Sentinel location upgradient of storm sewer                                                  |
| 84-A                | MW-23       | VOCs                                | Off-site; downgradient of VOC impacted area                                                  |
| 84-D                | RFI-17-02D  | VOCs and selenium                   | Monitoring vinyl chloride to confirm stable concentrations and GSI monitoring point          |
| 84-D                | RFI-84-06R  | VOCs, cyanide, selenium, and silver | Sentinel location at downgradient edge of VOC impacted area and GSI monitoring point         |
| 84-D                | RFI-84-06RD | VOCs                                | Sentinel location at downgradient edge of VOC impacted area                                  |
| 84-D                | RFI-84-09D  | VOCs                                | Sentinel location at downgradient edge of VOC impacted area                                  |
| 84-D                | RFI-84-09S  | VOCs                                | Sentinel location at downgradient edge of VOC impacted area                                  |
| 84-D                | RFI-84-11S  | VOCs                                | Sentinel location at downgradient edge of VOC impacted area                                  |
| 84-D                | RFI-84-12   | VOCs and selenium                   | Sentinel location at downgradient edge of VOC impacted area and GSI monitoring point         |
| 94-B                | RFI-94-11   | VOCs                                | Off-site; sentinel location at downgradient edge of VOC impacted area                        |
| 94-D                | RFI-02-22   | VOCs                                | Sentinel locations, downgradient of LNAPL plumes                                             |

Note:

VOCs = Volatile Organic Compounds. LNAPL = light non-aqueous phase liquid.

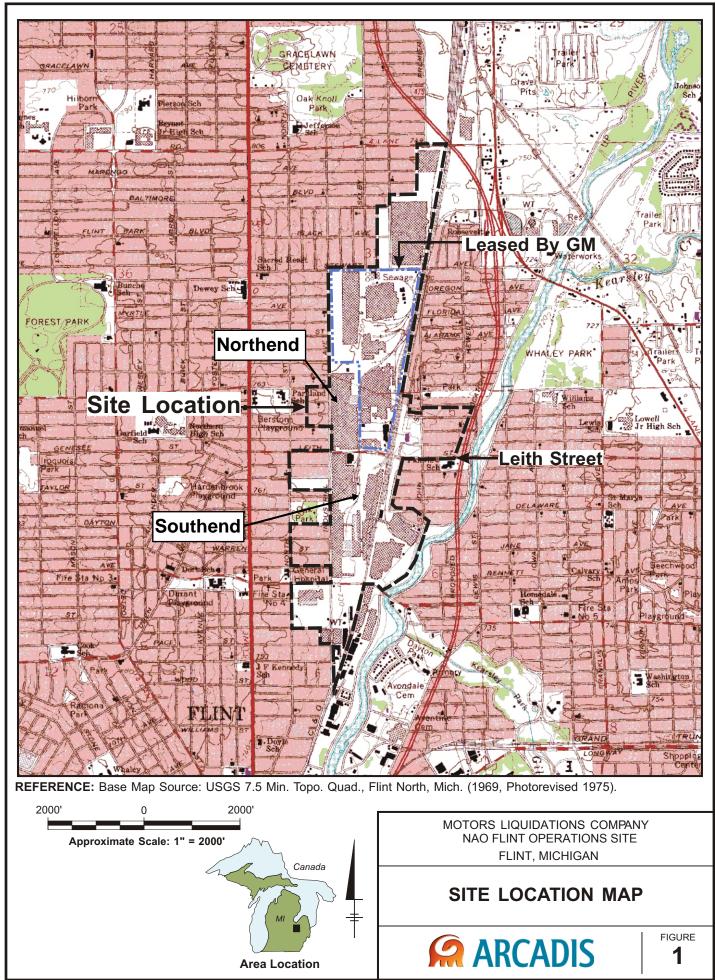
Table 8 NPMP Monitoring Points and Analyses

Motors Liquidation Company RCRA Revised Corrective Measures Proposal Addendum No. 2 -Northend and Site-wide Groundwater Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City) Flint, Michigan

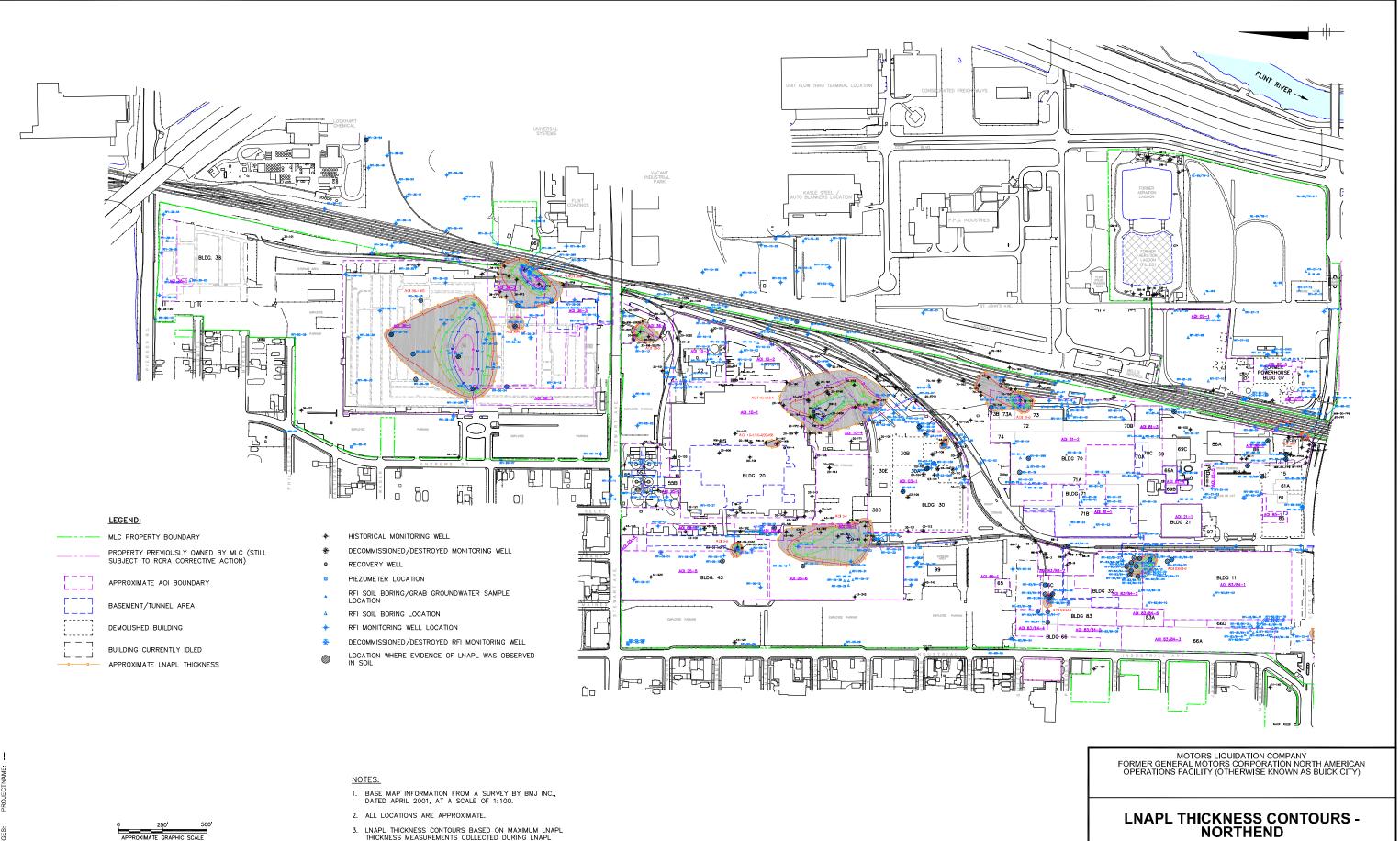
| Outfall | Monitoring<br>Point | Frequency           | Sample Type                         | Analytes                                            | Sampling Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|---------------------|---------------------|-------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 001     | MP001               | Monthly             | Dry weather -<br>Grab               | VOCs (MDNRE List)<br>Metals <sup>1</sup><br>Cyanide | Select VOCs and metals were detected in the sample collected from Outfall 001 in support of the 2010 NPDES<br>Permit (permit); therefore, the NPMP samples collected from Outfall 001 will be analyzed for VOCs (MDNRE list)<br>and metals <sup>1</sup> .<br>Cyanide was not detected in the sample collected from Outfall 001 in support of the permit; however, cyanide<br>was detected above criteria in groundwater samples collected from the Outfall 001 drainage area; therefore, the<br>NPMP samples collected from Outfall 001 will be analyzed for cyanide in order to monitor the storm sewers for<br>possible infiltration of cyanide impacted groundwater.<br>Oil and grease was not detected in the sample collected from Outfall 001 in support of the permit and there is                                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                     |                     |                                     |                                                     | on and grease was not detected in the sample collected from Cutan of in support of the permit and there is not a GSI criteria for this analyte; therefore, oil and grease will not be analyzed for in the NPMP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                     | Yearly <sup>2</sup> | Dry weather -<br>Grab               | SVOCs (MDNRE<br>List)                               | SVOCs were not detected in the sample collected from Outfall 001 in support of the permit and therefore were<br>not included in the NPMP monthly sampling. However, SVOCs were detected above criteria in groundwater<br>samples collected from the Outfall 001 drainage area; therefore, a yearly sample will be collected from Outfall<br>001 and analyzed for SVOCs (MDNRE List) in order to monitor the storm sewers for possible infiltration of<br>SVOC impacted groundwater.                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 002     | MP002               | Monthly             | Dry weather -<br>Grab               | VOCs (MDNRE List)<br>Metals <sup>1</sup><br>Cyanide | Select VOCs and metals were detected in the sample collected from Outfall 002 in support of the permit;<br>therefore, the NPMP samples collected from Outfall 002 will be analyzed for VOCs (MDNRE list) and metals <sup>1</sup> .<br>Cyanide was not detected in the sample collected from Outfall 002 in support of the permit; however, cyanide<br>was detected above criteria in groundwater samples collected from the Outfall 002 drainage area; therefore, the<br>NPMP samples collected from Outfall 002 will be analyzed for cyanide in order to monitor the storm sewers for<br>possible infiltration of cyanide impacted groundwater.                                                                                                                                                                                                      |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 002     | WI 002              |                     |                                     |                                                     | Oil and grease was not detected in the sample collected from Outfall 002 in support of the permit and there is<br>not a GSI criteria for this analyte; therefore, oil and grease will not be analyzed for in the NPMP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                     | Yearly <sup>2</sup> | Dry weather -<br>Grab               | SVOCs (MDNRE<br>List)                               | SVOCs were not detected in the sample collected from Outfall 002 in support of the permit and therefore were<br>not included in the NPMP monthly sampling. However, SVOCs were detected above criteria in groundwater<br>samples collected from the Outfall 002 drainage area; therefore, a yearly sample will be collected from Outfall<br>002 and analyzed for SVOCs (MDNRE List) in order to monitor the storm sewers for possible infiltration of<br>SVOC impacted groundwater.                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 003     | MP003               | MP003               | MP003                               | Monthly                                             | Dry weather -<br>Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VOCs (MDNRE List)<br>Metals <sup>1</sup><br>Cyanide | Select metals were detected in the sample collected from Outfall 003 in support of the permit; therefore, the NPMP samples collected from Outfall 003 will be analyzed for metals <sup>1</sup> .<br>VOCs and cyanide were not detected in the sample from Outfall 003 in support of the permit; however, VOCs and cyanide were detected above criteria in groundwater samples collected from the Outfall 003 drainage area; therefore, the NPMP samples collected from Outfall 003 will be analyzed for VOCs and cyanide in order to monitor the storm sewers for possible infiltration of impacted groundwater.<br>Oil and grease was not detected in the sample collected from Outfall 001 in support of the permit and there is not a GSI criteria for this analyte; therefore, oil and grease will not be analyzed for in the NPMP. |
|         |                     | Monthly             | Dry weather -<br>24-hr<br>Composite | PCBs                                                | PCBs were not detected in the sample collected from Outfall 003 in support of the permit. However due to the<br>presence of PCB-containing LNAPL in the Outfall 003 drainage area and the presence of oil in the storm sewer,<br>the NPMP samples collected from Outfall 003 will be analyzed for PCBs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                     | Yearly <sup>2</sup> | Dry weather -<br>Grab               | SVOCs (MDNRE<br>List)                               | SVOCs were not detected in the sample collected from Outfall 003 in support of the permit and therefore were<br>not included in the NPMP monthly sampling. However, SVOCs were detected above criteria in groundwater<br>samples collected from the Outfall 003 drainage area; therefore, a yearly sample will be collected from Outfall<br>003 and analyzed for SVOCs(MDNRE List) in order to monitor the storm sewers for possible infiltration of SVOC<br>impacted groundwater.                                                                                                                                                                                                                                                                                                                                                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 004     | MP004 <sup>3</sup>  | Monthly             | Dry weather -<br>Grab               | VOCs (MDNRE List)<br>Metals <sup>1</sup><br>Cyanide | Select VOCs and metals were detected in the sample collected from Outfall 004 in support of the permit; therefore, the NPMP samples collected from Outfall 004 will be analyzed for VOCs (MDNRE list) and metals <sup>1</sup> . Cyanide was not detected in the sample collected from Outfall 004 in support of the permit; however, cyanide was detected above criteria in groundwater samples collected from the Outfall 004 drainage area; therefore, the NPMP samples collected from Outfall 004 will be analyzed for cyanide in order to monitor the storm sewers for possible infiltration of cyanide impacted groundwater. Oil and grease was not detected in the sample collected from Outfall 004 in support of the permit and there is not a GSI criteria for this analyte; therefore, oil and grease will not be analyzed for in the NPMP. |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                     | Monthly             | Dry weather -<br>24-hr<br>Composite | PCBs                                                | PCBs were not detected in the sample collected from Outfall 004 in support of the permit. However due to the<br>presence of PCB-containing LNAPL in the Outfall 004 drainage area and the presence of oil in the storm sewer,<br>the NPMP samples collected from Outfall 004 will be analyzed for PCBs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                     | Yearly <sup>2</sup> | Dry weather -<br>Grab               | SVOCs (MDNRE<br>List)                               | SVOCs were not detected information of the collected from Outfall 004 in support of the permit and therefore were<br>not included in the NPMP monthly sampling. However, SVOCs were detected above criteria in groundwater<br>samples collected from the Outfall 004 drainage area; therefore, a yearly sample will be collected from Outfall<br>004 and analyzed for SVOCs (MDNRE List) in order to monitor the storm sewers for possible infiltration of<br>SVOC sVOCs.                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Table 8 NPMP Monitoring Points and Analyses

Motors Liquidation Company RCRA Revised Corrective Measures Proposal Addendum No. 2 -Northend and Site-wide Groundwater Former General Motors Corporation North American Operations Facility (Otherwise known as Buick City) Flint, Michigan


| Outfall | Monitoring<br>Point | Frequency           | Sample Type                         | Analytes                                            | Sampling Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|---------------------|---------------------|-------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                     | Monthly             | Dry weather -<br>Grab               | Metals <sup>1</sup><br>Cyanide                      | Select metals were detected in the sample collected from Outfall 005 in support of the permit; therefore, the<br>NPMP samples collected from Outfall 005 will be analyzed for metals <sup>1</sup> .<br>Cyanide was not detected in the sample collected from Outfall 005 in support of the permit; however, cyanide<br>was detected above criteria in groundwater samples collected from the Outfall 005 drainage area; therefore, the<br>NPMP samples collected from Outfall 005 will be analyzed for cyanide in order to monitor the storm sewers for<br>possible inflitration of cyanide impacted groundwater.                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 005     | MP005               |                     |                                     |                                                     | Oil and grease was not detected in the sample collected from Outfall 005 in support of the permit and there is<br>not a GSI criteria for this analyte; therefore, oil and grease will not be analyzed for in the NPMP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                     | Monthly             | Dry weather -<br>24-hr<br>Composite | PCBs                                                | PCBs were not detected in the sample collected from Outfall 005 in support of the permit. However due to the<br>presence of PCB-containing LNAPL in the Outfall 005 drainage area and the presence of oil in the storm sewer,<br>the NPMP samples collected from Outfall 005 will be analyzed for PCBs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                     | Yearly <sup>2</sup> | Dry weather -<br>Grab               | SVOCs (MDNRE<br>List)                               | SVOCs were not detected in the sample collected from Outfall 005 in support of the permit and therefore were<br>not included in the NPMP monthly sampling. However, SVOCs were detected above criteria in groundwater<br>samples collected from the Outfall 005 drainage area; therefore, a yearly sample will be collected from Outfall<br>005 and analyzed for SVOCs (MDNRE List) in order to monitor the storm sewers for possible infiltration of<br>SVOC impacted groundwater.                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 006     | MP006               | Monthly             | Dry weather -<br>Grab               | VOCs (MDNRE List)<br>Metals <sup>1</sup><br>Cyanide | Select metals were detected in the sample collected from Outfall 006 in support of the permit; therefore, the<br>NPMP samples collected from Outfall 006 will be analyzed for metals <sup>1</sup> .<br>VOCs and cyanide were not detected in the sample from Outfall 006 in support of the permit; however, VOCs<br>and cyanide were detected above criteria in groundwater samples collected from the Outfall 006 drainage area;<br>therefore, the NPMP samples collected from Outfall 006 will be analyzed for VOCs and cyanide in order to<br>monitor the storm sewers for possible infiltration of impacted groundwater.                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 007     | MP007               | Monthly             | Dry weather -<br>Grab               | VOCs (MDNRE List)<br>Metals <sup>1</sup><br>Cyanide | Select VOCs and metals were detected in the sample collected from Outfall 007 in support of the permit;<br>therefore, the NPMP samples collected from Outfall 007 will be analyzed for VOCs (MDNRE list) and metals <sup>1</sup> .<br>Cyanide was not detected in the sample collected from Outfall 007 in support of the permit; however, cyanide<br>was detected above criteria in groundwater samples collected from the Outfall 007 drainage area; therefore, the<br>NPMP samples collected from Outfall 007 will be analyzed for cyanide in order to monitor the storm sewers for<br>possible infiltration of cyanide impacted groundwater.                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                     | Yearly <sup>2</sup> | Dry weather -<br>Grab               | SVOCs (MDNRE<br>List)                               | SVOCs were not detected in the sample collected from Outfall 007 in support of the permit and therefore were<br>not included in the NPMP monthly sampling. However, SVOCs were detected above criteria in groundwater<br>samples collected from the Outfall 007 drainage area; therefore, a yearly sample will be collected from Outfall<br>007 and analyzed for SVOCs (MDNRE List) in order to monitor the storm sewers for possible infiltration of<br>SVOC impacted groundwater.                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 009     | MP009               | Monthly             | Dry weather -<br>Grab               | VOCs (MDNRE List)<br>Metals <sup>1</sup><br>Cyanide | Select VOCs and metals were detected in the sample collected from Outfall 009 in support of the permit; therefore, the NPMP samples collected from Outfall 009 will be analyzed for VOCs (MDNRE list) and metals <sup>1</sup> . Cyanide was not detected in the sample collected from Outfall 009 in support of the permit; however, cyanide was detected above criteria in groundwater samples collected from the Outfall 009 drainage area; therefore, the NPMP samples collected from Outfall 009 will be analyzed for voca data above criteria in groundwater samples collected from the Outfall 009 drainage area; therefore, the NPMP samples collected from Outfall 009 will be analyzed for cyanide in order to monitor the storm sewers for possible infiltration of cyanide impacted groundwater. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                     |                     | Yearly <sup>2</sup>                 | Dry weather -<br>Grab                               | SVOCs (MDNRE<br>List)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SVOCs were not detected in the sample collected from Outfall 009 in support of the permit and therefore were<br>not included in the NPMP monthly sampling. However, SVOCs were detected above criteria in groundwater<br>samples collected from the Outfall 009 drainage area; therefore, a yearly sample will be collected from Outfall<br>009 and analyzed for SVOCs (MDNRE List) in order to monitor the storm sewers for possible infiltration of<br>SVOC impacted groundwater. |
| 010     | MP010               | Monthly             | Dry weather -<br>Grab               | VOCs (MDNRE List)<br>Metals <sup>1</sup><br>Cyanide | Select VOCs, metals and cyanide were detected in the sample collected from Outfall 010 in support of the<br>permit; therefore, the NPMP samples collected from Outfall 010 will be analyzed for VOCs (MDNRE list) and<br>metals <sup>1</sup> .<br>Oil and grease was not detected in the sample collected from Outfall 010 in support of the permit and there is<br>not a GSI criteria for this analyte; therefore, oil and grease will not be analyzed for in the NPMP.                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                     |                     | Yearly <sup>2</sup>                 | Dry weather -<br>Grab                               | SVOCs (MDNRE<br>List)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SVOCs were not detected in the sample collected from Outfall 010 in support of the permit and therefore were<br>not included in the NPMP monthly sampling. However, SVOCs were detected above criteria in groundwater<br>samples collected from the Outfall 010 drainage area; therefore, a yearly sample will be collected from Outfall<br>010 and analyzed for SVOCs (MDNRE List) in order to monitor the storm sewers for possible infiltration of<br>SVOC impacted groundwater. |
| 011     | DP011               | Monthly             | Dry weather -<br>Grab               | VOCs (MDNRE List)<br>Metals <sup>1</sup><br>Cyanide | Select VOCs, metals and cyanide were detected in the sample collected from Outfall 011 in support of the<br>permit; therefore, the NPMP samples collected from Outfall 011 will be analyzed for VOCs (MDNRE list) and<br>metals <sup>1</sup> .<br>Oil and grease was not detected in the sample collected from Outfall 011 in support of the permit and there is<br>not a GSI criteria for this analyte; therefore, oil and grease will not be analyzed for in the NPMP.                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                     | Yearly <sup>2</sup> | Dry weather -<br>Grab               | SVOCs (MDNRE<br>List)                               | SVOCs were not detected in the sample collected from Outfall 011 in support of the permit and therefore were<br>not included in the NPMP monthly sampling. However, SVOCs were detected above criteria in groundwater<br>samples collected from the Outfall 011 drainage area; therefore, a yearly sample will be collected from Outfall<br>011 and analyzed for SVOCs (MDNRE List) in order to monitor the storm sewers for possible infiltration of<br>SVOC impacted groundwater.                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 013     | MP013               | Monthly             | Dry weather -<br>Grab               | Metals <sup>1</sup><br>Cyanide                      | Select metals and cyanide were detected in the sample collected from Outfall 013 in support of the permit; therefore, the NPMP samples collected from Outfall 013 will be analyzed for metals <sup>1</sup> and cyanide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

1. Metals analysis to include - Ag, As, Ba, Be, Cd, Cr (total), Co, Cu, Hg, Mn, Ni, Pb, Sb, Se, T, V, and Zn

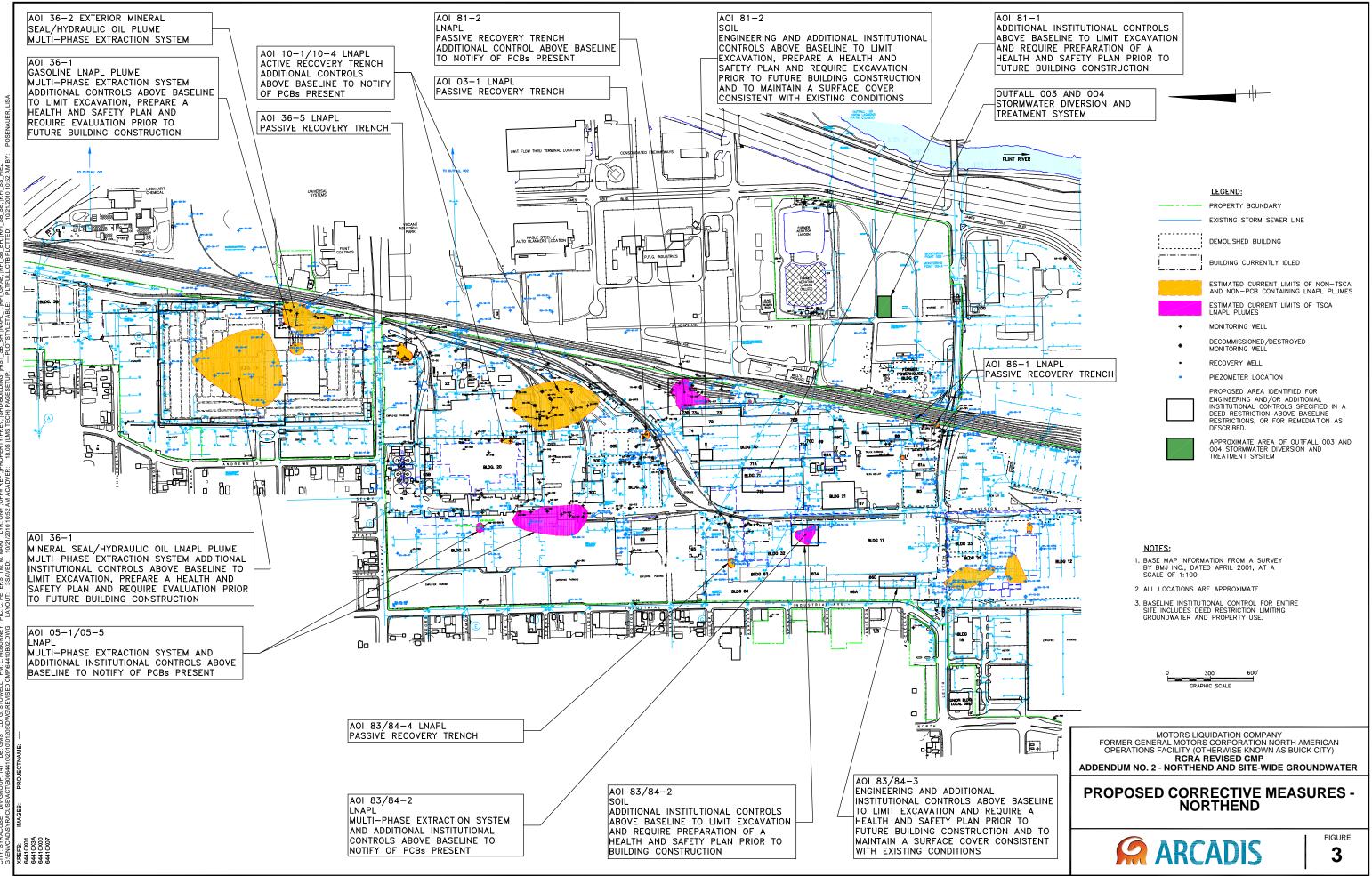

2. SVOCs will be collected on a yearly basis for the first three years of the NPMP.

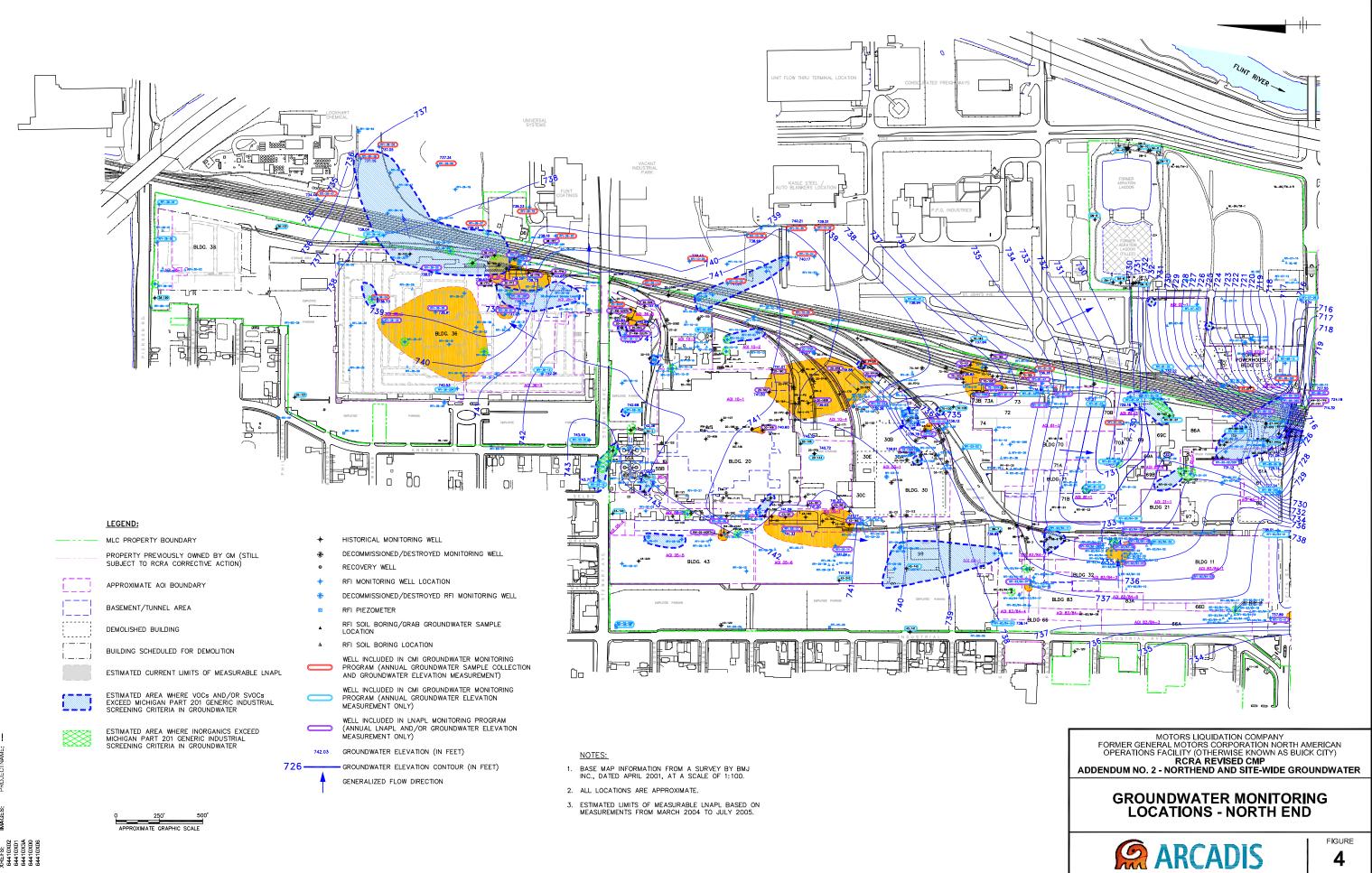
3. Following the installation of the oil-water separator and debris removal system in the Outfall 003 and 004 storm sewers, the dry-weather flow from these sewers will be combined into the Outfall 003 storm sewer; thereafter there will be no dry-weather flow in the Outfall 004 storm sewer.

Figures



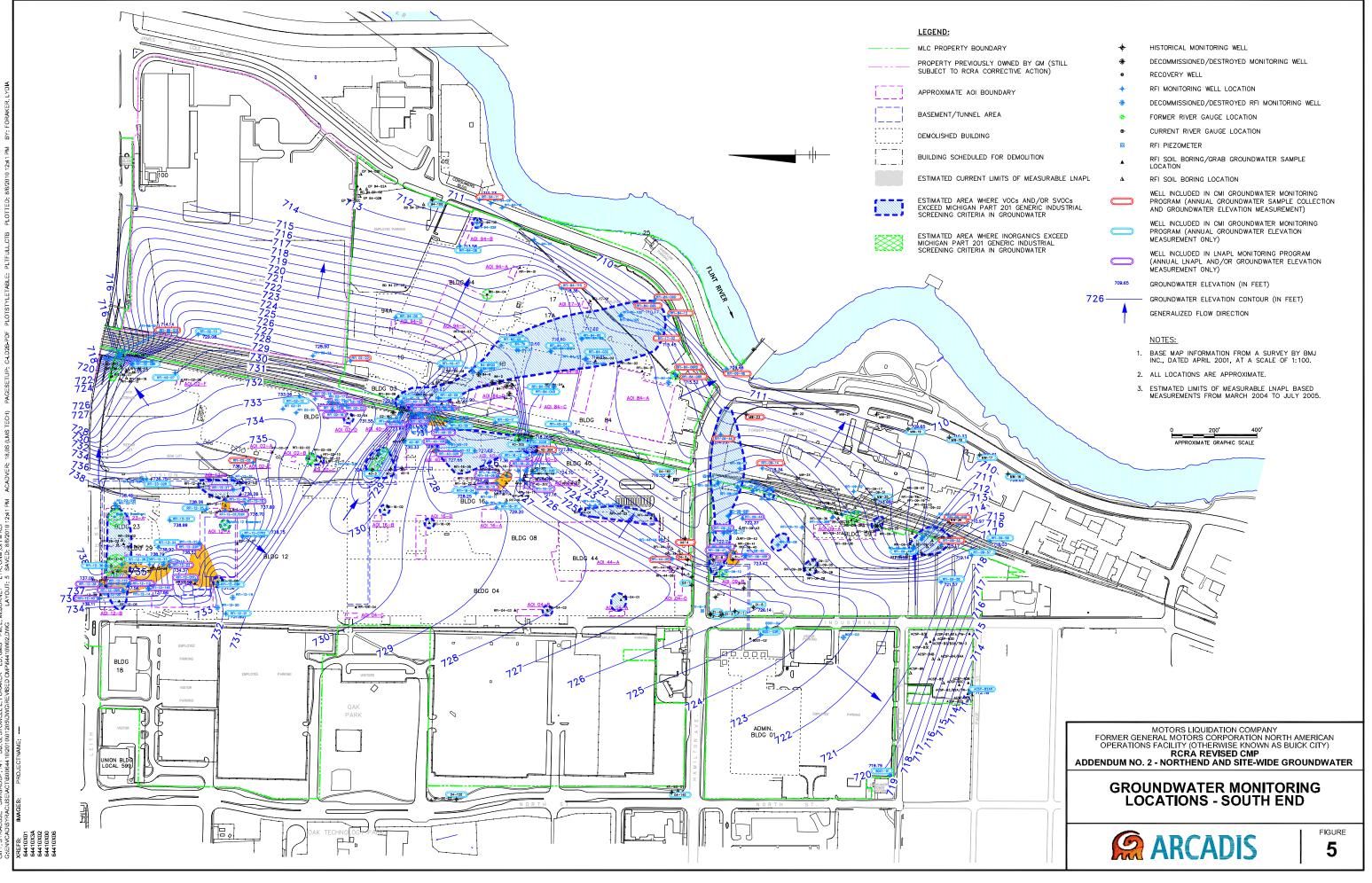
04/07/2010 SYRACUSE, NY-ENV/CAD-141-DJHOWES B0064439/0000/00103/CDR/64439N01.CDR



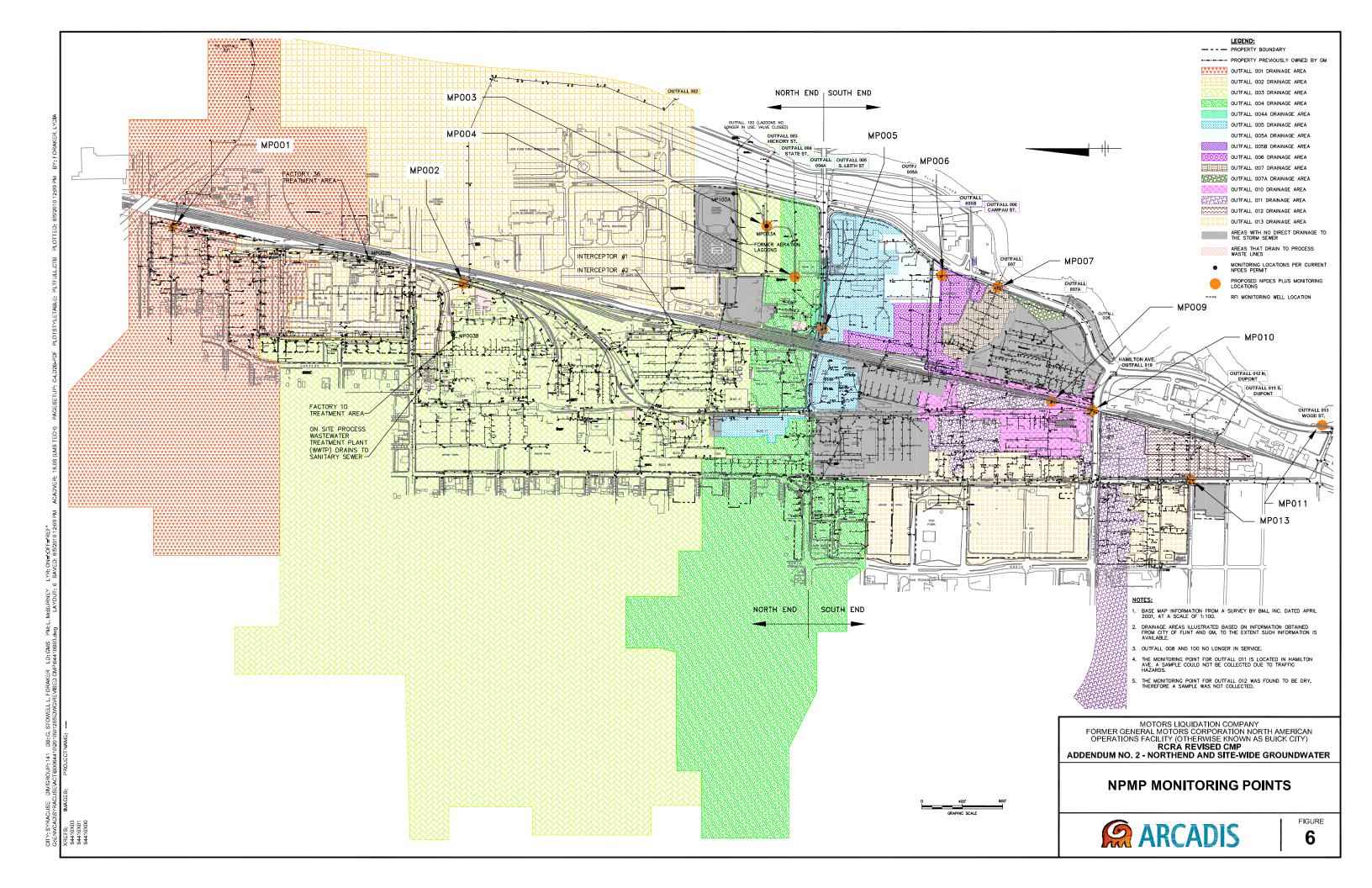


- LNAPL THICKNESS CONTOURS BASED ON MAXIMUM LNAPL THICKNESS MEASUREMENTS COLLECTED DURING LNAPL MONITORING AND REMOVAL PROGRAM 2003-2005.

XREFS: 64410X01 64410X3A 64410X00 64410X00 64410X02 64410X02




# LNAPL THICKNESS CONTOURS - NORTHEND












Ň



Appendix **A** 



Imagine the result

Motors Liquidation Company

Former General Motors North American Operations Facility (otherwise known as Buick City)

Flint, Michigan

Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

October 2010

# Appendix A

| 1. | Introdu | uction                                                |                                                   | 1  |  |  |  |  |
|----|---------|-------------------------------------------------------|---------------------------------------------------|----|--|--|--|--|
| 2. | Selecti | election of Constituents of Potential Concern (COPCs) |                                                   |    |  |  |  |  |
|    | 2.1     | Screening Approach                                    |                                                   |    |  |  |  |  |
|    |         | 2.1.1                                                 | Data Selection                                    | 3  |  |  |  |  |
|    |         | 2.1.2                                                 | Data Evaluation                                   | 4  |  |  |  |  |
|    |         | 2.1.3                                                 | Identification of Screening Levels                | 4  |  |  |  |  |
|    |         | 2.1.4                                                 | Comparison to Screening Levels                    | 5  |  |  |  |  |
|    | 2.2     | Soil CC                                               | DPCs                                              | 5  |  |  |  |  |
|    | 2.3     | Ground                                                | lwater, Borehole Water and Basement Water COPCs   | 5  |  |  |  |  |
| 3. | Expos   | ure Ass                                               | essment                                           | 6  |  |  |  |  |
|    | 3.1     | Source                                                | s                                                 | 6  |  |  |  |  |
|    | 3.2     | Fate ar                                               | nd Transport                                      | 6  |  |  |  |  |
|    | 3.3     | Receptor                                              |                                                   |    |  |  |  |  |
|    | 3.4     | Potentially Complete Exposure Pathways                |                                                   |    |  |  |  |  |
|    | 3.5     | Exposu                                                | are Point Concentrations                          | 7  |  |  |  |  |
| 4. | Toxicit | y Asses                                               | ssment                                            | 9  |  |  |  |  |
|    | 4.1     | Noncar                                                | rcinogenic Effects                                | 10 |  |  |  |  |
|    | 4.2     | Carcino                                               | ogenic Effects                                    | 10 |  |  |  |  |
|    | 4.3     | Derma                                                 | Toxicity Values and Dermal Absorption             | 11 |  |  |  |  |
|    | 4.4     | Constit                                               | uents of Interest                                 | 12 |  |  |  |  |
|    |         | 4.4.1                                                 | Lead                                              | 12 |  |  |  |  |
| 5. |         |                                                       | Site-Specific Health-Based Goals for Construction |    |  |  |  |  |
|    | Worke   |                                                       |                                                   | 13 |  |  |  |  |
|    | 5.1     | -                                                     | ure Assumptions                                   | 13 |  |  |  |  |
|    | 5.2     | •                                                     | al and Chemical Properties                        | 14 |  |  |  |  |
|    | 5.3     | Derma                                                 | Absorption of COPCs in Soil                       | 14 |  |  |  |  |

# Appendix A

|    | 5.4    | Derma    | I Absorption of COPCs in Water                               | 14 |
|----|--------|----------|--------------------------------------------------------------|----|
|    | 5.5    | Volatili | zation Factor for Soil                                       | 15 |
|    | 5.6    | Particu  | late Emission Factor for Soil                                | 15 |
|    | 5.7    | Recom    | mended Health-Based Goals                                    | 15 |
|    | 5.8    | Health   | -Based Goals for Lead in Groundwater                         | 16 |
| 6. | Compa  | rison o  | of Site Data to Construction Worker HBGs                     | 19 |
|    | 6.1    | Method   | ds for evaluating AOIs with HBG Exceedances                  | 19 |
|    |        | 6.1.1    | Statistical Analysis of Constituents Other than Lead in Soil | 19 |
|    |        | 6.1.2    | Statistical Analysis of Lead in Soil                         | 20 |
|    |        | 6.1.3    | Site-Specific HBG for Lead in Groundwater                    | 20 |
| 7. | Risk C | haracte  | rization                                                     | 22 |
|    | 7.1    | Evalua   | tions of AOIs                                                | 22 |
|    | 7.2    | Summ     | ary and Conclusions                                          | 26 |
| 8. | Refere | nces     |                                                              | 27 |

# Tables

| Table A-1 | Summary of Soil Sample Analytical Results, Detected Anaytes Only                         |
|-----------|------------------------------------------------------------------------------------------|
| Table A-2 | Summary of Groundwater Sample Analytical Results, Detected<br>Anaytes Only               |
| Table A-3 | Summary of Borehole Water Sample Analytical Results, Detected Anaytes Only               |
| Table A-4 | Summary of Basement Water Sample Analytical Results, Detected Anaytes Only               |
| Table A-5 | Summary of Constituents of Potential Concern (COPCs) for<br>Construction Worker Scenario |
| Table A-6 | Noncarcinogenic Toxicity Values for Oral and Dermal Exposure                             |
| Table A-7 | Noncarcinogenic Toxicity Values for Inhalation Exposure                                  |
| Table A-8 | Carcinogenic Toxicity Values for Oral and Dermal Exposure                                |

# Appendix A

| Table A-9  | Carcinogenic Toxicity Values for Inhalation Exposure                                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------------|
| Table A-10 | Receptor Exposure Parameters                                                                                                |
| Table A-11 | Physical and Chemical Properties                                                                                            |
| Table A-12 | Dermal Absorption Parameters                                                                                                |
| Table A-13 | Soil Volatilization Factors and Particulate Emission Factors                                                                |
| Table A-14 | Particulate Emission Factor                                                                                                 |
| Table A-15 | Health-Based Concentration Goal Equations for Redevelopment<br>Construction Worker Exposure to Soil                         |
| Table A-16 | Health-Based Concentration Goal Calculations for Exposure to Soil<br>for a Hypothetical Construction Worker Receptor        |
| Table A-17 | Health-Based Concentration Goal Equations for Groundwater Based on Redevelopment Construction Worker Exposure               |
| Table A-18 | Health-Based Concentration Goal Calculations for Exposure to<br>Groundwater for a Hypothetical Construction Worker Receptor |
| Table A-19 | Summary of Calculated Health-Based Goals                                                                                    |
| Table A-20 | Input Parameters for the Adult Lead Model                                                                                   |
| Table A-21 | Predicted Blood Lead Levels due to Ingestion of Soil and Resulting<br>Health-Based Goals for Lead in Groundwater            |
| Table A-22 | AOIs with Soil Exceedances of the Construction Worker Health-<br>Based Goals                                                |
| Table A-22 | AOIs with Groundwater Exceedances of the Construction Worker<br>Health-Based Goals                                          |
| Table A-24 | AOIs with Borehole Water Exceedances of the Construction Worker Health-Based Goals                                          |
| Table A-25 | Summary of Exceedances of Construction Worker Health-Based<br>Goals                                                         |
| Table A-26 | Calculation of Exposure Point Concentrations for Soil                                                                       |
| Table A-27 | Calculation of Exposure Point Concentrations for Lead in Soil                                                               |
| Table A-28 | Recommendations by Area of Interest                                                                                         |

# Attachments (Provided on CD)

A-1 Soil Risk Assessment Dataset and Screening for COPCs

# Appendix A

| A-2 | Groundwater Risk Assessment Dataset and Screening for COPCs    |
|-----|----------------------------------------------------------------|
| A-3 | Borehole Water Risk Assessment Dataset and Screening for COPCs |
| A-4 | Basement Water Risk Assessment Dataset and Screening for COPCs |
| A-5 | Adult Lead Model                                               |
| A-6 | ProUCL Output                                                  |

# Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

# 1. Introduction

The following presents an evaluation of potential risks and hazards for a hypothetical construction worker engaged in redevelopment activities at the Northend of the Former General Motors Corporation North American Operations Facility (otherwise known as Buick City) (Site) (see Figure 1). This construction worker human health risk assessment (HHRA) was used to identify Areas of Interest (AOIs) where additional actions may be warranted to reduce potential redevelopment construction worker exposure to constituents detected in environmental media.

A description and history of the Site can be found in detail in *the Resource Conservation and Recovery Act (RCRA) Facility Investigation Phase I Report* (Phase I RFI) (BBL, 2002) and the *RCRA Facility Investigation Phase II Report* (Phase II RFI) (BBL, 2006). The Phase II RFI also contains a HHRA for both the Northend and Southend of the Site. However, the Phase II RFI HHRA did not include an evaluation of the risks for the redevelopment construction worker working in the Northend of the Site because at that time no redevelopment of the Northend was anticipated. The buildings remaining on the Northend are scheduled for demolition and the future use of Site is now uncertain. As such, an evaluation of this receptor is warranted.

The Northend of the Site consists of 38 AOIs as follows:

- 03-1 AOI 03-1 (Quenching and Cooling Oil Systems)
- 05-1 AOI 05-1 (Former Metal Machining Chip Processing)
- 05-2 AOI 05-2 (Filtration Room, Oil Room, Below-Grade Vault, and Elevator Pit)
- 05-3 AOI 05-3 (Building 43 Basement Containing Process Waste Oil Sumps and Drains)
- 05-4 AOI 05-4 (Metal Forming Operations and Recirculation Trenches and Sumps)
- 05-5 AOI 05-5 (Active Process Machinery, Collection Trenches, and Sumps)
- 05-6 AOI-05-6 (Active Process Machinery, Collection Trenches, and Sumps)
- 07-1 AOI 07-1 (Former Coal Yard)
- 07-2 AOI 07-2 (Inactive Lime "Slaker House" and Inactive Lime Slurry Tank)
- 07-3 AOI 07-3 (Two Elevator Pits and a Bulk Acid AST)
- 10-1 AOI 10-1 (Manufacturing Operations and Several Tanks)
- 10-2 AOI 10-2 (Solid Waste Transfer Area and Former ASTs)
- 10-3 AOI 10-3 (Two Process Waste Oil Sumps)
- 10-4 AOI 10-4 (Scrapyard Area)
- 21-1 AOI 21-1 (Former Metal Chip Briquetting Operations and Current Metal Welding and Tool Grinding Operations)
- 36-1 AOI 36-1 (Engine Manufacturing and Metal Machining Processes)
- 36-2 AOI 36-2 (Metal Chip Processing Area)
- 36-3 AOI 36-3 (Engine Assembly, Waste Oil Collection and Processing, Former USTs)
- 36-4 AOI 36-4 (Former Metal Machining and Active Engine Assembly)
- 36-5 AOI 36-5 (Former UST Farm and Active AST Farm)

# Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

- 38-1 AOI 38-1 (Process Waste Sumps, Trenches, and Former Hydraulic Car Lifts)
- 55-1 AOI 55-1 (Industrial Wastewater Treatment Facilities)
- AOI 65-1 (Air Compressor Station and a Main Process Waste Pump Station)
- 81-1 AOI 81-1 (Metal Machining, Chip, Cooling, and Cutting Oil Filtration and Processing, a Hydraulic Elevator, Process Waste Sumps and Tanks, a Drum Storage Area, and an Active Hazardous Waste Accumulation Area)
- 81-2 AOI 81-2 (Active Metal Welding and Machining and Torque Converter Assembly)
- 81-3 AOI 81-3 (Former Foundry Operations, an Elevator Pit, Metal Machining Areas, and a Forklift Battery Charging Area)
- 81-4 AOI 81-4 (Air Compressor Operations)
- 81-5 AOI 81-5 (Existing and Former ASTs)
- 83/84-1 AOI 83/84-1 (Former and Existing Machining Operations)
- 83/84-2 AOI 83/84-2 (Former and Existing Machining Operations)
- 83/84-3 AOI 83/84-3 (Former and Existing Machining Operations)
- 83/84-4 AOI 83/84-4 (Former Machining Operations and an Inactive Rail Loading Area)
- 83/84-5 AOI 83/84-5 (Former Process Trenches and Pits, and an Inactive Heat Treating Tunnel)
- 83/84-6 AOI 83/84-6 (Forklift Battery Charging Area and Associated Trench and Pit, and a Drum Storage Area)
- 83/84-7 AOI 83/84-7 (Underground Storage Tanks)
- 85-1 AOI 85-1 (Elevator Pit and Engine Test Area)
- 86-1 AOI 86-1 (Hazardous Waste Drum Accumulation Area, Process Waste Sump and Pump Station, Waste Transport Vehicle Storage Area, and Former USTs)
- WL- Aeration Lagoons

Details on the former uses of these AOIs are available in Sections 4.4 and 4.6 of the Phase II RFI (BBL, 2006).

# Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

# 2. Selection of Constituents of Potential Concern (COPCs)

### 2.1 Screening Approach

The first step of the risk assessment process consists of compiling and evaluating investigation data to identify the risk assessment dataset and then to select the constituents of potential concern (COPCs). The selection of COPCs was based primarily on the magnitude of the measured concentrations in the relevant environmental media. If the maximum detected concentration exceeded the screening level, or no screening level was available, then the constituent was retained as a COPC and was further evaluated.

### 2.1.1 Data Selection

Soil and water (groundwater, borehole water and basement water) samples were collected as described in the Phase I and II RFIs (see Section 2.3.2 of the Phase I RFI and Section 2.3.2 of the Phase II RFI).

Soil samples were collected from just below the ground surface or under foundations to the saturated zone at the Site. Sample locations are depicted on Figure 2.2 in the Phase II RFI. The on-site soil sample data associated with the AOIs listed in Section 1.1 were selected for inclusion in the risk assessment dataset. The risk assessment dataset for soil is provided in Attachment A-1 (on CD).

Locations of monitoring wells at the Site are depicted on Figure 2.2 in the Phase II RFI. The depth to groundwater ranges from approximately 6 to 16 feet below ground surface (bgs) across this portion of the Site. Contact with groundwater in areas with shallow groundwater may occur during excavation activities. Therefore, all Site groundwater data from monitoring wells associated with the AOIs listed in Section 1 were included in the risk assessment dataset (Attachment A-2, on CD). Water samples were also collected from boreholes and the basement of Building 36, and are included in the risk assessment dataset (Attachments A-3 and A-4, respectively, on CD).

Other media which have been sampled during the Phase I and II RFIs (e.g. light nonaqueous phase liquid [LNAPL], estuary water, building materials, sediment associated with surface water, sludge, solid waste, treated effluent, treatment system water and waste water) were not included in the risk assessment dataset. In addition, samples collected off-site were not included.

# Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

The site investigation activities are described and data relied upon in this assessment are provided in the Phase I and II RFIs.

## 2.1.2 Data Evaluation

The data available for each medium were evaluated in accordance with United States Environmental Protection Agency (USEPA) guidance for risk assessments (USEPA 1989; 1992). The data evaluation guidelines are summarized as follows:

- Constituents that were not detected in any samples evaluated in a medium were not included in the dataset used to evaluate for that medium.
- Analytical results reported as detected or estimated values ("J") were considered to be present at the reported value. Analytical results that are "U" qualified were nondetects.
- Analytical results that were rejected ("R" qualified) were removed from the risk assessment dataset.

Duplicate samples were screened as separate samples for the purposes of COPC selection.

All data are presented in Appendices B, C and D of the Phase II RFI and Appendices B, C, D, and E of the Phase I RFI. The risk assessment dataset is provided in Attachments A-1 through A-4 (on CD).

### 2.1.3 Identification of Screening Levels

The USEPA Regional Screening Levels (RSLs) (USEPA 2010a) were used for screening soil and groundwater. The carcinogenic RSLs were adjusted for a target cancer risk of  $1 \times 10^{-5}$ . The screening levels are listed in Tables A-1 through A-4.

The industrial worker soil RSLs (direct contact) were used to screen the soil data. Industrial RSLs assume exposure over a longer period and are generally lower, more restrictive, than criteria protective of construction worker direct contact. Constituents detected at concentrations greater than the industrial RSLs were identified as soil COPCs and further evaluated based on a comparison to calculated construction worker criteria.

# Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

Constituent concentrations observed in groundwater, borehole water and basement water were compared to the higher of the tap water RSLs and the Maximum Contaminant Levels (MCLs) as a conservative screening step to identify COPCs carried into the site-specific evaluation. Groundwater is not currently used as a drinking water source at the Site and will be restricted in the future.

## 2.1.4 Comparison to Screening Levels

The maximum detected constituent concentration in each medium was compared with the appropriate screening levels (see Tables A-1 through A-4). Constituents detected at concentrations below the screening levels were not considered further. Those constituents present at concentrations greater than the RSLs, and those for which a RSL was unavailable, were retained for further analysis as COPCs.

## 2.2 Soil COPCs

A summary table with the results of the screening process is provided as Table A-1. Twenty-nine constituents were selected as COPCs for further evaluation under the construction worker scenario. Table A-5 summarizes soil and water COPCs.

# 2.3 Groundwater, Borehole Water and Basement Water COPCs

Summary tables providing the results of the screening process for groundwater, borehole water and basement water are provided in Tables A-2 through A-4, respectively. Forty-four constituents were selected as COPCs for groundwater, 19 for borehole water, and seven for basement water. These COPCs will be further evaluated under the construction worker scenario. Table A-5 summarizes soil and water COPCs.

# Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

# 3. Exposure Assessment

The purpose of the exposure assessment is to evaluate the ways receptors might be exposed to constituents at a site. Exposure can occur only when the potential exists for a receptor to contact constituents or when there is a mechanism for constituents to be transported to a receptor. Without exposure, there is no risk; therefore, the exposure assessment is a critical component of the HHRA. The assessment of potential exposure includes characterization of the physical environment, identification of exposure pathways (including migration pathways, exposure points, and exposure routes), and identification of potentially exposed individuals and populations.

An exposure pathway is defined by the following four elements:

- a source and mechanism of constituent release to the environment;
- an environmental transport medium for the released constituent;
- a point of potential contact by the receptor with the medium containing the constituent (the exposure point); and
- a route of exposure to the receptor at the exposure point (e.g., ingestion, inhalation, or dermal contact).

The purpose of the exposure assessment is to identify and evaluate the ways a population may be exposed to constituents at a site. This typically involves estimating concentrations along potential pathways between sources and receptors. This usually is accomplished using site-specific data and, when necessary, mathematical modeling.

### 3.1 Sources

The Site has historically been associated with automobile manufacturing, and sources include those typical of this type of site. Impacts to the soil and groundwater are present from these historic operations. Section 1 lists the specific AOIs at the Northend of the Site and their associated use.

### 3.2 Fate and Transport

The fate and transport of constituents in environmental media is influenced by chemical/physical characteristics of the constituents such as volatility and affinity for

# Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

organic carbon in the soil. Fate and transport is also influenced by site conditions, including soil type, climate and groundwater characteristics. Chemical-specific characteristics and site-specific conditions, where available, were utilized for evaluating transport of COPCs.

## 3.3 Receptor

As discussed in the introduction, this HHRA targets only the hypothetical future redevelopment construction worker, as this receptor was not included in the Phase II RFI HHRA for the Northend of the Site. In the future, construction activities could occur at the Site during redevelopment.

## 3.4 Potentially Complete Exposure Pathways

Construction workers could contact surface and subsurface soil during excavation activities. Groundwater is shallow at the Site, and a construction worker could contact both the shallow soil and the shallow groundwater under potential future redevelopment construction activities. Therefore, exposure of a hypothetical future redevelopment construction worker to soil and groundwater is evaluated.

The relevant exposure routes for the redevelopment construction worker are incidental ingestion of soil, dermal contact with soil on exposed skin, inhalation of volatile COPCs from soil, and inhalation of fugitive dust. The construction worker may also have dermal contact with groundwater in excavations and accidentally ingest small amounts.

### 3.5 Exposure Point Concentrations

The concentration of COPCs at the receptor point of exposure is known as the exposure point concentration (EPC). This HHRA used the following EPCs:

- The maximum Site concentration of each constituent was used for selection of COPCs.
- The maximum COPC concentrations for each AOI were used for comparison to the health based goals (HBGs) (risk-based, media-specific criteria) for the construction worker.

# Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

- For those AOIs where the maximum soil concentration exceeded the relevant HBG, the soil EPC (except for lead) was derived as the upper confidence limit (UCL) on the mean concentration in the AOI (see Section 6.1.1).
- The EPC for lead in soil was the mean concentration in the AOI (see Section 6.1.2).
- The EPCs for groundwater, borehole water and basement water were the maximum detected concentrations for each AOI. The maximum detected concentration was chosen to represent groundwater conditions because a construction worker is likely to works within a relatively limited area.. This is a conservative, but reasonable assumption for this evaluation.

# Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

# 4. Toxicity Assessment

The toxicity assessment evaluates the relationship between the magnitude of exposure to a constituent and the nature and magnitude of adverse health effects that may result from such exposure. Toxicity studies with laboratory animals or epidemiological studies of human populations provide the data used to develop toxicity values. Toxicity values are values that are used in quantitative risk assessment to relate exposure and the potential for toxic effect to occur.

In this HHRA, toxicity values were used to evaluate potential short- and long-term risks. Toxicity values were chosen from sources following the USEPA-approved hierarchy (USEPA 2003b) as listed below:

- USEPA's Integrated Risk Information System (IRIS) (USEPA 2010b);
- Provisional Peer Reviewed Toxicity Values (PPRTVs) derived by USEPA's Superfund Health Risk Technical Support Center (STSC) for the USEPA Superfund program;
- Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs);
- California Environmental Protection Agency (CalEPA)/Office of Environmental Health Hazard Assessment's toxicity values (CalEPA 2010);
- USEPA Superfund program's Health Effects Assessment Summary Tables (USEPA 1997);

The toxicity values for xylene mixtures was used for the analyte "m&p-xylene" as it was more conservative than either the m- or p-xylene toxicity values.

This section discusses the two general categories of toxic effects (noncarcinogenic and carcinogenic) and constituent-specific toxicity values used to calculate potential risks for these two types of toxic effects. Toxicity values for potential noncarcinogenic and carcinogenic effects are identified from available databases.

# Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

### 4.1 Noncarcinogenic Effects

The potential for noncarcinogenic effects is estimated by comparing a calculated exposure dose with a reference dose (RfD) for each individual constituent. The RfD represents a daily exposure level that is designed to be protective of human health, even for sensitive individuals or subpopulations. The reference concentration (RfC) is a comparable level that represents an air concentration designed to be protective of human health, including sensitive individuals and subpopulations.

The RfD represents a daily exposure level that is not expected to cause adverse noncarcinogenic health effects. Chronic RfDs are used to assess long-term exposures ranging from 7 years to a lifetime. Subchronic RfDs are typically used to evaluate the potential for adverse health effects associated with exposure to constituents over a shorter time period up to 7 years and were used for this construction worker scenario.

For the COPCs at the Site, Table A-6 presents the RfDs used to assess oral and dermal exposure, and Table A-7 presents the RfCs used to evaluate inhalation exposure. These tables also present the target organs associated with the noncarcinogenic toxicity values for each constituent varying with the exposure route. USEPA confidence values and uncertainty factors associated with the RfDs are also listed. The uncertainty factor represents areas of uncertainty inherent in the extrapolation from the available data. The confidence levels (low, medium, high) assess the degree of confidence in the extrapolation of available data. These levels account for data deficiencies or uncertainties such as individual sensitivity and variability, interspecies variability (if animal data are used), database deficiency, and the extrapolation between exposure doses/durations.

### 4.2 Carcinogenic Effects

Constituents are classified as known, probable, or possible human carcinogens based on a USEPA weight-of-evidence scheme in which they are systematically evaluated for their ability to cause cancer in humans or laboratory animals. The USEPA classification scheme (USEPA 1989) contains five classes based on the weight of available evidence. These classifications were updated in USEPA's 2005 cancer guidelines and the classification is now presented as a narrative. Classifications are updated in the USEPA IRIS files as constituents are reviewed.

# Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

Constituents in Classes A, B1, and B2 generally are evaluated as carcinogens in risk assessments; however, Class C carcinogens may be evaluated on a case-by-case basis (USEPA 1989).

For the COPCs at the Site, Table A-8 presents the carcinogenic toxicity values for oral and dermal exposure, and Table A-9 presents the carcinogenic toxicity values for inhalation exposure to the COPCs at the Site. The carcinogenic toxicity value used in the calculation of potential cancer risks is the cancer slope factor (CSF), which is derived from the conservative assumption that any dose level has a possibility of causing cancer. The inhalation unit risk factor (IUR) for inhalation exposure is used in the indoor air models as the toxicity value. The cumulative dose, regardless of the particular exposure period, determines the risk; therefore, separate CSFs are not derived for subchronic and chronic exposure periods.

### 4.3 Dermal Toxicity Values and Dermal Absorption

Whenever possible, route-specific toxicity values have been used; however, the USEPA has not yet developed toxicity values for dermal exposures. For this reason, the oral toxicity values ( $RfD_o$  and  $CSF_o$ ) and the oral absorption efficiency were used to derive adjusted toxicity values ( $RfD_a$  and  $CSF_a$ ) (adjusted to the absorbed dose) for use in assessing dermal exposure (USEPA 1989):

 $RfD_a = RfD_o \times Oral Absorption Efficiency$ 

CSF<sub>a</sub> = CSF<sub>o</sub> / Oral Absorption Efficiency

The adjusted toxicity values presented in Table A-6 and Table A-8 represent the theoretical toxicity of the orally-absorbed dose of the constituent. An oral absorption efficiency factor (or relative absorption factor) describes the ratio of the absorbed fraction of a constituent from a particular exposure medium to the fraction absorbed from the dosing vehicle used in the toxicity study for that constituent. Oral absorption efficiency values are used in the derivations of the risk-based soil and groundwater constituent concentrations to account for differences in the proportion of absorbed in the toxicity studies forming the bases of the toxicity reference values. Oral absorption efficiencies are constituent-specific because they depend on unique physical-chemical properties of each constituent. As a conservative measure, the oral absorption for all constituents via the inhalation pathways. Uncertainty is associated with the adjusted

# Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

toxicity values and with the dermal risks derived using these values due to the uncertainty in the oral toxicity values combined with the uncertainty in the oral absorption efficiency default and constituent-specific values. However, the calculated dermal risks are expected to be very conservative and, therefore, will overestimate human health risks.

Table A-12 presents the dermal absorption parameters for the COPCs. The dermal absorption efficiency is used to estimate dermal uptake from a soil matrix. The permeability coefficient and non-steady state dermal absorption parameters are used to estimate dermal uptake from water.

4.4 Constituents of Interest

4.4.1 Lead

Lead is evaluated differently than most constituents. USEPA does not provide toxicity values that can be used in quantitative risk assessment. Rather, the USEPA has developed models to estimate the concentration of lead in blood for adults (the Adult Lead Model; ALM) from soil exposures (USEPA 2003a). A modified version of the ALM was used to evaluate exposure to lead in water.

# Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

# 5. Calculation of Site-Specific Health-Based Goals for Construction Workers

HBGs are concentrations of COPCs in relevant media that are not expected to produce adverse health effects under the assumed exposure conditions. Construction worker HBGs were developed consistent with the methods presented in USEPA's Soil Screening Guidance (2002) and Development of Risk Based Preliminary Remediation Goals (USEPA, 1991). The following sections describe assumptions used to develop site-specific HBGs for construction workers.

### 5.1 Exposure Assumptions

This HHRA is based on evaluation of reasonable maximum exposure (RME) scenarios and assumptions. The USEPA (1989) defines the concept of RME (using the term High End Exposure scenario) as a potential estimate of the individual exposure for those persons at the upper end of an exposure distribution. In this document, the RME evaluation has been constructed with reasonable maximum input values that are consistent with the risk evaluation envisioned by the USEPA. RME exposure assumptions were estimated for each potential exposure pathway using default factors (USEPA, 2002; 2004c), site-specific information and professional judgment. Values for the construction worker exposure parameters are summarized in Table A-10 and are discussed below.

- Averaging time of 25,550 days (70 years × 365 days/year) for cancer effects; and averaging time of 350 days (50 weeks × 7 days/week) for non-cancer effects (USEPA 2002);
- Adult body weight of 70 kg (USEPA 2002);
- Exposure duration of 1 year (USEPA 2002);
- Exposure frequency of 250 days/year (5 workdays/week for 50 weeks) for soil (USEPA 2002); and 50 days per year for groundwater based on professional judgment. Based on a review of the Site groundwater levels (Phase II RFI, Figure 3-3), approximately 20 percent of the groundwater is less than 10 ft bgs at the Site. It is reasonable to assume that groundwater would not be contacted by construction workers more than 50 days per year.
- Incidental soil ingestion rate of 330 milligrams per day (mg/day) (USEPA 2002);

# Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

- Incidental groundwater ingestion rate of 0.005 liters per day (L/day) (professional judgment);
- Exposed skin surface area of 3,300 square centimeters (cm<sup>2</sup>), which is the sum of the mean values for hands, forearms, and face for an adult (USEPA 2002); and
- Soil adherence rate of 0.2 milligrams per square centimeter per day (mg/cm<sup>2</sup>/day) (USEPA 2004c)

A conservative assumption underlying all of the risk calculations is that the constituent concentrations remain constant over the entire period of exposure. The effects of attenuation processes that should reduce the concentrations of certain constituents over time are not considered.

## 5.2 Physical and Chemical Properties

The environmental fate and transport of the COPCs are dependent on their physical and chemical properties, the environmental transformation processes affecting them, and the media through which they are migrating. The physical and chemical properties that were used to evaluate potential exposure to the constituents detected in environmental media were compiled for each of the COPCs.

The physical and chemical properties, including molecular weight, water solubility, Henry's Law constant, diffusivity in air and water, permeability coefficient (Kp), and the organic-carbon partition coefficient (Koc) for COPCs are presented in Table A-11.

5.3 Dermal Absorption of COPCs in Soil

Dermal absorption efficiencies (ABSd) are used to reflect desorption of the constituent from soil and the absorption of the constituent across the skin. The ABSd are constituent-specific; however, general factors for classes of compounds have been recommended by USEPA (2004c). The constituent-specific ABSd values are provided in Table A-12 and on the risk characterization tables as appropriate.

### 5.4 Dermal Absorption of COPCs in Water

USEPA (2004c) recommends a non-steady-state approach to estimate the dermallyabsorbed dose from water for organic COPCs. The non-steady state approach evaluates the absorption of constituents from water through the skin as a function of

#### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

the constituent-specific permeability coefficient (Kp), the thickness of the skin and the duration of exposure. Permeability parameters for COPCs are provided in Table A-12.

#### 5.5 Volatilization Factor for Soil

To evaluate emission of volatiles from soil, constituent-specific volatilization factors (VFs) were calculated using USEPA (2002) guidance. The VF equation can be broken into two separate models: a model to estimate the emissions and a model to estimate the dispersion (reduced to the term Q/C) that simulates the dispersion of volatile constituents in ambient air (see Table A-13). The dispersion term for invasive activities  $(Q/C_{vol\_cwuw})$  was used in the calculations to develop a VF which reflects the potential for emissions during excavation. The Henry's Law Constant was adjusted to account for the cooler average soil conditions in Michigan. Default parameters were used for soil characteristics and wind speeds (USEPA 2002). Input parameters and the resulting VFs can be found on Table A-13.

#### 5.6 Particulate Emission Factor for Soil

Under a construction scenario, fugitive dusts may be generated from surface soils by wind erosion, construction vehicle traffic on temporary unpaved roads and other construction activities. The calculation of the site-specific PEF for construction activities (PEF<sub>sc</sub>) (Table A-14) is based exclusively on emissions from truck traffic, which typically contributes the majority of dust emissions during construction (USEPA 2002). This equation requires estimates of the subchronic air dispersion factor for a straight road (Q/C<sub>sr</sub>), the number of days with at least 0.01 inches of rainfall, the mean vehicle weight, the sum of fleet vehicle distance traveled during construction, and the total time over which construction occurs. The site-specific Q/C<sub>sr</sub> was calculated assuming a construction area of 2 acres. Using the USEPA default values for number of vehicles (2), the sum of the total fleet vehicle kilometers (km) traveled was calculated at 45 km. Also, the USEPA default value of 8 tons was used for the mean vehicle weight.

#### 5.7 Recommended Health-Based Goals

Health-based goals were developed based on the following target risks:

- 1 x 10<sup>-5</sup> target cancer risk; and,
- A noncarcinogenic hazard quotient of 1.0.

#### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

Assumptions and parameter values used to calculate the HBGs were discussed in the sections above, and are tabulated in Tables A-6 through A-14.

The equations used to calculate the HBGs for soil are shown in Table A-15. The resulting soil HBGs are shown in Table A-16. For groundwater, the equations are presented in Table A-17, and the resulting HBGs are show in Table A-18.

A summary of HBGs is presented in Table A-19. HBGs for lead in groundwater are discussed in Section 5.8, below.

5.8 Health-Based Goals for Lead in Groundwater

Lead was detected in groundwater at levels that exceeded the federal drinking water Action Level of 15  $\mu$ g/L in samples collected from monitoring wells in four AOIs (36-1, 81-2, 83-1, and 83/84-3). Therefore, AOI-specific HBGs for lead in groundwater were calculated for these four AOIs.

Because blood lead levels resulting from exposure at the Site are a result of both leadimpacted soil and groundwater, the groundwater HBG takes into account the blood lead level resulting from exposure to soil and dust in addition to exposures through groundwater. In order to account for both soil and groundwater exposures, HBGs for lead in groundwater were calculated following a two-step process.

- First, predicted adult blood lead levels due to soil exposures were calculated for each of the four AOIs using AOI-specific soil lead concentrations and the ALM spreadsheets provided by USEPA (2003a).
- 2. Second, for each AOI, the predicted blood lead level was then used as the baseline blood lead level in the modified ALM to calculate a HBG for lead in groundwater for each of the AOIs. The resulting predicted soil-related adult blood lead levels, summarized in Table A-20, were used as the baseline blood lead level to calculate AOI-specific HBGs for incidental ingestion of groundwater by construction workers based on a 5 percent probability that the blood lead level in a fetus of a pregnant construction worker would exceed the recommended benchmark of 10 µg/dL.

The input parameters are provided in Table A-20, and are discussed below.

#### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

#### **General Input Parameters**

The USEPA recommended Third National Health and Nutritional Examination Survey (NHANES III) Phases 1 and 2, baseline blood lead level and geometric standard deviation (USEPA 2009) were used in the ALM.

#### Soil Component Input Parameters

The first step of the groundwater HBG development process required derivation of soilrelated blood lead levels. Default input values recommended by USEPA (2003a, 2009) were used in the ALM for soil for the following parameters:

- Fetal/maternal blood lead ratio (0.9);
- Biokinetic slope factor (0.4 micrograms per deciliter per micrograms per day [μg/dL per μg/day]);
- Geometric standard deviation of blood lead (2.1);
- Baseline blood lead level (1.5 µg/dL);
- Absorption fraction for soil (0.12); and
- Averaging time for soil exposures (365 days per year).

The AOI-specific mean lead concentration in soil was used as the soil concentration input. An exposure frequency of 250 days per year (USEPA, 2002) and a soil ingestion rate of 0.33 grams per day (USEPA 1996a, 1996b, 2002) were used, consistent with the exposure parameters used for calculating HBGs for other COPCs (Table A-10).

#### Groundwater Component Input Parameters

Default values recommended by USEPA (2003a, 2009) were used in the ALM modified for groundwater for the following input parameters:

- Fetal/maternal blood lead ratio (0.9);
- Biokinetic slope factor (0.4 µg/dL per µg/day);
- Geometric standard deviation of blood lead (2.1); and
- Absorption fraction for groundwater (0.2).

#### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

The groundwater exposure frequency of 50 days per year and an ingestion rate of 5 ml/day were used in the ALM modified for groundwater were consistent with the exposure factors used for other COPCs (see Table A-10). The model used an averaging time of 90 days, based on time to reach quasi steady state. The baseline blood lead level was set at the soil-related predicted adult blood lead level as described above.

#### **Results**

The resulting AOI-specific HBGs for lead in groundwater are presented in Table A-21. ALM spreadsheets are provided in Attachment A-5 (on CD).

New toxicity information provided in the Ambient Air Quality Criteria Document for Lead indicates that adverse health effects may be observed at blood lead levels of 5  $\mu$ g/dL or lower (USEPA 2006). Using this target level would lower the HBGs for lead in groundwater. The calculated HBGs for lead in groundwater based on a target level of 10  $\mu$ g/dL yields a 24 percent chance of having a blood lead level of greater than 5  $\mu$ g/dL.

#### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

#### 6. Comparison of Site Data to Construction Worker HBGs

The first step in the evaluation of each AOI was to compare the maximum detected concentration for each COPC to the construction worker HBG. If there were no exceedances, additional evaluation was not warranted. However, if COPCs were detected at levels greater than the HBG, additional work was completed to further refine the evaluation: AOIs with HBG exceedances were identified and exposure point concentrations were calculated as described in Section 3.5..

The maximum detected COPC concentrations in the soil were compared to the HBGs for soil (Table A-22), groundwater (Table A-23), and borehole water (Table A-24). These tables show data from only those AOIs where at least one data point exceeded the HBG. There is no table for basement water because no constituents exceeded the HBGs.

There are six AOIs where at least one constituent other than lead (e.g., arsenic, chromium, vanadium, benzene, 1,1-dichloroethane, ethylbenzene, 1,1,1trichloroethane, benzo(a)pyrene and naphthalene) exceeds the HBG in at least one soil sample. Lead was the only constituent that exceeded the screening criteria in groundwater, borehole water or basement water.

Lead exceeds the commercial/industrial screening criterion for soil in seven AOIs, and exceeds the drinking water criterion in four AOIs for groundwater and one AOI for borehole water.

In all, 11 AOIs have at least one exceedance that is evaluated further in this section. Table A-25 summarizes the results of the comparison to HBGs.

- 6.1 Methods for evaluating AOIs with HBG Exceedances
- 6.1.1 Statistical Analysis of Constituents Other than Lead in Soil

A statistical approach was used to derive an exposure point concentration (EPC) for those AOIs where there was an exceedance of one or more HBG in soil. EPCs were derived only for those COPCs that exceeded the HBG in the AOI, except for lead (see Section 5.9.3).

Consistent with USEPA methodology, the upper confidence limit (UCL) concentrations were calculated for COPCs other than lead. The 95 percent UCL, for example, is a

#### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

statistical value calculated to estimate the mean concentration with 95 percent confidence that the true arithmetic mean concentration for the Site will be less than the UCL. The high level of confidence (e.g., 95 percent) is used to compensate for the uncertainty involved in representing the Site conditions with a finite number of samples.

UCLs were calculated using USEPA's statistical software, ProUCL, version 4.00.05 (USEPA 2010c). ProUCL includes rigorous, state-of-the-art parametric and nonparametric (including bootstrap) computation methods which can be used on skewed and unskewed data sets, with or without non-detects. Some of the methods (e.g., Kaplan-Meier method) are applicable to left-censored data sets having multiple detection limits. The ProUCL software selects the best computational method for calculating the UCL for a given data set based on a variety of statistical factors. When duplicate samples were collected, the average of the concentration detected in the parent sample and duplicate sample was used.

Table A-26 presents the EPCs used to evaluate compliance with the HBGs in those AOIs where the maximum concentration exceeded the HBG. For the two COPCs at AOI 81-2, there was only one detection. This detected concentration was used as the EPC. Other EPCs were based on UCLs derived by ProUCL using various methods, as noted in Table A-26. ProUCL printouts are included in Attachment A-6 (on CD).

#### 6.1.2 Statistical Analysis of Lead in Soil

USEPA recommends screening criteria derived from biokinetic modeling (such as the Integrated Exposure Uptake Biokinetic Model [IEUBK] and the Adult Lead Model [ALM]) to the arithmetic mean soil concentration in an exposure unit in order to be consistent with the principles underlying the blood lead modeling approach. USEPA discussed this in its final rulemaking for identification of dangerous levels of lead (USEPA, 2001).

In calculating the EPC for lead, when duplicate samples were collected, the average of the concentration detected in the parent sample and duplicate sample was used. Table A-27 presents the EPCs for lead in soil at the AOIs where the maximum lead concentration exceeded the screening criterion.

#### 6.1.3 Site-Specific HBG for Lead in Groundwater

AOI-specific HBGs for lead in groundwater are presented in Table A-21, along with maximum groundwater concentrations. Methods used to derive the HBGs are

### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

discussed in Section 5.8. For AOIs 36-1, 81-2 and 81-3, maximum groundwater concentrations are below the HBGs. For AOI 83/84-3, the HBG is zero due to high concentrations of lead in soil.

#### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

#### 7. Risk Characterization

Risk characterization involves estimating the magnitude of the potential adverse health effects of constituents of concern and forming conclusions about the nature of any identified health risks to the defined receptor populations. It combines the results of the dose-response (toxicity) and exposure assessments and integrates the HHRA and site-specific issues.

The HHRA was performed to evaluate whether constituent concentrations detected in on-site soil, groundwater, borehole water and basement water pose a significant threat to the hypothetical future redevelopment construction worker. Site-specific and default exposure assumptions were used in conjunction with peer-reviewed toxicity values to develop site-specific HGBs.

The USEPA target cancer risk range considered protective of health is  $1 \times 10^{-4}$  to  $1 \times 10^{-6}$  or less. The USEPA benchmark of 1 for non-cancer risks is considered protective. A target cancer risk of  $1 \times 10^{-5}$  and a target hazard quotient of 1 were used to develop the HBGs.

For those constituents which had individual exceedances of its HBG in soil, an EPC was calculated for the relevant AOI using USEPA's ProUCL software. For lead exceedances in soil, the EPC was calculated as the arithmetic mean as recommended by USEPA. Exceedances of lead screening criteria in groundwater were evaluated using the ALM to derive an AOI-specific HBG.

#### 7.1 Evaluations of AOIs

This section discusses the potential for risk to redevelopment construction workers at each of the AOIs listed in Table A-25, and the need for risk management practices. This information is summarized in Table A-28.

#### AOI 05-1

AOI 05-1 had one sample where the screening criterion for lead in soil was exceeded in the 0-2 ft depth range (RFI-05-21). A comparison of the EPC for this AOI to the criteria (Table A-27) indicates that constituents in soil and groundwater in the AOI do not pose a concern for construction workers. No further action for protection of the redevelopment construction worker is recommended.

#### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

#### AOI 05-6

AOI 05-6 had one sample where the screening criterion for lead in soil was exceeded at a depth of 6.9-8.9 ft bgs (RFI-05-18). A comparison of the EPC for this AOI to the criteria (Table A-27) indicates that constituents in soil and groundwater in the AOI do not pose a concern for construction workers. No further action for protection of the redevelopment construction worker is recommended.

#### AOI 10-1

AOI 10-1 had one sample where the HBG for chromium in soil was exceeded at 9-11 ft bgs (RFI-10-01) and one location where the screening criterion for lead in soil was exceeded at 1-3 ft bgs (RFI-10-01). A comparison of the EPCs for this AOI to the HBGs/lead criterion (Tables A-26 and A-27) indicates that constituents in soil and groundwater in the AOI do not pose a concern for construction workers. No further action for protection of the redevelopment construction is recommended.

#### AOI 36-1

AOI 36-1 had one exceedance of the HBGs for benzene, ethylbenzene and naphthalene in soil at 12-14 ft bgs (RFI-36-07), as well as one exceedance of the lead screening criterion in groundwater (RFI-36-32). A comparison of the EPCs for the three VOCs in soil and the detected lead concentration to their respective HBGs (Tables A-26 and A-28) indicates that constituents in soil and groundwater in the AOI do not pose a concern for construction workers. No further action for protection of the redevelopment construction worker is recommended based on this analysis based on the constituent specific evaluation.

However, light non-aqueous phase liquid (LNAPL) have been reported in this AOI and the Corrective Measures Plan (CMP) recommends use restrictions for this location due to the presence of LNAPL. Preparation of a Health and Safety Plan prior to beginning excavation activities where LNAPL has been observed or where expected is also recommended.

#### AOI 36-2

AOI 36-2 had one sample in soil (RFI-36-36) at 1 to 3 feet bgs where the HBG for chromium was exceeded (Table A-26). Three samples were analyzed in AOI 36-2 for both total chromium and chromium VI. The results of these analyses show that

#### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

chromium VI makes up less than one percent of the total chromium in this AOI. A sample taken near this location contained total chromium at 220 mg/kg and the Chromium VI concentration was <0.02 mg/kg. Based on this analysis, constituents in soil and groundwater in the AOI do not pose a concern for construction workers. A shallow hydraulic oil plume is present at this AOI, but no restrictions are proposed.

#### <u>AOI 81-1</u>

The lead was detected at concentrations well above the generic screening level in several locations in soil at AOI 81-1 from 2.5 to 10 ft bgs (Table A-27). A land use restriction for this AOI is recommended based on the concentrations of lead. AOI 81-1 already has planned use restrictions and a requirement for a Health and Safety Plan during construction can be incorporated into these planned restrictions.

#### AOI 81-2

AOI 81-2 had one location where 1,1-dichloroethane and 1,1,1-trichloroethane were detected at concentrations in soil greater than their HBGs at 1-3 ft bgs (RFI-81-38) (Table A-26). No other COPCs were detected in the other samples collected in this AOI. A UCL was not calculated for these constituents due to the low detection frequency; therefore, the only detected concentrations are used for the ECPs. This area also had one exceedance of the generic soil lead screening level at 1-3 ft bgs (RFI-81-20) and several exceedances of the groundwater screening criterior; however, the lead EPCs are below the screening criteria (Tables A-21 and A-27). Based on the concentrations of 1,1-dichloroethane and 1,1,1-trichloroethane in this AOI, it is recommended that a use restriction be attached to the Site to require that a Health and Safety Plan be prepared prior to commencing construction in this AOI.

The Phase II RFI (BBL, 2006) notes that LNAPL was observed in soil at RFI-81-38. AOI 81-2 already has planned use restrictions due to PCBs in LNAPL, and a requirement for a Health and Safety Plan during construction can be incorporated into these planned restrictions.

#### AOI 81-3

AOI 81-3 had three exceedances of the screening criterion for lead in groundwater (86-100, RFI-81-11 over two dates). A comparison of the detected lead concentrations to the AOI-specific HBG (Tables A-21) indicates that constituents in soil and groundwater in this AOI do not pose a concern for construction workers. No further action for

#### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

protection of the redevelopment construction worker is recommended based on this analysis.

#### AOI 83/84-2

Chromium, vanadium and benzo(a)pyrene exceed their respective HBGs in one sample each (RFI-83/84-39 for chromium and vanadium, and RFI-83/84-22 for benzo(a)pyrene) in soil at a depth of 1 to 3 feet bgs. The EPCs for vanadium and benzo(a)pyrene are below the HBGs, but the chromium EPC exceeds the HBG (Table A-26). Lead concentrations in soil exceed the screening criterion at several locations between 0 and 9 ft bgs; however, the EPC is below the screening criterion (Table A-27).

One borehole water sample detected lead slightly above the screening criterion (RFI-83/84-05, the only borehole sample collected at this AOI).

Due to the presence of chromium at a concentration above the HBG, it is recommended that a use restriction be attached to the Site that requires a Health and Safety Plan be prepared prior to commencing construction in this area. AOI 83/84-2 already has planned use restrictions due to the presence of PCBs in LNAPL, and a requirement for a Health and Safety Plan during construction can be incorporated into these planned restrictions.

#### AOI 83/84-3

Lead was detected at concentrations above the generic screening level in soil at AOI 83/84-3 from 0.7-4.8 ft bgs (Table A-27). Lead was also detected in one groundwater sample (RFI-83/84-20) at a concentration above the HBG. It is recommended that a use restriction be attached to the Site to require that a Health and Safety Plan be prepared prior to commencing construction in this AOI. AOI 83/84-3 already has planned use restrictions and a requirement for a Health and Safety Plan during construction can be incorporated into these planned restrictions.

#### AOI 86-1

AOI 86-1 had two exceedances of the HBG for arsenic (RFI-86-07; RFI-86-17) in soil at 0.7 to 3 feet bgs. A comparison of the EPC for arsenic in soil to the HBG (Table A-26) indicates that constituents in soil and groundwater in this AOI do not pose a

#### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

concern for construction workers based on this analysis. No further action for protection of the redevelopment construction worker is recommended.

#### 7.2 Summary and Conclusions

Table A-19 summarizes the HBGs derived for the Site and Table A-25 provides a summary of the constituents exceeding HBGs at each AOI that had at least on exceedances of an HBG. The results of comparing the EPCs to HBGs are presented in Table A-26.

Of the 11 AOIs that had a maximum concentration exceeding the HBG, only four are recommended for risk management practices: 81-1; 81-2; 83/84-2; and 83/84-3. For these AOIs, it is recommended that a land-use restriction be attached to the Site to require that a Health and Safety Plan be prepared prior to commencing construction. All of these AOIs already have planned use restrictions and a requirement for a Health and Safety Plan during construction can be incorporated into these planned restrictions.

#### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

#### 8. References

- Agency for Toxic Substances and Disease Registry (ATSDR), 2010. Minimal Risk Levels for Hazardous Substances. Available at: <u>http://www.atsdr.cdc.gov/mrls/index.htm</u>.
- Blasland, Bouck & Lee, Inc. (BBL), 2006. Resource Conservation and Recovery Act Facility Investigation Phase II Report, General Motors Corp., NAO Flint Operations Site, ID #MID 005 356 712. July 14.
- BBL, 2002. Resource Conservation and Recovery Act Facility Investigation Phase I Report. June 28.
- California Environmental Protection Agency. 2010. Office of Environmental Health Hazard Assessment Toxicity Criteria database. Internet access: <u>http://oehha.ca.gov/risk/chemicaldb/index.asp</u>
- Michigan Department of Environmental Quality (MDEQ), 2007. RRD Operational Memorandum No. 1, Technical Support Document – Attachment 7, Part 201 Generic Soil Inhalation Criteria for Ambient Air. July.
- National Library of Medicine (NLM). 2010. Hazardous Substances Databank (HSDB). National Library of Medicine, Toxicology Data Network.
- Oak Ridge National Laboratory (ORNL). 2010. Risk Assessment Information System (RAIS). Online database accessed at: <u>http://risk.lsd.ornl.gov/index.shtml</u>
- Syracuse Research Corporation (SRC). 2008. CHEMFATE Chemical Search (CHEMFATE), Environmental Fate Data Base. Available: <u>http://esc.syrres.com/efdb/Chemfate.htm</u>
- U.S. Environmental Protection Agency (USEPA). 1989. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Volume 1, Part A. Interim Final. Office of Emergency and Remedial Response, Washington, DC. EPA/540/1-89/002. December.
- USEPA. 1991. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual. Part B, Development of Risk Based Preliminary

#### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

Remediation Goals. Office of Emergency and Remedial Response, Washington, DC. OSWER Directive 9285.7-01B. December.

- USEPA. 1992. Guidance for Data Usability in Risk Assessment (Part A). Office of Emergency and Remedial Response. Publication 9285.7–09A. PB92-963356. Available at: <u>http://www.epa.gov/superfund/programs/risk/datause/parta.htm</u>
- USEPA. 1996a. Soil Screening Guidance: Technical Background Document. EPA/540/R-95/128. July.

USEPA. 1996b. Soil Screening Guidance: User's Guide. EPA/540/R-96/018. July.

- USEPA. 1997. Health Effects Assessment Summary Tables, FY-1997 Update. Office of Research and Development and Office of Emergency and Remedial Response, Washington, DC. EPA 540/R-97-036. NTIS No. PB97-921199. July.
- USEPA. 2001. 40 CFR Part 745, Vol. 66, No. 4, p. 1206, "Lead; Identification of Dangerous Levels of Lead; Final Rule." January 5.
- USEPA. 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Emergency and Remedial Response, Washington, DC. OSWER 9355.4-24. December.
- USEPA. 2003a. Recommendations of the Technical Review Workgroup for Lead for an Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil. EPA-540-R-03-001. January.
- USEPA. 2003b. Memorandum. Human Health Toxicity Values in Superfund Risk Assessments. OSWER Directive 9285.7-53. December 5.
- USEPA. 2004a. EPI Suite software, Version 3.12. Office of Pollution Prevention and Toxics, Washington DC. August 17. Available at: <u>http://www.epa.gov/opptintr/exposure/docs/episuitedl.htm</u>
- USEPA. 2004b. Superfund Chemical Database Matrix (SCDM). Office of Emergency and Remedial Response, U.S. Environmental Protection Agency. Washington, DC. January.

#### Appendix A

Human Health Risk Assessment for the Redevelopment Construction Worker

- USEPA. 2004c. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final. Office of Superfund Remediation and Technology Innovation, Washington, DC. OSWER 9285.7-02EP. EPA/540/R/99/005. PB99-963312. July.
- USEPA. 2005. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001F. March.
- USEPA. 2006. Air Quality Criteria for Lead. National Center for Environmental Assessment. EPA/600/R-5/144aF. October.
- USEPA. 2009. Update of the Adult Lead Methodology's Default Baseline Blood Lead Concentration and Geometric Standard Deviation Parameters. Office of Solid Waste and Emergency Response. OSWER 9200.2-82. June 26.
- USEPA. 2010a. Regional Screening Table, May 2010. Internet access: http://www.epa.gov/reg3hwmd/risk/human/rb-concentration\_table/index.htm.
- USEPA. 2010b. Integrated Risk Information System (IRIS), Office of Research and Development, National Center of Environmental Assessment. Internet access: <u>http://www.epa.gov/iris</u>.
- USEPA. 2010c. ProUCL 4.00.05. National Exposure Research Lab, EPA, Las Vegas, Nevada. June.

Tables

## Table A-1Summary of Soil Sample Analytical Results, Detected Analytes OnlyFormer General Motors North American Operations Facility (otherwise known as Buick City)Flint, Michigan

| Ormetiturent                                  |       | Industrial Soil | Detection | Maximum<br>Detected | Selected as a |
|-----------------------------------------------|-------|-----------------|-----------|---------------------|---------------|
| Constituent                                   | Units | RSL             | Frequency | Concentration       | COPC?         |
| Inorganics                                    |       |                 |           |                     |               |
| Antimony                                      | mg/kg |                 | 175/364   | 22                  | no            |
| Arsenic                                       | mg/kg | 1.6             | 551/555   | 190                 | YES           |
| Barium                                        | mg/kg | 190000          | 545/545   | 3400                | no            |
| Beryllium                                     | mg/kg | 2000            | 444/463   | 11                  | no            |
| Cadmium                                       | mg/kg | 800             | 504/545   | 24                  | no            |
| Chromium Total [a]                            | mg/kg | 5.6             | 550/550   | 2400                | YES           |
| Chromium VI (Hexavalent)                      | mg/kg | 5.6             | 2/5       | 0.34                | no            |
| Cobalt                                        | mg/kg | 300             | 463/463   | 210                 | no            |
| Copper                                        | mg/kg | 41000           | 466/469   | 21000               | no            |
| Cyanide (total)                               | mg/kg | 20000           | 179/440   | 21                  | no            |
| Lead [b]                                      | mg/kg | 800             | 588/588   | 69000               | YES           |
| Manganese                                     | mg/kg | 23000           | 483/483   | 4700                | no            |
| Mercury                                       | mg/kg | 34              | 263/530   | 5.1                 | no            |
| Nickel                                        | mg/kg | 20000           | 463/463   | 340                 | no            |
| Selenium                                      | mg/kg | 5100            | 343/545   | 5.4                 | no            |
| Silver                                        | mg/kg | 5100            | 401/545   | 9.8                 | no            |
| Thallium [c]                                  | mg/kg | 35              | 398/463   | 0.59                | no            |
| Vanadium                                      | mg/kg | 72              | 463/463   | 390                 | YES           |
| Zinc                                          | mg/kg | 310000          | 468/469   | 5800                | no            |
| Volatile Organic Compounds (VOCs)             |       |                 |           |                     |               |
| Acetone                                       | mg/kg | 630000          | 88/544    | 1.7                 | no            |
| Benzene                                       | mg/kg | 5.4             | 51/554    | 240                 | YES           |
| 2-Butanone (Methyl Ethyl Ketone)              | mg/kg | 200000          | 72/544    | 1.1                 | no            |
| Carbon disulfide                              | mg/kg |                 | 5/544     | 0.039               | no            |
| Chlorobenzene                                 | mg/kg | 1400            | 2/544     | 2                   | no            |
| Chloroethane                                  | mg/kg | 61000           | 6/544     | 0.37                | no            |
| Chloroform (Trichloromethane)                 | mg/kg | 1.5             | 1/544     | 0.073               | no            |
| Chloromethane (Methyl Chloride)               | mg/kg | 500             | 11/544    | 0.22                | no            |
| Cyclohexane                                   | mg/kg | 29000           | 64/462    | 9.9                 | no            |
| 1,2-Dichlorobenzene                           | mg/kg | 9800            | 2/462     | 0.074               | no            |
| 1,4-Dichlorobenzene                           | mg/kg | 12              | 2/462     | 0.13                | no            |
| Dichlorodifluoromethane (CFC-12)              | mg/kg | 780             | 1/462     | 0.44                | no            |
| 1,1-Dichloroethane                            | mg/kg |                 | 36/544    | 7000                | YES           |
| 1,1-Dichloroethene                            | mg/kg | 1100            | 5/544     | 10                  | no            |
| cis-1,2-Dichloroethene                        | mg/kg |                 | 26/544    | 5.2                 | no            |
| trans-1,2-Dichloroethene                      | mg/kg |                 | 9/544     | 0.6                 | no            |
| Ethylbenzene                                  | mg/kg | 27              | 80/554    | 680                 | YES           |
| 2-Hexanone                                    | mg/kg | 1400            | 2/544     | 0.07                | no            |
| Isopropylbenzene                              | mg/kg | 11000           | 51/462    | 6.6                 | no            |
| Methyl acetate                                | mg/kg | 1000000         | 123/462   | 1                   | no            |
| Methyl cyclohexane                            | mg/kg |                 | 154/462   | 15                  | YES/No RSL    |
| 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) |       | 53000           | 6/544     | 3.4                 | no            |
| Methylene chloride                            | mg/kg |                 | 104/544   | 3.4<br>1.2          |               |
| Tetrachloroethene                             |       |                 | 25/544    | 2.5                 | no            |
| Toluene                                       | mg/kg | 45000           | 114/554   | 4100                | no            |
| 1,2,4-Trichlorobenzene                        | mg/kg |                 | 2/462     |                     | no            |
| 1,2,4-1 richlorobenzene                       | mg/kg |                 |           | 0.031               | no            |
|                                               | mg/kg |                 | 34/544    | 47000               | YES           |
| 1,1,2-Trichloroethane                         | mg/kg | 5.3             | 1/544     | 0.13                | no            |

#### Table A-1

#### Summary of Soil Sample Analytical Results, Detected Analytes Only Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

| Constituent                             | Units | Industrial Soil<br>RSL | Detection<br>Frequency | Maximum<br>Detected<br>Concentration | Selected as a COPC? |
|-----------------------------------------|-------|------------------------|------------------------|--------------------------------------|---------------------|
| Trichloroethene                         | mg/kg | 14                     | 81/544                 | 7.4                                  | no                  |
| Trichlorofluoromethane (CFC-11)         | mg/kg | 3400                   | 6/462                  | 0.3                                  | no                  |
| Trifluorotrichloroethane (Freon 113)    | mg/kg | 180000                 | 5/462                  | 64000                                | no                  |
| Vinyl chloride                          | mg/kg | 1.7                    | 7/544                  | 0.5                                  | no                  |
| Xylenes (total)                         | mg/kg | 2700                   | 171/554                | 2500                                 | no                  |
| m&p-Xylene                              | mg/kg | 2700                   | 170/554                | 1800                                 | no                  |
| o-Xylene                                | mg/kg | 19000                  | 121/554                | 680                                  | no                  |
| Semi Volatile Organic Compounds (SVOCs) |       | 10000                  | 12.7001                | 000                                  |                     |
| Acenaphthene                            | mg/kg | 33000                  | 53/537                 | 24                                   | no                  |
| Acenaphthylene                          | mg/kg |                        | 16/537                 | 2.1                                  | YES/No RSL          |
| Acetophenone                            | mg/kg |                        | 7/459                  | 1.2                                  | no                  |
| Anthracene                              | mg/kg |                        | 93/537                 | 61                                   | no                  |
| Atrazine                                | mg/kg | 7.5                    | 2/459                  | 0.082                                |                     |
| Benzaldehyde                            | mg/kg | 100000                 | 2/459<br>7/447         | 0.082                                | no                  |
|                                         | ~ ~   | 2.1                    | 173/537                | 0.22<br>81                           | no<br>YES           |
| Benzo(a)anthracene                      | mg/kg |                        |                        | -                                    |                     |
| Benzo(a)pyrene                          | mg/kg | 0.21                   | 146/536                | 66                                   | YES                 |
| Benzo(b)fluoranthene                    | mg/kg | 2.1                    | 165/536                | 63                                   | YES                 |
| Benzo(g,h,i)perylene                    | mg/kg |                        | 97/536                 | 28                                   | YES/No RSL          |
| Benzo(k)fluoranthene                    | mg/kg | 21                     | 147/536                | 59                                   | YES                 |
| Biphenyl                                | mg/kg | 51000                  | 36/459                 | 3.5                                  | no                  |
| bis(2-Chloroethoxy)methane              | mg/kg | 1800                   | 1/537                  | 0.022                                | no                  |
| bis(2-Chloroethyl)ether                 | mg/kg | 1                      | 2/537                  | 0.025                                | no                  |
| bis(2-Ethylhexyl)phthalate              | mg/kg | 120                    | 79/537                 | 8.8                                  | no                  |
| Butyl benzylphthalate                   | mg/kg | 910                    | 50/537                 | 200                                  | no                  |
| Caprolactam                             | mg/kg | 310000                 | 4/459                  | 1.5                                  | no                  |
| Carbazole                               | mg/kg |                        | 55/537                 | 40                                   | YES/No RSL          |
| 2-Chloronaphthalene                     | mg/kg | 82000                  | 2/537                  | 0.099                                | no                  |
| Chrysene                                | mg/kg |                        | 196/537                | 85                                   | no                  |
| Dibenz(a,h)anthracene                   | mg/kg | 0.21                   | 23/536                 | 17                                   | YES                 |
| Dibenzofuran                            | mg/kg | 1000                   | 70/537                 | 17                                   | no                  |
| 2,4-Dichlorophenol                      | mg/kg | 1800                   | 2/533                  | 0.044                                | no                  |
| Diethyl phthalate                       | mg/kg | 490000                 | 38/537                 | 4                                    | no                  |
| Dimethyl phthalate                      | mg/kg |                        | 2/537                  | 0.3                                  | YES/No RSL          |
| 2,4-Dimethylphenol                      | mg/kg | 12000                  | 7/533                  | 0.17                                 | no                  |
| Di-n-butylphthalate                     | mg/kg | 62000                  | 19/537                 | 3.4                                  | no                  |
| Di-n-octyl phthalate                    | mg/kg |                        | 5/536                  | 0.25                                 | YES/No RSL          |
| Fluoranthene                            | mg/kg |                        | 213/537                | 180                                  | no                  |
| Fluorene                                | mg/kg |                        | 72/537                 | 35                                   | no                  |
| Hexachlorobutadiene                     | mg/kg | 22                     | 1/537                  | 0.026                                | no                  |
| Hexachlorocyclopentadiene               | mg/kg | 3700                   | 1/536                  | 0.15                                 | no                  |
| Hexachloroethane                        | mg/kg | 120                    | 1/537                  | 0.021                                | no                  |
| Indeno(1,2,3-cd)pyrene                  | mg/kg | 2.1                    | 94/536                 | 29                                   | YES                 |
| Isophorone                              | mg/kg | 1800                   | 2/537                  | 0.88                                 | no                  |
| 2-Methylnaphthalene                     | mg/kg |                        | 94/537                 | 96                                   | no                  |
| Methylphenols, Total                    | mg/kg |                        | 4/533                  | 1                                    | no                  |
| 2-Methylphenol                          | mg/kg | 31000                  | 3/533                  | 0.056                                | no                  |
| 3&4-Methylphenol                        | mg/kg |                        | 3/522                  | 0.050                                | YES/No RSL          |
|                                         |       |                        |                        |                                      |                     |
| 4,6-Dinitro-2-methylphenol              | mg/kg |                        | 3/532                  | 0.62                                 | no                  |
| Naphthalene                             | mg/kg | 18                     | 118/537                | 44                                   | YES                 |

## Table A-1Summary of Soil Sample Analytical Results, Detected Analytes OnlyFormer General Motors North American Operations Facility (otherwise known as Buick City)Flint, Michigan

| Constituent                      | Units | Industrial Soil<br>RSL | Detection<br>Frequency | Maximum<br>Detected<br>Concentration | Selected as a COPC? |
|----------------------------------|-------|------------------------|------------------------|--------------------------------------|---------------------|
| Nitrobenzene                     | mg/kg | 24                     | 1/537                  | 0.032                                | no                  |
| 2-Nitrophenol                    | mg/kg |                        | 2/533                  | 0.048                                | YES/No RSL          |
| N-Nitrosodi-n-propylamine        | mg/kg | 0.25                   | 3/537                  | 0.73                                 | YES                 |
| N-Nitrosodiphenylamine           | mg/kg | 350                    | 1/537                  | 0.87                                 | no                  |
| 2,2'-oxybis(1-Chloropropane)     | mg/kg | 22                     | 1/537                  | 0.029                                | no                  |
| Pentachlorophenol                | mg/kg | 9                      | 5/533                  | 7.2                                  | no                  |
| Phenanthrene                     | mg/kg |                        | 229/537                | 190                                  | YES/No RSL          |
| Phenol                           | mg/kg | 180000                 | 2/534                  | 1                                    | no                  |
| Pyrene                           | mg/kg | 17000                  | 229/537                | 160                                  | no                  |
| 2,4,5-Trichlorophenol            | mg/kg | 62000                  | 4/533                  | 1.1                                  | no                  |
| 2,4,6-Trichlorophenol            | mg/kg | 160                    | 2/533                  | 0.24                                 | no                  |
| Polychlorinated Biphenyls (PCBs) |       |                        |                        |                                      |                     |
| Aroclor-1242 (PCB-1242)          | mg/kg | 0.74                   | 10/516                 | 4.3                                  | YES                 |
| Aroclor-1248 (PCB-1248)          | mg/kg | 0.74                   | 14/516                 | 3.5                                  | YES                 |
| Aroclor-1254 (PCB-1254)          | mg/kg | 0.74                   | 68/516                 | 4.1                                  | YES                 |
| Aroclor-1260 (PCB-1260)          | mg/kg | 0.74                   | 47/516                 | 0.88                                 | YES                 |

Notes:

[a] Chromium VI RSL

[b] Michigan commercial/industrial direct contact criteria

[c] Based on withdrawn IRIS value which is the basis of the MCL

COPC = Constituent of Potential Concern

RSL = U.S.EPA Regional Screening Level (USEPA, May 2010a)

 Table A-2

 Summary of Groundwater Sample Analytical Results, Detected Analytes Only

 Former General Motors North American Operations Facility (otherwise known as Buick City)

 Flint, Michigan

|                                   |       |              |       |                          |                        | Maximum                   |                        |
|-----------------------------------|-------|--------------|-------|--------------------------|------------------------|---------------------------|------------------------|
| Constituent                       | Units | Tapwater RSL | MCL   | Higher of RSL<br>and MCL | Detection<br>Frequency | Detected<br>Concentraiton | Selected as a<br>COPC? |
| Inorganics                        | 00    |              |       |                          |                        | Concontration             | 00101                  |
| Antimony                          | mg/L  | 0.015        | 0.006 | 0.015                    | 23/182                 | 0.0057                    | no                     |
| Arsenic                           | mg/L  | 0.000045     | 0.01  | 0.01                     | 141/185                | 0.17                      | YES                    |
| Barium                            | mg/L  | 7.3          | 2     | 7.3                      | 183/183                | 33                        | YES                    |
| Beryllium                         | mg/L  | 0.073        | 0.004 | 0.073                    | 35/186                 | 0.14                      | YES                    |
| Cadmium                           | mg/L  | 0.018        | 0.005 | 0.018                    | 131/184                | 0.021                     | YES                    |
| Chromium Total [a]                | mg/L  | 0.000043     | 0.1   | 0.1                      | 174/182                | 0.22                      | YES                    |
| Cobalt                            | mg/L  | 0.011        |       | 0.011                    | 179/181                | 0.099                     | YES                    |
| Copper                            | mg/L  | 1.5          | 1.3   | 1.5                      | 166/181                | 0.31                      | no                     |
| Cyanide (total)                   | mg/L  | 0.73         | 0.2   | 0.73                     | 158/278                | 0.16                      | no                     |
| Lead                              | mg/L  |              | 0.015 | 0.015                    | 173/197                | 0.092                     | YES                    |
| Manganese                         | mg/L  | 0.88         |       | 0.88                     | 188/188                | 16                        | YES                    |
| Mercury                           | mg/L  | 0.00057      | 0.002 | 0.002                    | 18/302                 | 0.00039                   | no                     |
| Nickel                            | mg/L  | 0.73         |       | 0.73                     | 184/189                | 0.24                      | no                     |
| Selenium                          | mg/L  | 0.18         | 0.05  | 0.18                     | 59/181                 | 0.035                     | no                     |
| Silver                            | mg/L  | 0.18         |       | 0.18                     | 43/181                 | 0.003                     | no                     |
| Thallium                          | mg/L  |              | 0.002 | 0.002                    | 96/183                 | 0.0049                    | YES                    |
| Vanadium                          | mg/L  | 0.0026       |       | 0.0026                   | 64/181                 | 0.38                      | YES                    |
| Zinc                              | mg/L  | 11           |       | 11                       | 156/183                | 6                         | no                     |
| Inorganics-Dissolved              | 3     |              |       |                          |                        | -                         | -                      |
| Antimony (Dissolved)              | mg/L  | 0.015        | 0.006 | 0.015                    | 12/181                 | 0.0032                    | no                     |
| Arsenic (Dissolved)               | mg/L  | 0.000045     | 0.01  | 0.01                     | 142/187                | 0.12                      | YES                    |
| Barium (Dissolved)                | mg/L  | 7.3          | 2     | 7.3                      | 183/183                | 28                        | YES                    |
| Beryllium (Dissolved)             | mg/L  | 0.073        | 0.004 | 0.073                    | 16/181                 | 0.043                     | no                     |
| Cadmium (Dissolved)               | mg/L  | 0.018        | 0.005 | 0.018                    | 58/185                 | 0.0037                    | no                     |
| Chromium Total (Dissolved) [a]    | mg/L  | 0.000043     | 0.1   | 0.1                      | 86/186                 | 0.023                     | no                     |
| Cobalt (Dissolved)                | mg/L  | 0.011        |       | 0.011                    | 174/182                | 0.015                     | YES                    |
| Copper (Dissolved)                | mg/L  | 1.5          | 1.3   | 1.5                      | 159/186                | 0.05                      | no                     |
| Cyanide (dissolved)               | mg/L  | 0.73         | 0.2   | 0.73                     | 121/178                | 0.099                     | no                     |
| Lead (Dissolved)                  | mg/L  |              | 0.015 | 0.015                    | 27/186                 | 0.019                     | YES                    |
| Manganese (Dissolved)             | mg/L  | 0.88         |       | 0.88                     | 183/184                | 9.2                       | YES                    |
| Mercury (Dissolved)               | mg/L  | 0.00057      | 0.002 | 0.002                    | 2/186                  | 0.00013                   | no                     |
| Nickel (Dissolved)                | mg/L  | 0.73         |       | 0.73                     | 181/183                | 0.17                      | no                     |
| Selenium (Dissolved)              | mg/L  | 0.18         | 0.05  | 0.18                     | 92/186                 | 0.19                      | YES                    |
| Silver (Dissolved)                | mg/L  | 0.18         |       | 0.18                     | 35/185                 | 0.0077                    | no                     |
| Thallium (Dissolved)              | mg/L  |              | 0.002 | 0.002                    | 23/182                 | 0.0034                    | YES                    |
| Vanadium (Dissolved)              | mg/L  | 0.0026       |       | 0.0026                   | 32/182                 | 0.13                      | YES                    |
| Zinc (Dissolved)                  | mg/L  | 11           |       | 11                       | 165/186                | 0.66                      | no                     |
| Volatile Organic Compounds (VOCs) |       |              |       |                          |                        |                           |                        |
| Acetone                           | mg/L  | 22           |       | 22                       | 65/445                 | 0.19                      | no                     |
| Benzene                           | mg/L  | 0.00041      | 0.005 | 0.005                    | 94/450                 | 6                         | YES                    |
| Bromodichloromethane              | mg/L  | 0.00012      | 0.08  | 0.08                     | 2/450                  | 0.001                     | no                     |
| 2-Butanone (Methyl Ethyl Ketone)  | mg/L  | 7.1          |       | 7.1                      | 22/450                 | 0.032                     | no                     |
| Carbon disulfide                  | mg/L  | 1            |       | 1                        | 6/450                  | 0.006                     | no                     |
| Chloroethane                      | mg/L  | 21           |       | 21                       | 78/450                 | 14                        | no                     |
| Chloroform (Trichloromethane)     | mg/L  | 0.00019      | 0.08  | 0.08                     | 22/450                 | 0.012                     | no                     |
| Chloromethane (Methyl Chloride)   | mg/L  | 0.19         |       | 0.19                     | 2/450                  | 0.016                     | no                     |
| Cyclohexane                       | mg/L  | 13           |       | 13                       | 12/446                 | 0.069                     | no                     |
| 1,2-Dichlorobenzene               | mg/L  | 0.37         | 0.6   | 0.6                      | 1/446                  | 0.00096                   | no                     |
| 1,3-Dichlorobenzene               | mg/L  |              |       |                          | 8/446                  | 0.0003                    | YES/No RSL             |
| 1,1-Dichloroethane                | mg/L  | 0.0024       |       | 0.0024                   | 198/450                | 12                        | YES                    |
| 1,2-Dichloroethane                | mg/L  | 0.00015      | 0.005 | 0.005                    | 54/450                 | 0.017                     | YES                    |
| 1,1-Dichloroethene                | mg/L  | 0.34         | 0.007 | 0.34                     | 68/450                 | 0.13                      | no                     |
| cis-1,2-Dichloroethene            | mg/L  | 0.37         | 0.07  | 0.37                     | 176/450                | 0.45                      | YES                    |
| trans-1,2-Dichloroethene          | mg/L  | 0.11         | 0.1   | 0.11                     | 64/450                 | 0.02                      | no                     |
| 1,2-Dichloropropane               | mg/L  | 0.00039      | 0.005 | 0.005                    | 8/450                  | 0.14                      | YES                    |
| Ethylbenzene                      | mg/L  | 0.0015       | 0.7   | 0.7                      | 28/450                 | 1.3                       | YES                    |
| 2-Hexanone                        | mg/L  | 0.047        |       | 0.047                    | 1/450                  | 0.0067                    | no                     |
| Isopropylbenzene                  | mg/L  | 0.68         |       | 0.68                     | 25/446                 | 0.33                      | no                     |
| Methyl acetate                    | mg/L  | 37           |       | 37                       | 1/446                  | 0.08                      | no                     |
| Methyl cyclohexane                | mg/L  |              |       |                          | 23/446                 | 0.15                      | YES/No RSL             |

Table A-2 Summary of Groundwater Sample Analytical Results, Detected Analytes Only Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

|                                              |       |              |        |               |           | Maximum       |               |
|----------------------------------------------|-------|--------------|--------|---------------|-----------|---------------|---------------|
|                                              |       |              |        | Higher of RSL | Detection | Detected      | Selected as a |
| Constituent                                  | Units | Tapwater RSL | MCL    | and MCL       | Frequency | Concentraiton | COPC?         |
| 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone | mg/L  | 2            |        | 2             | 5/450     | 0.0098        | no            |
| Methyl Tert Butyl Ether                      | mg/L  | 0.012        |        | 0.012         | 33/450    | 0.015         | YES           |
| Methylene chloride                           | mg/L  | 0.0048       | 0.005  | 0.005         | 17/450    | 0.01          | YES           |
| Tetrachloroethene                            | mg/L  | 0.00011      | 0.005  | 0.005         | 31/450    | 0.041         | YES           |
| Toluene                                      | mg/L  | 2.3          | 1      | 2.3           | 51/450    | 20            | YES           |
| 1,2,4-Trichlorobenzene                       | mg/L  | 0.0023       | 0.07   | 0.07          | 2/446     | 0.00075       | no            |
| 1,1,1-Trichloroethane                        | mg/L  | 9.1          | 0.2    | 9.1           | 136/450   | 2.4           | no            |
| 1,1,2-Trichloroethane                        | mg/L  | 0.00024      | 0.005  | 0.005         | 19/450    | 0.005         | no            |
| Trichloroethene                              | mg/L  | 0.002        | 0.005  | 0.005         | 158/450   | 2             | YES           |
| Trichlorofluoromethane (CFC-11)              | mg/L  | 1.3          |        | 1.3           | 10/446    | 0.0032        | no            |
| Trifluorotrichloroethane (Freon 113)         | mg/L  | 59           |        | 59            | 1/446     | 0.0021        | no            |
| Vinyl chloride                               | mg/L  | 0.000016     | 0.002  | 0.002         | 128/450   | 0.52          | YES           |
| Xylenes (total)                              | mg/L  | 0.2          | 10     | 10            | 40/450    | 5             | no            |
| m&p-Xylene                                   | mg/L  | 0.2          |        | 0.2           | 37/450    | 3.4           | YES           |
| o-Xylene                                     | mg/L  | 1.2          |        | 1.2           | 31/450    | 1.6           | YES           |
| Semi Volatile Organic Compounds (SVOCs)      | 0     |              |        |               |           |               |               |
| Acenaphthene                                 | mg/L  | 2.2          |        | 2.2           | 5/171     | 0.012         | no            |
| Acetophenone                                 | mg/L  | 3.7          |        | 3.7           | 2/171     | 0.00079       | no            |
| Benzaldehyde                                 | mg/L  | 3.7          |        | 3.7           | 1/171     | 0.0013        | no            |
| Benzo(a)anthracene                           | mg/L  | 0.000029     |        | 0.000029      | 1/171     | 0.00089       | YES           |
| Benzo(a)pyrene                               | mg/L  | 0.0000029    | 0.0002 | 0.0002        | 1/171     | 0.00055       | YES           |
| Benzo(k)fluoranthene                         | mg/L  | 0.00029      |        | 0.00029       | 1/171     | 0.00072       | YES           |
| Biphenyl                                     | mg/L  | 1.8          |        | 1.8           | 3/171     | 0.011         | no            |
| bis(2-Chloroethyl)ether                      | mg/L  | 0.000012     |        | 0.000012      | 2/171     | 0.026         | YES           |
| bis(2-Ethylhexyl)phthalate                   | mg/L  | 0.0048       | 0.006  | 0.006         | 11/171    | 0.0039        | no            |
| Caprolactam                                  | mg/L  | 18           |        | 18            | 1/171     | 0.0018        | no            |
| Dibenz(a,h)anthracene                        | mg/L  | 0.0000029    |        | 0.0000029     | 1/171     | 0.0005        | YES           |
| Dibenzofuran                                 | mg/L  | 0.037        |        | 0.037         | 4/171     | 0.0027        | no            |
| Diethyl phthalate                            | mg/L  | 29           |        | 29            | 14/171    | 0.0028        | no            |
| 2,4-Dimethylphenol                           | mg/L  | 0.73         |        | 0.73          | 4/170     | 0.097         | no            |
| Di-n-butylphthalate                          | mg/L  | 3.7          |        | 3.7           | 4/171     | 0.0026        | no            |
| Fluoranthene                                 | mg/L  | 1.5          |        | 1.5           | 2/171     | 0.0013        | no            |
| Fluorene                                     | mg/L  | 1.5          |        | 1.5           | 5/171     | 0.002         | no            |
| 2-Methylnaphthalene                          | mg/L  | 0.15         |        | 0.15          | 7/171     | 0.055         | no            |
| Methylphenols, Total                         | mg/L  | 0.93         |        | 0.93          | 2/170     | 0.062         | no            |
| 2-Methylphenol                               | mg/L  | 1.8          |        | 1.8           | 2/170     | 0.021         | no            |
| 3&4-Methylphenol                             | mg/L  |              |        |               | 1/163     | 0.042         | YES/No RSL    |
| Naphthalene                                  | mg/L  | 0.00014      |        | 0.00014       | 9/171     | 0.037         | YES           |
| Nitrobenzene                                 | mg/L  | 0.00012      |        | 0.00012       | 1/171     | 0.00063       | YES           |
| 2,2'-oxybis(1-Chloropropane)                 | mg/L  | 0.00032      |        | 0.00032       | 3/171     | 0.005         | YES           |
| Phenanthrene                                 | mg/L  |              |        |               | 3/171     | 0.00084       | YES/No RSL    |
| Phenol                                       | mg/L  | 11           |        | 11            | 1/170     | 0.0013        | no            |
| Pyrene                                       | mg/L  | 1.1          |        | 1.1           | 2/171     | 0.0011        | no            |
| Polychlorinated Biphenyls (PCBs)             | 3     |              |        |               |           | -             | -             |
| Total PCBs [b]                               | mg/L  | 0.00017      | 0.0005 | 0.0005        | 2/168     | 0.00033       | no            |
|                                              | 9     |              |        |               |           |               | -             |

<u>Notes:</u> [a] Chromium VI RSL [b] Total PCB RSL is for "low risk"

COPC = Constituent of Potential Concern

MCL = Maximum Contaminant Level

RSL = U.S.EPA Regional Screening Level (USEPA, May 2010a)

Table A-3 Summary of Borehole Water Sample Analytical Results, Detected Analytes Only General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

|                                               |       |              |       | Higher of RSL | Detection | Maximum<br>Detected | Selected as a |  |
|-----------------------------------------------|-------|--------------|-------|---------------|-----------|---------------------|---------------|--|
| Constituent                                   | Units | Tapwater RSL | MCL   | and MCL       | Frequency | Concentraiton       | COPC?         |  |
| Inorganics                                    | 00    | Tupwater NOL |       |               |           | Concentration       | 00101         |  |
| Arsenic                                       | mg/L  | 0.000045     | 0.01  | 0.01          | 1/1       | 0.1                 | YES           |  |
| Barium                                        | mg/L  | 7.3          | 2     | 7.3           | 1/1       | 0.36                | no            |  |
| Beryllium                                     | mg/L  | 0.073        | 0.004 | 0.073         | 1/1       | 0.0046              | no            |  |
| Cadmium                                       | mg/L  | 0.018        | 0.005 | 0.018         | 1/1       | 0.002               | no            |  |
| Chromium Total [a]                            | mg/L  | 0.000043     | 0.1   | 0.1           | 1/1       | 0.0024              | no            |  |
| Cobalt                                        | mg/L  | 0.011        |       | 0.011         | 1/1       | 0.0061              | no            |  |
| Copper                                        | mg/L  | 1.5          | 1.3   | 1.5           | 1/1       | 0.0076              | no            |  |
| Cyanide (total)                               | mg/L  | 0.73         | 0.2   | 0.73          | 3/3       | 0.042               | no            |  |
| Lead                                          | mg/L  |              | 0.015 | 0.015         | 1/1       | 0.00039             | no            |  |
| Manganese                                     | mg/L  | 0.88         |       | 0.88          | 1/1       | 0.00033             | no            |  |
| Nickel                                        | mg/L  | 0.73         |       | 0.00          | 1/1       | 0.02                | no            |  |
| Silver                                        | mg/L  | 0.13         |       | 0.18          | 1/1       | 0.00092             | no            |  |
| Thallium                                      | 0     |              | 0.002 | 0.18          | 1/1       | 0.00032             |               |  |
| Inorganics-Dissolved                          | mg/L  |              | 0.002 | 0.002         | 1/1       | 0.00034             | no            |  |
| •                                             | ma/l  | 0.015        | 0.006 | 0.015         | 2/10      | 0.0025              | 20            |  |
| Antimony (Dissolved)                          | mg/L  | 0.015        | 0.006 | 0.015         | 3/19      | 0.0035              | no            |  |
| Arsenic (Dissolved)                           | mg/L  | 0.000045     | 0.01  | 0.01          | 21/23     | 0.095               | YES           |  |
| Barium (Dissolved)                            | mg/L  | 7.3          | 2     | 7.3           | 23/23     | 0.85                | no            |  |
| Beryllium (Dissolved)                         | mg/L  | 0.073        | 0.004 | 0.073         | 1/19      | 0.00081             | no            |  |
| Cadmium (Dissolved)                           | mg/L  | 0.018        | 0.005 | 0.018         | 10/23     | 0.0039              | no            |  |
| Chromium Total (Dissolved) [a]                | mg/L  | 0.000043     | 0.1   | 0.1           | 18/23     | 0.0055              | no            |  |
| Cobalt (Dissolved)                            | mg/L  | 0.011        |       | 0.011         | 19/19     | 0.03                | YES           |  |
| Copper (Dissolved)                            | mg/L  | 1.5          | 1.3   | 1.5           | 22/23     | 0.068               | no            |  |
| Cyanide (dissolved)                           | mg/L  | 0.73         | 0.2   | 0.73          | 10/19     | 0.038               | no            |  |
| Lead (Dissolved)                              | mg/L  |              | 0.015 | 0.015         | 3/23      | 0.02                | YES           |  |
| Manganese (Dissolved)                         | mg/L  | 0.88         |       | 0.88          | 19/19     | 2.8                 | YES           |  |
| Nickel (Dissolved)                            | mg/L  | 0.73         |       | 0.73          | 16/19     | 0.091               | no            |  |
| Selenium (Dissolved)                          | mg/L  | 0.18         | 0.05  | 0.18          | 13/23     | 0.029               | no            |  |
| Silver (Dissolved)                            | mg/L  | 0.18         |       | 0.18          | 6/23      | 0.0016              | no            |  |
| Thallium (Dissolved)                          | mg/L  |              | 0.002 | 0.002         | 3/19      | 0.0014              | no            |  |
| Vanadium (Dissolved)                          | mg/L  | 0.0026       |       | 0.0026        | 13/19     | 0.016               | YES           |  |
| Zinc (Dissolved)                              | mg/L  | 11           |       | 11            | 21/23     | 0.079               | no            |  |
| Volatile Organic Compounds (VOCs)             | -     |              |       |               |           |                     |               |  |
| Acetone                                       | mg/L  | 22           |       | 22            | 5/25      | 0.014               | no            |  |
| Benzene                                       | mg/L  | 0.00041      | 0.005 | 0.005         | 5/25      | 0.0051              | YES           |  |
| 2-Butanone (Methyl Ethyl Ketone)              | mg/L  | 7.1          |       | 7.1           | 2/25      | 0.0063              | no            |  |
| Carbon disulfide                              | mg/L  | 1            |       | 1             | 1/25      | 0.0022              | no            |  |
| Chloroethane                                  | mg/L  | 21           |       | 21            | 1/25      | 14                  | no            |  |
| Chloromethane (Methyl Chloride)               | mg/L  | 0.19         |       | 0.19          | 1/25      | 0.00069             | no            |  |
| Cyclohexane                                   | mg/L  | 13           |       | 13            | 1/21      | 0.001               | no            |  |
| 1,1-Dichloroethane                            | mg/L  | 0.0024       |       | 0.0024        | 4/25      | 0.25                | YES           |  |
| 1,2-Dichloroethane                            | mg/L  | 0.00015      | 0.005 | 0.005         | 1/25      | 0.0054              | YES           |  |
| cis-1,2-Dichloroethene                        | mg/L  | 0.37         | 0.07  | 0.37          | 9/25      | 0.075               | no            |  |
| trans-1,2-Dichloroethene                      | mg/L  | 0.11         | 0.1   | 0.11          | 4/25      | 0.013               | no            |  |
| Ethylbenzene                                  | mg/L  | 0.0015       | 0.7   | 0.7           | 3/25      | 0.0079              | no            |  |
| Isopropylbenzene                              | -     | 0.68         |       | 0.68          | 2/21      | 0.0089              | no            |  |
|                                               | mg/L  |              |       |               | 2/21      |                     | YES/No RSL    |  |
| Methyl cyclohexane                            | mg/L  |              |       |               |           | 0.0036              |               |  |
| 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) | mg/L  | 2            |       | 2             | 1/25      | 0.0015              | no            |  |
| Methylene chloride                            | mg/L  | 0.0048       | 0.005 | 0.005         | 1/25      | 0.0093              | YES           |  |
| Toluene                                       | mg/L  | 2.3          | 1     | 2.3           | 7/25      | 0.015               | no            |  |
| 1,1,1-Trichloroethane                         | mg/L  | 9.1          | 0.2   | 9.1           | 2/25      | 0.022               | no            |  |
|                                               | mg/L  | 0.002        | 0.005 | 0.005         | 6/25      | 0.046               | YES           |  |
| Vinyl chloride                                | mg/L  | 0.000016     | 0.002 | 0.002         | 7/25      | 0.069               | YES           |  |
| Xylenes (total)                               | mg/L  | 0.2          | 10    | 10            | 2/25      | 0.061               | no            |  |
| m&p-Xylene                                    | mg/L  | 0.2          |       | 0.2           | 2/25      | 0.026               | no            |  |
| o-Xylene                                      | mg/L  | 1.2          |       | 1.2           | 2/25      | 0.035               | no            |  |
| Semi Volatile Organic Compounds (SVOCs)       |       |              |       |               |           |                     |               |  |
| Acetophenone                                  | mg/L  | 3.7          |       | 3.7           | 1/21      | 0.031               | no            |  |
| Benzo(a)anthracene                            | mg/L  | 0.000029     |       | 0.000029      | 1/25      | 0.00078             | YES           |  |
| Biphenyl                                      | mg/L  | 1.8          |       | 1.8           | 1/21      | 0.094               | no            |  |
| bis(2-Ethylhexyl)phthalate                    | mg/L  | 0.0048       | 0.006 | 0.006         | 7/25      | 0.11                | YES           |  |

#### Table A-3 Summary of Borehole Water Sample Analytical Results, Detected Analytes Only General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

|                        |       |              |       |               |           | Maximum       |               |
|------------------------|-------|--------------|-------|---------------|-----------|---------------|---------------|
|                        |       |              |       | Higher of RSL | Detection | Detected      | Selected as a |
| Constituent            | Units | Tapwater RSL | MCL   | and MCL       | Frequency | Concentraiton | COPC?         |
| Caprolactam            | mg/L  | 18           |       | 18            | 2/21      | 0.0029        | no            |
| 2-Chlorophenol         | mg/L  | 0.18         |       | 0.18          | 1/25      | 0.002         | no            |
| Diethyl phthalate      | mg/L  | 29           |       | 29            | 2/25      | 0.0014        | no            |
| Fluorene               | mg/L  | 1.5          |       | 1.5           | 1/25      | 0.047         | no            |
| 2-Methylnaphthalene    | mg/L  | 0.15         |       | 0.15          | 2/25      | 0.32          | YES           |
| Methylphenols, Total   | mg/L  | 0.93         |       | 0.93          | 1/25      | 0.0033        | no            |
| 2-Methylphenol         | mg/L  | 1.8          |       | 1.8           | 1/25      | 0.0033        | no            |
| Naphthalene            | mg/L  | 0.00014      |       | 0.00014       | 2/25      | 0.058         | YES           |
| 2-Nitroaniline         | mg/L  | 0.37         |       | 0.37          | 1/25      | 0.00068       | no            |
| N-Nitrosodiphenylamine | mg/L  | 0.014        |       | 0.014         | 1/25      | 0.0015        | no            |
| Pentachlorophenol      | mg/L  | 0.00056      | 0.001 | 0.001         | 1/25      | 0.0021        | YES           |
| Phenanthrene           | mg/L  |              |       |               | 2/25      | 0.017         | YES/No RSL    |
| 2,4,6-Trichlorophenol  | mg/L  | 0.0061       |       | 0.0061        | 1/25      | 0.0021        | no            |

<u>Notes:</u> [a] Chromium VI RSL

COPC = Constituent of Potential Concern

MCL = Maximum Contaminant Level

RSL = U.S.EPA Regional Screening Level (USEPA, May 2010a)

Table A-4 Summary of Basement Water Sample Analytical Results, Detected Analytes Only Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

|                                   |       |              |       |               |           | Maximum       |               |
|-----------------------------------|-------|--------------|-------|---------------|-----------|---------------|---------------|
|                                   |       |              |       | Higher of RSL | Detection | Detected      | Selected as a |
| Constituent                       | Units | Tapwater RSL | MCL   | and MCL       | Frequency | Concentraiton | COPC?         |
| Inorganics-Dissolved              |       |              |       |               |           |               |               |
| Arsenic (Dissolved)               | mg/L  | 0.000045     | 0.01  | 0.01          | 2/2       | 0.033         | YES           |
| Barium (Dissolved)                | mg/L  | 7.3          | 2     | 7.3           | 2/2       | 0.26          | no            |
| Cadmium (Dissolved)               | mg/L  | 0.018        | 0.005 | 0.018         | 1/2       | 0.000042      | no            |
| Chromium Total (Dissolved) [a]    | mg/L  | 0.000043     | 0.1   | 0.1           | 2/2       | 0.0013        | no            |
| Cobalt (Dissolved)                | mg/L  | 0.011        |       | 0.011         | 1/2       | 0.00039       | no            |
| Copper (Dissolved)                | mg/L  | 1.5          | 1.3   | 1.5           | 2/2       | 0.065         | no            |
| Lead (Dissolved)                  | mg/L  |              | 0.015 | 0.015         | 1/2       | 0.00022       | no            |
| Manganese (Dissolved)             | mg/L  | 0.88         |       | 0.88          | 2/2       | 0.3           | no            |
| Nickel (Dissolved)                | mg/L  | 0.73         |       | 0.73          | 2/2       | 0.01          | no            |
| Selenium (Dissolved)              | mg/L  | 0.18         | 0.05  | 0.18          | 2/2       | 0.01          | no            |
| Thallium (Dissolved)              | mg/L  |              | 0.002 | 0.002         | 1/2       | 0.00026       | no            |
| Vanadium (Dissolved)              | mg/L  | 0.0026       |       | 0.0026        | 2/2       | 0.0023        | no            |
| Zinc (Dissolved)                  | mg/L  | 11           |       | 11            | 2/2       | 0.025         | no            |
| Volatile Organic Compounds (VOCs) | -     |              |       |               |           |               |               |
| Acetone                           | mg/L  | 22           |       | 22            | 1/2       | 0.0047        | no            |
| Benzene                           | mg/L  | 0.00041      | 0.005 | 0.005         | 2/2       | 0.014         | YES           |
| Chloroethane                      | mg/L  | 21           |       | 21            | 1/2       | 0.00082       | no            |
| 1,1-Dichloroethane                | mg/L  | 0.0024       |       | 0.0024        | 2/2       | 0.015         | YES           |
| 1,1-Dichloroethene                | mg/L  | 0.34         | 0.007 | 0.34          | 2/2       | 0.01          | no            |
| cis-1,2-Dichloroethene            | mg/L  | 0.37         | 0.07  | 0.37          | 2/2       | 1             | YES           |
| trans-1,2-Dichloroethene          | mg/L  | 0.11         | 0.1   | 0.11          | 2/2       | 0.021         | no            |
| Ethylbenzene                      | mg/L  | 0.0015       | 0.7   | 0.7           | 1/2       | 0.00057       | no            |
| Tetrachloroethene                 | mg/L  | 0.00011      | 0.005 | 0.005         | 2/2       | 0.15          | YES           |
| Toluene                           | mg/L  | 2.3          | 1     | 2.3           | 1/2       | 0.00053       | no            |
| 1,1,2-Trichloroethane             | mg/L  | 0.00024      | 0.005 | 0.005         | 1/2       | 0.00084       | no            |
| Trichloroethene                   | mg/L  | 0.002        | 0.005 | 0.005         | 2/2       | 0.36          | YES           |
| Vinyl chloride                    | mg/L  | 0.000016     | 0.002 | 0.002         | 2/2       | 0.14          | YES           |
| Miscellaneous                     | -     |              |       |               |           |               |               |
| Fluoride                          | mg/L  | 1.5          |       | 1.5           | 1/1       | 0.43          | no            |
| Fluorine                          | mg/L  | 2.2          | 4     | 4             | 1/2       | 0.02          | no            |

<u>Notes:</u> [a] Chromium VI RSL

COPC = Constituent of Potential Concern

MCL = Maximum Contaminant Level

RSL = U.S.EPA Regional Screening Level (USEPA, May 2010a)

#### Table A-5

#### Summary of Constituents of Potential Concern (COPCs) for Construction Worker Scenario Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

| SOIL                                                                                                                                                                                                                                                                                                                                          | GROUNDWATER                                                                                                                                                                                                                                                                                                       | BOREHOLE WATER                                                                                                                       | BASEMENT WATER                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                               | Inorga                                                                                                                                                                                                                                                                                                            | nics [a]                                                                                                                             |                                                                                                                   |
| Arsenic<br>Chromium (total)<br>Lead                                                                                                                                                                                                                                                                                                           | Arsenic<br>Barium<br>Beryllium                                                                                                                                                                                                                                                                                    | Arsenic<br>Cobalt<br>Lead                                                                                                            | Arsenic                                                                                                           |
| Vanadium                                                                                                                                                                                                                                                                                                                                      | Cadmium<br>Chromium (total)<br>Cobalt<br>Lead<br>Manganese<br>Selenium<br>Thallium<br>Vanadium                                                                                                                                                                                                                    | Manganese<br>Vanadium                                                                                                                |                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                               | Volatile Organic C                                                                                                                                                                                                                                                                                                | Compounds (VOCs)                                                                                                                     |                                                                                                                   |
| Benzene<br>1,1-Dichloroethane<br>Ethylbenzene<br>Methyl cyclohexane<br>1,1,1-Trichloroethane                                                                                                                                                                                                                                                  | Benzene<br>1,3-Dichlorobenzene<br>1,1-Dichloroethane<br>1,2-Dichloroethane<br>cis-1,2-Dichloroethene<br>1,2-Dichloropropane<br>Ethylbenzene<br>Methyl cyclohexane<br>Methyl Tert Butyl Ether<br>Methylene chloride<br>Tetrachloroethene<br>Toluene<br>Trichloroethene<br>Vinyl chloride<br>m&p-Xylene<br>o-Xylene | Benzene<br>1,1-Dichloroethane<br>1,2-Dichloroethane<br>Methyl cyclohexane<br>Methylene chloride<br>Trichloroethene<br>Vinyl chloride | Benzene<br>1,1-Dichloroethane<br>cis-1,2-Dichloroethene<br>Tetrachloroethene<br>Trichloroethene<br>Vinyl chloride |
|                                                                                                                                                                                                                                                                                                                                               | Semi Volatile Organic                                                                                                                                                                                                                                                                                             | c Compounds (SVOCs)                                                                                                                  |                                                                                                                   |
| Acenaphthylene<br>Benzo(a)anthracene<br>Benzo(a)pyrene<br>Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene<br>Carbazole<br>Dibenz(a,h)anthracene<br>Dimethyl phthalate<br>Di-n-octyl phthalate<br>Indeno(1,2,3-cd)pyrene<br>3&4-Methylphenol<br>Naphthalene<br>2-Nitrophenol<br>N-Nitrosodi-n-propylamine<br>Phenanthrene | Benzo(a)anthracene<br>Benzo(a)pyrene<br>Benzo(k)fluoranthene<br>bis(2-Chloroethyl)ether<br>Dibenz(a,h)anthracene<br>3&4-Methylphenol<br>Naphthalene<br>Nitrobenzene<br>2,2'-oxybis(1-Chloropropane)<br>Phenanthrene                                                                                               | Benzo(a)anthracene<br>bis(2-Ethylhexyl)phthalate<br>2-Methylnaphthalene<br>Naphthalene<br>Pentachlorophenol<br>Phenanthrene          |                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                               | Polychlorinated                                                                                                                                                                                                                                                                                                   | Biphenyls (PCBs)                                                                                                                     |                                                                                                                   |
| Aroclor-1242 (PCB-1242)<br>Aroclor-1248 (PCB-1248)<br>Aroclor-1254 (PCB-1254)<br>Aroclor-1260 (PCB-1260)                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |                                                                                                                   |

Notes:

[a] If either total or dissolved inorganics exceed a RSL, it is a COPC

|                         |       |              |       |               |       | Flint, Mchiga | an            |         |                     |                   |
|-------------------------|-------|--------------|-------|---------------|-------|---------------|---------------|---------|---------------------|-------------------|
|                         |       |              |       | g/kg/day) [a] |       | Adjustment    | Dermal RfD (m |         | Target Site/        | Confidence Level  |
| Constituent             |       | Subchronic   | [ref] | Chronic       | [ref] | Factor [a]    | Subchronic    | Chronic | Critical Effect     | Uncertainty Facto |
| Inorganics              |       |              |       |               |       |               |               |         |                     |                   |
| Arsenic                 |       | 3.0E-04      | С     | 3.0E-04       | I.    | 1             | 3.0E-04       | 3.0E-04 | NA                  | medium/3          |
| Barium                  |       | 2.0E-01      | С     | 2.0E-01       | I.    | 0.07          | 1.4E-02       | 1.4E-02 | kidney              | medium/300        |
| Beryllium               |       | 5.0E-03      | н     | 2.0E-03       | I.    | 0.007         | 3.5E-05       | 1.4E-05 | intestine           | low-medium/300    |
| Cadmium                 |       | 1.0E-03      | С     | 1.0E-03       | I.    | 0.025         | 2.5E-05       | 2.5E-05 | kidney              | NA                |
| Chromium (total)        | [c]   | 2.0E-02      | н     | 3.0E-03       | I     | 0.013         | 2.6E-04       | 3.9E-05 | NR                  | low/300           |
| Cobalt                  |       | 3.0E-04      | с     | 3.0E-04       | Р     | 1             | 3.0E-04       | 3.0E-04 | skin                | NA                |
| Lead                    |       | NA           |       | NA            |       | 1             | NA            | NA      | NA                  | NA                |
| Manganese               |       | 1.4E-01      | с     | 1.4E-01       | I     | 0.04          | 5.6E-03       | 5.6E-03 | CNS                 | medium/1          |
| Selenium                |       | 5.0E-03      | н     | 5.0E-03       | I     | 1             | 5.0E-03       | 5.0E-03 | WB                  | high/3            |
| Thallium                |       | 6.7E-05      | с     | 6.7E-05       | w     | 1             | 6.7E-05       | 6.7E-05 | NA                  | NA                |
| Vanadium                |       | 7.0E-04      | Р     | 7.0E-05       | Р     | 0.026         | 1.8E-05       | 1.8E-06 | liver               | low/100           |
| Volatile Organic Comp   | ounds | (VOCs)       |       |               |       |               | 0.0E+00       |         |                     |                   |
| Benzene                 |       | 1.0E-02      | Р     | 4.0E-03       | I.    | 1             | 1.0E-02       | 4.0E-03 | blood               | medium/100        |
| 1,1-Dichloroethane      |       | 2.0E+00      | сх    | 2.0E-01       | Р     | 1             | 2.0E+00       | 2.0E-01 | NR                  | NA/1000           |
| 1,2-Dichloroethane      |       | 2.0E-02      | с     | 2.0E-02       | Р     | 1             | 2.0E-02       | 2.0E-02 | kidney              | high/1000         |
| cis-1,2-Dichloroethene  |       | 1.0E-01      | н     | 1.0E-02       | Р     | 1             | 1.0E-01       | 1.0E-02 | blood               | low/3000          |
| 1,2-Dichloropropane     |       | 7.0E-02      | А     | 9.0E-02       | А     | 1             | 7.0E-02       | 9.0E-02 | liver               | 1.0E+03           |
| 1.3-Dichlorobenzene     | [d]   | 9.0E-01      | Hw    | 9.0E-02       | ls    | 1             | 9.0E-01       | 9.0E-02 | NA                  | NA                |
| Ethylbenzene            |       | 5.0E-02      | Р     | 1.0E-01       | 1     | 1             | 5.0E-02       | 1.0E-01 | liver, kidney       | high/1000         |
| Methyl cyclohexane      |       | 8.6E-01      | с     | 8.6E-01       | Р     | 1             | 8.6E-01       | 8.6E-01 | NA                  | ŇA                |
| Methyl Tert Butyl Ether |       | NA           |       | NA            |       | 1             | NA            | NA      | NA                  | NA                |
| Methylene chloride      |       | 6.0E-02      | н     | 6.0E-02       | I     | 1             | 6.0E-02       | 6.0E-02 | liver               | medium/100        |
| Tetrachloroethene       |       | 1.0E-01      | н     | 1.0E-02       | 1     | 1             | 1.0E-01       | 1.0E-02 | liver               | medium/1000       |
| Toluene                 |       | 8.0E-01      | Р     | 8.0E-02       | 1     | 1             | 8.0E-01       | 8.0E-02 | liver, kidney       | medium/3000       |
| 1,1,1-Trichloroethane   |       | 7.0E+00      | I.    | 2.0E+00       | I.    | 1             | 7.0E+00       | 2.0E+00 | reduced body weight | low-medium/1000   |
| Trichloroethene         |       | NA           |       | NA            |       | 1             | NA            | NA      | NA                  | NA                |
| Vinyl chloride          |       | 3.0E-03      | с     | 3.0E-03       | 1     | 1             | 3.0E-03       | 3.0E-03 | liver               | medium/30         |
| m&p-Xylene              |       | 4.0E-01      | Р     | 2.0E-01       | 1     | 1             | 4.0E-01       | 2.0E-01 | CNS, WB             | medium/100        |
| o-Xylene                |       | 4.0E-01      | Р     | 2.0E-01       | I.    | 1             | 4.0E-01       | 2.0E-01 | CNS, WB             | medium/100        |
| Semi Volatile Organic ( | Compo | unds (SVOCs) |       |               |       |               | 0.0E+00       |         | ·                   |                   |
| Acenaphthylene          | [e]   | 6.0E-01      | Hs    | 6.0E-02       | ls    | 1             | 6.0E-01       | 6.0E-02 | liver               | low/3000          |
| Benzo(a)anthracene      | L - J | NA           | -     | NA            | -     | 1             | NA            | NA      | NA                  | NA                |
| Benzo(a)pyrene          |       | NA           |       | NA            |       | 1             | NA            | NA      | NA                  | NA                |
| Benzo(b)fluoranthene    |       | NA           |       | NA            |       | 1             | NA            | NA      | NA                  | NA                |
| Benzo(g,h,i)perylene    | [f]   | 3.0E-02      | CS    | 3.0E-02       | ls    | 1             | 3.0E-02       | 3.0E-02 | kidney              | NA                |

| Table A-6                                                                                |
|------------------------------------------------------------------------------------------|
| Noncarcinogenic Toxicity Values for Oral and Dermal Exposure                             |
| Former General Motors North American Operations Facility (otherwise known as Buick City) |
| Flint, Mchigan                                                                           |

| Table A-6                                                                                |
|------------------------------------------------------------------------------------------|
| Noncarcinogenic Toxicity Values for Oral and Dermal Exposure                             |
| Former General Motors North American Operations Facility (otherwise known as Buick City) |

Flint, Mchigan

|                               | Ora        | al RfD (m | g/kg/day) [a] |       | Adjustment | Dermal RfD (m | g/kg/day) [a,b] | Target Site/                  | Confidence Level/  |
|-------------------------------|------------|-----------|---------------|-------|------------|---------------|-----------------|-------------------------------|--------------------|
| Constituent                   | Subchronic | [ref]     | Chronic       | [ref] | Factor [a] | Subchronic    | Chronic         | Critical Effect               | Uncertainty Factor |
| Benzo(k)fluoranthene          | NA         |           | NA            |       | 1          | NA            | NA              | NA                            | NA                 |
| bis(2-Chloroethyl)ether       | NA         |           | NA            |       | 1          | NA            | NA              | NA                            | NA                 |
| bis(2-Ethylhexyl)phthalate    | 2.0E-01    | сх        | 2.0E-02       | I     | 1          | 2.0E-01       | 2.0E-02         | liver                         | medium/1000        |
| Carbazole                     | NA         |           | NA            |       | 1          | NA            | NA              | NA                            | NA                 |
| Dibenz(a,h)anthracene         | NA         |           | NA            |       | 1          | NA            | NA              | NA                            | NA                 |
| Dimethyl phthalate            | 1.0E+01    | С         | 1.0E+01       | н     | 1          | 1.0E+01       | 1.0E+01         | kidney                        | NA                 |
| Di-n-octyl phthalate [g]      | 4.0E-01    | Ns        | 4.0E-02       | Ns    | 1          | 4.0E-01       | 4.0E-02         | liver                         | NA/1000            |
| Indeno(1,2,3-cd)pyrene        | NA         |           | NA            |       | 1          | NA            | NA              | NA                            | NA                 |
| 2-Methylnaphthalene           | 4.0E-03    | С         | 4.0E-03       | I     | 1          | 4.0E-03       | 4.0E-03         | lungs                         | low/1000           |
| 3&4-Methylphenol              | 5.0E-03    | н         | 5.0E-03       | н     | 1          | 5.0E-03       | 5.0E-03         | CNS, WB                       | low/1000           |
| Naphthalene                   | 2.0E-01    | СХ        | 2.0E-02       | I     | 1          | 2.0E-01       | 2.0E-02         | WB                            | low/3000           |
| Nitrobenzene                  | 5.0E-03    | н         | 2.0E-03       | I     | 1          | 5.0E-03       | 2.0E-03         | blood, adrenal, liver, kidney | low/10,000         |
| 2-Nitrophenol                 | NA         |           | NA            |       | 1          | NA            | NA              | NA                            | NA                 |
| N-Nitrosodi-n-propylamine     | NA         |           | NA            |       | 1          | NA            | NA              | NA                            | NA                 |
| 2,2'-oxybis(1-Chloropropane)  | 4.0E-02    | н         | 4.0E-02       | I     | 1          | 4.0E-02       | 4.0E-02         | blood                         | low/1000           |
| Pentachlorophenol             | 3.0E-02    | н         | 3.0E-02       | I     | 1          | 3.0E-02       | 3.0E-02         | liver, kidney                 | medium/100         |
| Phenanthrene [h]              | 3.0E+00    | Hs        | 3.0E-01       | ls    | 1          | 3.0E+00       | 3.0E-01         | NR                            | NA                 |
| Polychlorinated Biphenyls (Po | CBs)       |           |               |       |            | 0.0E+00       |                 |                               |                    |
| Aroclor-1242 (PCB-1242)       | NA         |           | NA            |       | 1          | NA            | NA              | NA                            | NA                 |
| Aroclor-1248 (PCB-1248)       | NA         |           | NA            |       | 1          | NA            | NA              | NA                            | NA                 |
| Aroclor-1254 (PCB-1254)       | 5.0E-05    | н         | 2.0E-05       | I     | 1          | 5.0E-05       | 2.0E-05         | eye, nails, immune system     | medium/300         |
| Aroclor-1260 (PCB-1260)       | NA         |           | NA            |       | 1          | NA            | NA              | NA                            | NA                 |

References [ref]:

A Agency for Toxic Substances Disease Registry (ATDSR) (ATSDR 2010).

H USEPA, Health Effects Summary Table (HEAST; USEPA 1997).

I USEPA, Integrated Risk Information System (IRIS; USEPA 2010b).

P Provisional Peer Reviewed Toxicity Values (PPRTV) obtained from the National Center for Environmental Assessment (NCEA 2009) as referenced in USEPA Regional Screening Level Table (USEPA 2010a), or as obtained from the Superfund Health Risk Technical Support Center (SHRTSS, 2009).

w withdrawn from IRIS

Not applicable.

*c* The chronic value is used if available.

CNS Central nervous system.

mg/kg/day Milligrams per kilogram per day.

- NA Not available.
- NR None reported.

## Table A-6 Noncarcinogenic Toxicity Values for Oral and Dermal Exposure Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Mchigan

| Constituent |                                                                                   | Ora<br>Subchronic | al RfD (mo<br>[ref] | g/kg/day) [a]<br>Chronic | [ref] | Adjustment<br>Factor [a] | Dermal RfD (mg<br>Subchronic | /kg/day) [a,b]<br>Chronic | Target Site/<br>Critical Effect | Confidence Level/<br>Uncertainty Factor |
|-------------|-----------------------------------------------------------------------------------|-------------------|---------------------|--------------------------|-------|--------------------------|------------------------------|---------------------------|---------------------------------|-----------------------------------------|
| RfD         | Reference Dose.                                                                   |                   |                     |                          |       |                          |                              |                           |                                 | 1                                       |
| s           | Value is based on use of a surrogate compound, as indicated.                      |                   |                     |                          |       |                          |                              |                           |                                 |                                         |
| WB          | Whole body (includes increased mortality and changes to body weight).             |                   |                     |                          |       |                          |                              |                           |                                 |                                         |
| x           | The uncertainty factor for subchronic to chronic extrapolation was removed.       |                   |                     |                          |       |                          |                              |                           |                                 |                                         |
| [a]         | Toxicity values were obtained following USEPA recommended hierarchy (USEPA 2003). |                   |                     |                          |       |                          |                              |                           |                                 |                                         |
| [b]         | The oral-to-dermal adju<br>RfD (dermal) = RfD (ora                                | •                 |                     |                          |       | Iculate the dermal RfD   | values, USEPA 2004c.         |                           |                                 |                                         |
| [c]         | Assumed as Chromium                                                               | VI.               |                     | ·                        | • •   |                          |                              |                           |                                 |                                         |
| [d]         | 1,2-Dichlorobenzene used as a surrogate.                                          |                   |                     |                          |       |                          |                              |                           |                                 |                                         |
| [e]         | Acenaphthene used as a surrogate.                                                 |                   |                     |                          |       |                          |                              |                           |                                 |                                         |
| [f]         | Pyrene used as a surro                                                            | gate.             |                     |                          |       |                          |                              |                           |                                 |                                         |
| [g]         | di-n-Butylphthalate used                                                          | d as a surrogate  |                     |                          |       |                          |                              |                           |                                 |                                         |

[h] Anthracene used as a surrogate.

|                         |           | Inhala     | ation RfC (r | mg/m <sup>3</sup> ) [a] |       | Target Site/    | Confidence Level/  |
|-------------------------|-----------|------------|--------------|-------------------------|-------|-----------------|--------------------|
| Constituent             |           | Subchronic | [ref]        | Chronic                 | [ref] | Critical Effect | Uncertainty Factor |
| Inorganics              |           |            |              |                         |       |                 |                    |
| Arsenic                 |           | 1.5E-05    | С            | 1.5E-05                 | С     | NA              | NA                 |
| Barium                  |           | 5.0E-03    | Н            | 5.0E-04                 | Н     | fetus           | NA/1000            |
| Beryllium               |           | 2.0E-05    | С            | 2.0E-05                 | I     | lung            | medium/10          |
| Cadmium                 |           | NA         |              | NA                      |       | NA              | NA                 |
| Chromium (total)        | [b]       | 1.0E-04    | С            | 1.0E-04                 | I     | lung            | medium/300         |
| Cobalt                  |           | 6.0E-06    | С            | 6.0E-06                 | Р     | NA              | NA                 |
| Lead                    |           | NA         |              | NA                      |       | NA              | NA                 |
| Manganese               |           | 5.0E-05    | I            | 5.0E-05                 | I     | CNS             | medium/1000        |
| Selenium                |           | 2.0E-02    | С            | 2.0E-02                 | С     | NA              | NA                 |
| Thallium                |           | NA         |              | NA                      |       | NA              | NA                 |
| Vanadium                |           | NA         |              | 1.0E-04                 | А     | NA              | NA                 |
| Volatile Organic Comp   | ounds (VC | DCs)       |              |                         |       |                 |                    |
| Benzene                 |           | 8.0E-02    | Р            | 3.0E-02                 | Ι     | blood           | medium/100         |
| 1,1-Dichloroethane      |           | NA         |              | NA                      |       | NA              | NA                 |
| 1,2-Dichloroethane      |           | 2.4E+00    | С            | 2.4E+00                 | А     | liver           | low/3000           |
| cis-1,2-Dichloroethene  |           | NA         |              | NA                      |       | NA              | NA                 |
| 1,2-Dichloropropane     |           | 1.3E-02    | Н            | 4.0E-03                 | Ι     | nasal           | NA                 |
| 1,3-Dichlorobenzene     |           | 2.0E+00    | Н            | 2.0E-01                 | Hs    | NA              | NA                 |
| Ethylbenzene            |           | 9.0E+00    | Р            | 1.0E+00                 | I     | developmental   | medium/100         |
| Methyl cyclohexane      |           | NA         |              | NA                      |       | ŇA              | NA                 |
| Methyl Tert Butyl Ether |           | 3.0E+00    | С            | 3.0E+00                 | I     | liver, kidney   | medium/100         |
| Methylene chloride      |           | 1.0E+00    | С            | 1.0E+00                 | А     | liver           | NA/30              |
| Tetrachloroethene       |           | 2.7E-01    | С            | 2.7E-01                 | А     | NS              | NA                 |
| Toluene                 |           | 5.0E+00    | Р            | 5.0E+00                 | Ι     | CNS             | medium/300         |
| 1,1,1-Trichloroethane   |           | 5.0E+00    | Ι            | 5.0E+00                 | Ι     | liver           | medium/100         |
| Trichloroethene         |           | NA         |              | NA                      |       | NA              | NA                 |
| Vinyl chloride          |           | 1.0E-01    | С            | 1.0E-01                 | I     | liver           | medium/30          |
| m&p-Xylene              |           | 4.0E-01    | Р            | 1.0E-01                 | Ι     | CNS             | medium/300         |
| o-Xylene                |           | 4.0E-01    | Р            | 7.0E-01                 | С     | CNS             | NA                 |

## Table A-7Noncarcinogenic Toxicity Values for Inhalation ExposureFormer General Motors North American Operations Facility (otherwise known as Buick City)Flint, Mchigan

# Table A-7Noncarcinogenic Toxicity Values for Inhalation ExposureFormer General Motors North American Operations Facility (otherwise known as Buick City)Flint, Mchigan

|                                | Inhal       | ation RfC ( | mg/m <sup>3</sup> ) [a] |       | Target Site/                  | Confidence Level/  |
|--------------------------------|-------------|-------------|-------------------------|-------|-------------------------------|--------------------|
| Constituent                    | Subchronic  | [ref]       | Chronic                 | [ref] | Critical Effect               | Uncertainty Factor |
| Semi Volatile Organic Compour  | nds (SVOCs) |             |                         |       |                               |                    |
| Acenaphthylene                 | NA          |             | NA                      |       | NA                            | NA                 |
| Benzo(a)anthracene             | NA          |             | NA                      |       | NA                            | NA                 |
| Benzo(a)pyrene                 | NA          |             | NA                      |       | NA                            | NA                 |
| Benzo(b)fluoranthene           | NA          |             | NA                      |       | NA                            | NA                 |
| Benzo(g,h,i)perylene           | NA          |             | NA                      |       | NA                            | NA                 |
| Benzo(k)fluoranthene           | NA          |             | NA                      |       | NA                            | NA                 |
| bis(2-Chloroethyl)ether        | NA          |             | NA                      |       | NA                            | NA                 |
| bis(2-Ethylhexyl)phthalate     | NA          |             | NA                      |       | NA                            | NA                 |
| Carbazole                      | NA          |             | NA                      |       | NA                            | NA                 |
| Dibenz(a,h)anthracene          | NA          |             | NA                      |       | NA                            | NA                 |
| Dimethyl phthalate             | NA          |             | NA                      |       | NA                            | NA                 |
| Di-n-octyl phthalate [c]       | NA          |             | NA                      |       | NA                            | NA                 |
| Indeno(1,2,3-cd)pyrene         | NA          |             | NA                      |       | NA                            | NA                 |
| 2-Methylnaphthalene            | NA          |             | NA                      |       | NA                            | NA                 |
| 3&4-Methylphenol               | 6.0E-01     | С           | 6.0E-01                 | С     | NA                            | NA                 |
| Naphthalene                    | 3.0E-03     | С           | 3.0E-03                 | Ι     | nasal                         | medium/3000        |
| Nitrobenzene                   | 2.0E-02     | Н           | 9.0E-03                 | I     | blood, adrenal, liver, kidney | NA/10,000          |
| 2-Nitrophenol                  | 5.0E-04     | Р           | 5.0E-04                 | Р     | NA                            | NA                 |
| N-Nitrosodi-n-propylamine      | NA          |             | NA                      |       | NA                            | NA                 |
| 2,2'-oxybis(1-Chloropropane)   | NA          |             | NA                      |       | NA                            | NA                 |
| Pentachlorophenol              | NA          |             | NA                      |       | NA                            | NA                 |
| Phenanthrene                   | NA          |             | NA                      |       | NA                            | NA                 |
| Polychlorinated Biphenyls (PCE | 3s)         |             |                         |       |                               |                    |
| Aroclor-1242 (PCB-1242)        | NA          |             | NA                      |       | NA                            | NA                 |
| Aroclor-1248 (PCB-1248)        | NA          |             | NA                      |       | NA                            | NA                 |
| Aroclor-1254 (PCB-1254)        | NA          |             | NA                      |       | NA                            | NA                 |
| Aroclor-1260 (PCB-1260)        | NA          |             | NA                      |       | NA                            | NA                 |

## Table A-7Noncarcinogenic Toxicity Values for Inhalation ExposureFormer General Motors North American Operations Facility (otherwise known as Buick City)Flint, Mchigan

| C Ca<br>H US<br>I US<br>P Pr                                                                             | gency for Toxic Substanc<br>alEPA, Toxicity Criteria d<br>SEPA, Health Effects Su<br>SEPA, Integrated Risk In<br>rovisional Peer Reviewed | atabase (CalEPA<br>mmary Table (HE<br>formation System | 2010).<br>AST; USEPA<br>(IRIS; USEF | · · · · · ·     | [ref]        | Critical Effect                                              | Uncertainty Factor |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------|-----------------|--------------|--------------------------------------------------------------|--------------------|
| A         Ag           C         Ca           H         US           I         US           P         Pr | alEPA, Toxicity Criteria d<br>SEPA, Health Effects Su<br>SEPA, Integrated Risk In                                                         | atabase (CalEPA<br>mmary Table (HE<br>formation System | 2010).<br>AST; USEPA<br>(IRIS; USEF | · · · · · ·     |              |                                                              |                    |
| A         Ag           C         Ca           H         US           I         US           P         Pr | alEPA, Toxicity Criteria d<br>SEPA, Health Effects Su<br>SEPA, Integrated Risk In                                                         | atabase (CalEPA<br>mmary Table (HE<br>formation System | 2010).<br>AST; USEPA<br>(IRIS; USEF | · · · · · ·     |              |                                                              |                    |
| H         US           I         US           P         Pr                                               | SEPA, Health Effects Su<br>SEPA, Integrated Risk In                                                                                       | mmary Table (HE                                        | AST; USEPA<br>(IRIS; USEF           | A 1997).        |              |                                                              |                    |
| <i>I</i> US<br><i>P</i> Pr                                                                               | SEPA, Integrated Risk In                                                                                                                  | formation System                                       | (IRIS; USEF                         | A 1997).        |              |                                                              |                    |
| P Pr                                                                                                     |                                                                                                                                           | •                                                      | •                                   |                 |              |                                                              |                    |
|                                                                                                          | rovisional Peer Reviewed                                                                                                                  | Toxicity Values (                                      |                                     | PA 2010b).      |              |                                                              |                    |
|                                                                                                          | ferenced in USEPA Regi<br>SHRTSS, 2009).                                                                                                  |                                                        |                                     |                 |              | for Environmental Assessmen<br>from the Superfund Health Ris |                    |
| c Th                                                                                                     | he chronic value is used i                                                                                                                | f available.                                           |                                     |                 |              |                                                              |                    |
| CNS Ce                                                                                                   | entral nervous system.                                                                                                                    |                                                        |                                     |                 |              |                                                              |                    |
| mg/m <sup>3</sup> Mi                                                                                     | illigrams per cubic meter.                                                                                                                |                                                        |                                     |                 |              |                                                              |                    |
| NA No                                                                                                    | ot available.                                                                                                                             |                                                        |                                     |                 |              |                                                              |                    |
| RfC Re                                                                                                   | eference Concentration.                                                                                                                   |                                                        |                                     |                 |              |                                                              |                    |
| NS Ne                                                                                                    | ervous system.                                                                                                                            |                                                        |                                     |                 |              |                                                              |                    |
| s Va                                                                                                     | alue is based on use of a                                                                                                                 | surrogate compo                                        | und, as indic                       | ated.           |              |                                                              |                    |
|                                                                                                          | oxicity values were obtain                                                                                                                | 0                                                      | PA recomme                          | ended hierarchy | (USEPA 2003) |                                                              |                    |
| [*]                                                                                                      | ssumed as Chromium VI.<br>-n-Butylphthalate used as                                                                                       |                                                        |                                     |                 |              |                                                              |                    |

|                          |           | Oral CSF                  |       | Adjustment | Dermal CSF [a]            | Tumor              | Weight of Evidence |
|--------------------------|-----------|---------------------------|-------|------------|---------------------------|--------------------|--------------------|
| Constituent              |           | (mg/kg/day) <sup>-1</sup> | [ref] | Factor [b] | (mg/kg/day) <sup>-1</sup> | Site               | Classification [c] |
| Inorganics               |           |                           |       |            |                           |                    |                    |
| Arsenic                  |           | 1.5E+00                   | I     | 1          | 1.5E+00                   | skin               | А                  |
| Barium                   |           | NA                        |       | 0.07       | NA                        | -                  | D                  |
| Beryllium                |           | NA                        |       | 0.007      | NA                        | -                  | B1                 |
| Cadmium                  | [d]       | NA                        |       | 0.025      | NA                        | -                  | D/B1               |
| Chromium (total)         | [e]       | 5.0E-01                   | J     | 0.013      | 3.8E+01                   | -                  | D/A                |
| Cobalt                   | [f]       | NA                        |       | 1          | NA                        | -                  | [see footnote]     |
| Lead                     |           | NA                        |       | 1          | NA                        | -                  | B2                 |
| Manganese                |           | NA                        |       | 0.04       | NA                        | -                  | D                  |
| Selenium                 |           | NA                        |       | 1          | NA                        | -                  | D                  |
| Thallium                 |           | NA                        |       | 1          | NA                        | -                  | NA                 |
| Vanadium                 |           | NA                        |       | 0.026      | NA                        | -                  | NA                 |
| Volatile Organic Compo   | unds (VOC | s)                        |       |            |                           |                    |                    |
| Benzene                  | [g]       | 5.5E-02                   | I     | 1          | 5.5E-02                   | leukemia           | А                  |
| 1,1-Dichloroethane       |           | 5.7E-03                   | С     | 1          | 5.7E-03                   | NA                 | С                  |
| 1,2-Dichloroethane       |           | 9.1E-02                   | I     | 1          | 9.1E-02                   | circulatory system | B2                 |
| cis-1,2-Dichloroethene   |           | NA                        |       | 1          | NA                        | -                  | D                  |
| 1,2-Dichloropropane      |           | 3.6E-02                   | С     | 1          | 3.6E-02                   | liver              | B2                 |
| 1,3-Dichlorobenzene      |           | NA                        |       | 1          | NA                        | -                  | D                  |
| Ethylbenzene             |           | 1.1E-02                   | С     | 1          | 1.1E-02                   | -                  | D                  |
| Methyl cyclohexane       |           | NA                        |       | 1          | NA                        | -                  | NA                 |
| Methyl Tert Butyl Ether  |           | 1.8E-03                   | С     | 1          | 1.8E-03                   | -                  | NA                 |
| Methylene chloride       |           | 7.5E-03                   | I     | 1          | 7.5E-03                   | liver              | B2                 |
| Tetrachloroethene        |           | 5.4E-01                   | С     | 1          | 5.4E-01                   | liver, kidney      | B2                 |
| Toluene                  |           | NA                        |       | 1          | NA                        | -                  | D                  |
| 1,1,1-Trichloroethane    |           | NA                        |       | 1          | NA                        | -                  | D                  |
| Trichloroethene          |           | 5.9E-03                   | С     | 1          | 5.9E-03                   | multiple sites     | C-B2               |
| Vinyl chloride           |           | 7.2E-01                   | I     | 1          | 7.2E-01                   | liver              | А                  |
| m&p-Xylene               |           | NA                        |       | 1          | NA                        | -                  | D                  |
| o-Xylene                 |           | NA                        |       | 1          | NA                        | -                  | D                  |
| Semi Volatile Organic Co | ompounds  | (SVOCs)                   |       |            |                           |                    |                    |
| Acenaphthylene           |           | NA                        |       | 1          | NA                        | _                  | D                  |
| Benzo(a)anthracene       | [h]       | 7.3E-01                   | Е     | 1          | 7.3E-01                   | stomach            | B2                 |

Table A-8Carcinogenic Toxicity Values for Oral and Dermal ExposureFormer General Motors North American Operations Facility (otherwise known as Buick City)Flint, Mchigan

| Table A-8                                                                                |
|------------------------------------------------------------------------------------------|
| Carcinogenic Toxicity Values for Oral and Dermal Exposure                                |
| Former General Motors North American Operations Facility (otherwise known as Buick City) |
|                                                                                          |

Flint, Mchigan

| Constituent                  |        | Oral CSF<br>(mg/kg/day) <sup>-1</sup> | [a]<br>[ref] | Adjustment<br>Factor [b] | Dermal CSF [a]<br>(mg/kg/day) <sup>-1</sup> | Tumor<br>Site  | Weight of Evidence<br>Classification [c] |
|------------------------------|--------|---------------------------------------|--------------|--------------------------|---------------------------------------------|----------------|------------------------------------------|
| Benzo(a)pyrene               |        | 7.3E+00                               | I            | 1                        | 7.3E+00                                     | stomach        | B2                                       |
| Benzo(b)fluoranthene         | [h]    | 7.3E-01                               | E            | 1                        | 7.3E-01                                     | stomach        | B2                                       |
| Benzo(g,h,i)perylene         |        | NA                                    |              | 1                        | NA                                          | _              | D                                        |
| Benzo(k)fluoranthene         | [h]    | 7.3E-02                               | E            | 1                        | 7.3E-02                                     | stomach        | B2                                       |
| bis(2-Chloroethyl)ether      |        | 1.1E+00                               | I            | 1                        | 1.1E+00                                     | liver          | B2                                       |
| bis(2-Ethylhexyl)phthalate   |        | 1.4E-02                               | I            | 1                        | 1.4E-02                                     | liver          | B2                                       |
| Carbazole                    |        | 2.0E-02                               |              | 1                        | 2.0E-02                                     | liver          | B2                                       |
| Dibenz(a,h)anthracene        | [h]    | 7.3E+00                               | Е            | 1                        | 7.3E+00                                     | stomach        | B2                                       |
| Dimethyl phthalate           |        | NA                                    |              | 1                        | NA                                          | _              | D                                        |
| Di-n-octyl phthalate         |        | NA                                    |              | 1                        | NA                                          | _              | D                                        |
| Indeno(1,2,3-cd)pyrene       | [h]    | 7.3E-01                               | Е            | 1                        | 7.3E-01                                     | stomach        | B2                                       |
| 2-Methylnaphthalene          |        | NA                                    |              | 1                        | NA                                          | _              | NA                                       |
| 3&4-Methylphenol             |        | NA                                    |              | 1                        | NA                                          | _              | С                                        |
| Naphthalene                  |        | NA                                    |              | 1                        | NA                                          | _              | С                                        |
| Nitrobenzene                 |        | NA                                    |              | 1                        | NA                                          | _              | D                                        |
| 2-Nitrophenol                |        | NA                                    |              | 1                        | NA                                          | _              | NA                                       |
| N-Nitrosodi-n-propylamine    |        | 7.0E+00                               | I            | 1                        | 7.0E+00                                     | multiple       | B2                                       |
| 2,2'-oxybis(1-Chloropropane) |        | 7.0E-02                               | Н            | 1                        | 7.0E-02                                     | liver          | С                                        |
| Pentachlorophenol            |        | 1.2E-01                               | I            | 1                        | 1.2E-01                                     | liver, adrenal | B2                                       |
| Phenanthrene                 |        | NA                                    |              | 1                        | NA                                          | _              | D                                        |
| Polychlorinated Biphenyls    | (PCBs) |                                       |              |                          |                                             |                |                                          |
| Aroclor-1242 (PCB-1242)      | [i]    | 2.0E+00                               | Ι            | 1                        | 2.0E+00                                     | liver          | B2                                       |
| Aroclor-1248 (PCB-1248)      | [i]    | 2.0E+00                               | Ι            | 1                        | 2.0E+00                                     | liver          | B2                                       |
| Aroclor-1254 (PCB-1254)      | [i]    | 2.0E+00                               | Ι            | 1                        | 2.0E+00                                     | liver          | B2                                       |
| Aroclor-1260 (PCB-1260)      | [i]    | 2.0E+00                               | Ι            | 1                        | 2.0E+00                                     | liver          | B2                                       |

## Table A-8 Carcinogenic Toxicity Values for Oral and Dermal Exposure Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Mchigan

|                           |                                                   |               | Flint, Mchigan           |                                             |                    |                                          |
|---------------------------|---------------------------------------------------|---------------|--------------------------|---------------------------------------------|--------------------|------------------------------------------|
| Constituent               | Oral CSF<br>(mg/kg/day) <sup>-1</sup>             | [a]<br>[ref]  | Adjustment<br>Factor [b] | Dermal CSF [a]<br>(mg/kg/day) <sup>-1</sup> | Tumor<br>Site      | Weight of Evidence<br>Classification [c] |
| References [re            | ef]:                                              |               |                          |                                             |                    |                                          |
| С                         | CalEPA, Toxicity Criteria database (CalEPA 201    | 10).          |                          |                                             |                    |                                          |
| E                         | Environmental Criteria and Assessment Office a    | as reference  | d in the USEPA Regiona   | I Screening Level Table (USE                | EPA 2010a).        |                                          |
| Н                         | USEPA, Health Effects Summary Table (HEAS)        |               | ,                        |                                             |                    |                                          |
| 1                         | USEPA, Integrated Risk Information System (IR     | IS; USEPA     | 2010b).                  |                                             |                    |                                          |
| J                         | New Jersey                                        |               |                          |                                             |                    |                                          |
| -                         | Not applicable.                                   |               |                          |                                             |                    |                                          |
| CSF                       | Cancer Slope Factor.                              |               |                          |                                             |                    |                                          |
| (mg/kg/day) <sup>-1</sup> | Inverse milligrams per kilogram per day (risk per | r unit dose). |                          |                                             |                    |                                          |
| NA                        | Not available.                                    |               |                          |                                             |                    |                                          |
| [a]                       | Toxicity values were obtained following USEPA     | recommend     | led hierarchy (USEPA 20  | 003).                                       |                    |                                          |
| [b]                       | The oral-to-dermal adjustment factor (oral absor  |               |                          | e the dermal CSFd values, US                | SEPA 2004c.        |                                          |
|                           | CSF (dermal) = CSF (oral) / Adjustment Factor     | • •           | • •                      |                                             |                    |                                          |
| [C]                       | USEPA cancer weight-of-evidence categories and    |               |                          |                                             |                    |                                          |
|                           | Group A: Human Carcinogen                         |               | evidence of carcinogenic | ty in humans)                               |                    |                                          |
|                           | Group B: Probable Human C                         | 0             | nogenicity in humans     |                                             |                    |                                          |
|                           |                                                   |               | 0 ,                      | with inadequate or lack of evid             | lence in humans    |                                          |
|                           | Group C: Possible Human C                         |               |                          |                                             |                    | uman data)                               |
|                           | Group D: Not Classifiable as                      | ÷ ,           |                          | • •                                         | - 1                | ,                                        |
|                           | Group E: Evidence of Nonca                        |               | • • •                    | ,                                           | uate studies)      |                                          |
| [d]                       | Carcinogenic only via inhalation (Class D for ora | -             |                          |                                             |                    |                                          |
| [e]                       | Assumed as Chromium VI.                           |               |                          |                                             |                    |                                          |
| [f]                       | PPRTV document (2008) indicates that cobalt is    | s a likely hu | man carcinogen.          |                                             |                    |                                          |
| [g]                       | Maximum (most conservative) value of the range    | e of 1.5E-02  | 2 to 5.5E-02 (mg/kg/day) | 1 presented in the IRIS datab               | base.              |                                          |
| [h]                       | Benzo(a)pyrene used as a surrogate, with the a    | pplication of | the appropriate TEF val  | ue.                                         |                    |                                          |
| [i]                       | Toxicity data for Aroclor mixture values are for  | soil/water ex | posure. The oral slope   | actor is not adjusted to asses              | s dermal exposure. |                                          |

[i] Toxicity data for Aroclor mixture; values are for soil/water exposure. The oral slope factor is not adjusted to assess dermal exposure.

|                         |               | Inhalation Unit F                  | Risk [a] |                    | Weight of Evidence |  |
|-------------------------|---------------|------------------------------------|----------|--------------------|--------------------|--|
| Constituent             |               | (mg/m <sup>3</sup> ) <sup>-1</sup> | [ref]    | Tumor Site         | Classification [b] |  |
| Inorganics              |               |                                    |          |                    |                    |  |
| Arsenic                 |               | 4.3E+00                            | I        | lung               | А                  |  |
| Barium                  |               | NA                                 | I        | _                  | D                  |  |
| Beryllium               |               | 2.4E+00                            | I        | lung               | B1                 |  |
| Cadmium                 |               | 1.8E+00                            | I        | respiratory        | D/B1               |  |
| Chromium (total)        | [c]           | 1.2E+00                            | I        | lung               | D/A                |  |
| Cobalt                  | [d]           | 9.0E+00                            | Р        | lung               | [see footnote]     |  |
| Lead                    |               | NA                                 |          | _                  | B2                 |  |
| Manganese               |               | NA                                 |          | _                  | D                  |  |
| Selenium                |               | NA                                 | I        | _                  | D                  |  |
| Thallium                |               | NA                                 |          | _                  | NA                 |  |
| Vanadium                |               | NA                                 | Р        | -                  | NA                 |  |
| Volatile Organic Comp   | oounds (VOCs) |                                    |          |                    |                    |  |
| Benzene                 | [e]           | 7.8E-03                            | I        | leukemia           | А                  |  |
| 1,1-Dichloroethane      |               | 1.6E-03                            | Р        | NA                 | С                  |  |
| 1,2-Dichloroethane      |               | 2.6E-02                            | I        | circulatory system | B2                 |  |
| cis-1,2-Dichloroethene  |               | NA                                 | Р        | _                  | D                  |  |
| 1,2-Dichloropropane     |               | 1.0E-02                            | А        | NA                 | B2                 |  |
| 1,3-Dichlorobenzene     |               | NA                                 |          | _                  | D                  |  |
| Ethylbenzene            |               | 2.5E-03                            | I        | _                  | D                  |  |
| Methyl cyclohexane      |               | NA                                 |          | _                  | NA                 |  |
| Methyl Tert Butyl Ether |               | 2.6E-04                            | С        | _                  | NA                 |  |
| Methylene chloride      |               | 4.7E-04                            | I        | lung, liver        | B2                 |  |
| Tetrachloroethene       |               | 5.9E-03                            | I        | liver, kidney      | B2                 |  |
| Toluene                 |               | NA                                 | I        | _                  | D                  |  |
| 1,1,1-Trichloroethane   |               | NA                                 | I        | _                  | D                  |  |
| Trichloroethene         |               | 2.0E-03                            | С        | lung               | C-B2               |  |
| Vinyl chloride          |               | 4.4E-03                            | I        | liver              | A                  |  |
| m&p-Xylene              |               | NA                                 | I        | _                  | D                  |  |
| o-Xylene                |               | NA                                 | I        | _                  | D                  |  |

## Table A-9Carcinogenic Toxicity Values for Inhalation ExposureFormer General Motors North American Operations Facility (otherwise known as Buick City)Flint, Mchigan

## Table A-9Carcinogenic Toxicity Values for Inhalation ExposureFormer General Motors North American Operations Facility (otherwise known as Buick City)Flint, Mchigan

|                                      | Inhalation Unit F                  | Risk [a] |                | Weight of Evidence |
|--------------------------------------|------------------------------------|----------|----------------|--------------------|
| Constituent                          | (mg/m <sup>3</sup> ) <sup>-1</sup> | [ref]    | Tumor Site     | Classification [b] |
| Semi Volatile Organic Compounds (SVC | Cs)                                |          |                |                    |
| Acenaphthylene                       | NA                                 |          | _              | D                  |
| Benzo(a)anthracene                   | 1.1E-01                            | С        | respiratory    | B2                 |
| Benzo(a)pyrene                       | 1.1E+00                            | С        | respiratory    | B2                 |
| Benzo(b)fluoranthene                 | 1.1E-01                            | С        | respiratory    | B2                 |
| Benzo(g,h,i)perylene                 | NA                                 |          | _              | D                  |
| Benzo(k)fluoranthene                 | 1.1E-01                            | С        | respiratory    | B2                 |
| bis(2-Chloroethyl)ether              | 3.3E-01                            |          | liver          | B2                 |
| bis(2-Ethylhexyl)phthalate           | 2.4E-03                            | I        | -              | B2                 |
| Carbazole                            | NA                                 |          | -              | B2                 |
| Dibenz(a,h)anthracene                | 1.2E+00                            | С        | respiratory    | B2                 |
| Dimethyl phthalate                   | NA                                 |          | _              | D                  |
| Di-n-octyl phthalate                 | NA                                 |          | _              | D                  |
| Indeno(1,2,3-cd)pyrene               | 1.1E-01                            | С        | respiratory    | B2                 |
| 2-Methylnaphthalene                  | NA                                 | I        | _              | NA                 |
| 3&4-Methylphenol                     | NA                                 | Н        | _              | С                  |
| Naphthalene                          | 3.4E-02                            | I        | respiratory    | С                  |
| Nitrobenzene                         | 4.0E-02                            | I        | _              | D                  |
| 2-Nitrophenol                        | NA                                 |          | _              | NA                 |
| N-Nitrosodi-n-propylamine            | 2.0E+00                            |          | multiple       | B2                 |
| 2,2'-oxybis(1-Chloropropane)         | 1.0E-02                            | I        | lung           | С                  |
| Pentachlorophenol                    | 5.1E-03                            | I        | liver, adrenal | B2                 |
| Phenanthrene                         | NA                                 |          | -              | D                  |
| Polychlorinated Biphenyls (PCBs)     |                                    |          |                |                    |
| Aroclor-1242 (PCB-1242) [f]          | 5.7E-01                            |          | liver          | B2                 |
| Aroclor-1248 (PCB-1248) [f]          | 5.7E-01                            |          | liver          | B2                 |
| Aroclor-1254 (PCB-1254) [f]          | 5.7E-01                            | I        | liver          | B2                 |
| Aroclor-1260 (PCB-1260) [f]          | 5.7E-01                            |          | liver          | B2                 |

## Table A-9Carcinogenic Toxicity Values for Inhalation ExposureFormer General Motors North American Operations Facility (otherwise known as Buick City)Flint, Mchigan

|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tumor Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Weight of Evidence<br>Classification [b]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ef]:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Agency for Toxic Substances Disea    | ase Registry (ATDSR) (ATSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R 2010).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CalEPA, Toxicity Criteria database   | (CalEPA 2010).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| USEPA, Health Effects Summary T      | able (HEAST; USEPA 1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| USEPA, Integrated Risk Informatio    | n System (IRIS; USEPA 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                      | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Not applicable.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Not available.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Toxicity values were obtained follow | wing USEPA recommended h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ierarchy (USEPA 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| USEPA cancer weight-of-evidence      | categories are as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Group A: Huma                        | n Carcinogen (sufficient evide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nce of carcinogenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ty in humans)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Group B: Proba                       | ble Human Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| В                                    | 1 - limited evidence of carcine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ogenicity in humans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| В                                    | 2 - sufficient evidence of carc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | inogenicity in anima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Is with inadequate or lack of evidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e in humans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Group C: Possi                       | ble Human Carcinogen (limite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed evidence of carcin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nogenicity in animals and inadequate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e or lack of human data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Group D: Not C                       | lassifiable as to Human Carci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nogenicity (inadequ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ate or no evidence)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Group E: Evide                       | nce of Noncarcinogenicity for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Humans (no eviden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ce of carcinogenicity in adequate stu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | udies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Assumed as Chromium VI.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PPRTV document (2008) indicates      | that cobalt is a likely human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | carcinogen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Maximum (most conservative) valu     | e of the range of 7.7E-03 to 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .7E-02 (mg/kg/day)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 [2.2E-03 to 7.8E-03 (mg/m <sup>3</sup> )-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| for URi] presented in the IRIS data  | base.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Toxicity data for Aroclor mixture.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                      | CalEPA, Toxicity Criteria database<br>USEPA, Health Effects Summary T<br>USEPA, Integrated Risk Informatio<br>Provisional Peer Reviewed Toxicity<br>Regional Screening Level Table (U<br>Not applicable.<br>Inverse milligrams per cubic meter.<br>Not available.<br>Toxicity values were obtained follow<br>USEPA cancer weight-of-evidence<br>Group A: Human<br>Group B: Proba<br>B<br>Group C: Possi<br>Group D: Not C<br>Group E: Evide<br>Assumed as Chromium VI.<br>PPRTV document (2008) indicates<br>Maximum (most conservative) valu | (mg/m <sup>3</sup> ) <sup>-1</sup><br>eff]:<br>Agency for Toxic Substances Disease Registry (ATDSR) (ATSD<br>CalEPA, Toxicity Criteria database (CalEPA 2010).<br>USEPA, Health Effects Summary Table (HEAST; USEPA 1997)<br>USEPA, Integrated Risk Information System (IRIS; USEPA 2010<br>Provisional Peer Reviewed Toxicity Values (PPRTV) obtained from<br>Regional Screening Level Table (USEPA 2010a), or as obtained<br>Not applicable.<br>Inverse milligrams per cubic meter.<br>Not available.<br>Toxicity values were obtained following USEPA recommended how<br>USEPA cancer weight-of-evidence categories are as follows:<br>Group A: Human Carcinogen (sufficient evider<br>Group B: Probable Human Carcinogen<br>B1 - limited evidence of carcino<br>B2 - sufficient evidence of carcino<br>Group C: Possible Human Carcinogen (limited<br>Group D: Not Classifiable as to Human Carcinogen (limited<br>Group D: Not Classifiable as to Human Carcinogen (limited<br>Group E: Evidence of Noncarcinogenicity for<br>Assumed as Chromium VI.<br>PPRTV document (2008) indicates that cobalt is a likely human of<br>Maximum (most conservative) value of the range of 7.7E-03 to 2<br>for URi] presented in the IRIS database. | eff:         Agency for Toxic Substances Disease Registry (ATDSR) (ATSDR 2010).         CalEPA, Toxicity Criteria database (CalEPA 2010).         USEPA, Health Effects Summary Table (HEAST; USEPA 1997).         USEPA, Integrated Risk Information System (IRIS; USEPA 2010b).         Provisional Peer Reviewed Toxicity Values (PPRTV) obtained from the National Cem         Regional Screening Level Table (USEPA 2010a), or as obtained from the Superfund         Not applicable.         Inverse milligrams per cubic meter.         Not available.         Toxicity values were obtained following USEPA recommended hierarchy (USEPA 20         USEPA cancer weight-of-evidence categories are as follows:         Group A: Human Carcinogen (sufficient evidence of carcinogenicities Group B: Probable Human Carcinogen         B1 - limited evidence of carcinogenicity in anima         Group C: Possible Human Carcinogen (limited evidence of carcinogenicity (inadequater)         Group E: Evidence of Noncarcinogenicity for Humans (no evidence)         Assumed as Chromium VI.         PPRTV document (2008) indicates that cobalt is a likely human carcinogen.         Maximum (most conservative) value of the range of 7.7E-03 to 2.7E-02 (mg/kg/day)-for URI] presented in the IRIS database. | (mg/m <sup>3</sup> ) <sup>-1</sup> [ref]         Tumor Site           afj:         Agency for Toxic Substances Disease Registry (ATDSR) (ATSDR 2010).         CalEPA, Toxicity Criteria database (CalEPA 2010).           USEPA, Health Effects Summary Table (HEAST; USEPA 1997).         USEPA, Integrated Risk Information System (IRIS; USEPA 2010b).           Provisional Peer Reviewed Toxicity Values (PPRTV) obtained from the National Center for Environmental Assessment (IRegional Screening Level Table (USEPA 2010a), or as obtained from the Superfund Health Risk Technical Support Centor and the series and the series of the |

## Table A-10Receptor Exposure ParametersFormer General Motors North American Operations Facility (otherwise known as Buick City)Flint, Mchigan

| Parameter                                                                                              | Symbol        | units                | Construction<br>Worker |            |  |  |
|--------------------------------------------------------------------------------------------------------|---------------|----------------------|------------------------|------------|--|--|
| General Factors                                                                                        |               |                      |                        |            |  |  |
| Averaging Time (cancer)                                                                                | ATc           | days                 | 25,550                 | [a]        |  |  |
| Averaging Time (noncancer)                                                                             | ATnc          | days                 | 365                    | [a]        |  |  |
| Body Weight                                                                                            | BW            | kg                   | 70                     | [1,2]      |  |  |
| Exposure Frequency - Soil                                                                              | EF            | weeks/year           | 50                     | [5]        |  |  |
| Exposure Frequency - Soil                                                                              | EF            | days/year            | 250                    | [5]        |  |  |
| Exposure Frequency - Water                                                                             | EF            | weeks/year           | 10                     | [3]        |  |  |
| Exposure Frequency - Water                                                                             | EF            | days/year            | 50                     | [3]        |  |  |
| Exposure Duration - Soil                                                                               | ED            | years                | 1                      | [5]        |  |  |
| Exposure Duration - Water                                                                              | ED            | years                | 1                      | [3]        |  |  |
| <u>Inhalation</u><br>Exposure Time<br>Conversion Factor                                                | ET            | hour/day<br>day/hour | 8<br>0.042             | [3]        |  |  |
| <u>Groundwater - Ingestion (Oral)</u><br>Groundwater Incidental Ingestion Rate                         | IRgw          | L/day                | 0.005                  | [3]        |  |  |
| <u>Groundwater - Dermal Contact</u><br>Exposed Skin Surface Area<br>Exposure Time; groundwater contact | SSAgw<br>ETgw | cm²<br>hours/day     | 3,300<br>2             | [4]<br>[3] |  |  |
| <u>Soil - Ingestion (Oral)</u><br>Incidental Soil Ingestion Rate<br>Fraction Ingested from Souce       | IRs<br>Fl     | mg/day<br>unitless   | 330<br>1               | [5]<br>[3] |  |  |
| <u>Soil - Dermal Contact</u><br>Exposed Skin Surface Area<br>Soil-to-Skin Adherence Rate               | SSAs<br>SAR   | cm²<br>mg/cm²/day    | 3,300<br>0.2           | [4]<br>[4] |  |  |

References:

| References. |                                  |               |                                                                                               |
|-------------|----------------------------------|---------------|-----------------------------------------------------------------------------------------------|
| [1]         | U.S.EPA Risk Assessment Guida    | nce for Supe  | rfund, Part A (USEPA 1989).                                                                   |
| [2]         | U.S.EPA Risk Assessment Guida    | nce for Supe  | rfund, Part B (USEPA 1991).                                                                   |
| [3]         | Professional Judgment.           |               |                                                                                               |
| [4]         | U.S.EPA Dermal Risk Assessmer    | nt Guidance ( | USEPA 2004c).                                                                                 |
| [5]         | Soil Screening Level Guidance (U | SEPA 2002)    |                                                                                               |
| [a]         |                                  |               | cted lifespan of 70 years expressed in days.<br>ne total exposure duration expressed in days. |
| cm          | Centimeter.                      | L             | Liter.                                                                                        |
| kg          | Kilogram.                        | mg            | Milligram.                                                                                    |
|             |                                  |               |                                                                                               |

| Table A-11                                                                               |
|------------------------------------------------------------------------------------------|
| Physical and Chemical Properties                                                         |
| Former General Motors North American Operations Facility (otherwise known as Buick City) |
| Flint, Mchigan                                                                           |

|                                               |                                  |                     |                |                      |                |                                       |                | Flint, Mchi                       | gan                            |                      |             |                      |       |                                                  |              |                               |                |                               |      |
|-----------------------------------------------|----------------------------------|---------------------|----------------|----------------------|----------------|---------------------------------------|----------------|-----------------------------------|--------------------------------|----------------------|-------------|----------------------|-------|--------------------------------------------------|--------------|-------------------------------|----------------|-------------------------------|------|
| Constituent                                   | Molecular<br>Weight              | Water<br>Solubility |                | Vapor<br>Pressure    |                | Henry's<br>Law Constant<br>(unitless) |                | Diffusivity<br>in Air             | Diffusivity<br>in Water        | Koc<br>or<br>Kd      |             | Log                  |       | Enthalpy of<br>vaporization at<br>boiling point, |              | Normal<br>boiling point<br>Tb |                | Critical<br>temperature<br>Tc | 9,   |
|                                               | (g/mol) [ref]                    | (mg/L 25 °C) [r     | ref]           | (mm Hg 25 °C)        | [ref]          | (25 °C)                               | [ref]          | (cm²/sec) [ref]                   | (cm²/sec) [ref]                | (mL/g)               | [ref]       | Kow                  | [ref] | ΔH <sub>v,b</sub> (cal/mol)                      | [ref]        | о<br>(К)                      |                | о<br>(К)                      |      |
| Inorganics                                    |                                  |                     |                |                      |                |                                       |                |                                   |                                |                      |             |                      |       |                                                  |              |                               |                |                               |      |
| Arsenic                                       | 7.49E+01 HSDB                    | insoluble H         | ISDB           | _                    | _              | _                                     | _              |                                   |                                | 2.90E+01             | Kd-SCDM     | 6.80E-01             | SCDM  | _                                                | _            | 7.47E+02                      | EPI            | 1.12E+03                      | calc |
| Barium                                        | 1.37E+02 SCDM                    |                     | SCDM           | _                    | _              | _                                     | _              |                                   |                                | 4.10E+01             | Kd-SCDM     | 2.30E-01             | EPI   | _                                                | _            | 1.91E+03                      | SCDM           | 2.87E+03                      |      |
| Beryllium                                     | 9.01E+00 SCDM                    |                     | SCDM           | _                    | _              | _                                     | _              |                                   |                                | 7.90E+02             | Kd-SCDM     | -5.70E-01            |       | _                                                | _            | 3.24E+03                      | SCDM           | 4.86E+03                      |      |
| Cadmium                                       | 1.12E+02 SCDM                    | insoluble S         | SCDM           | _                    | _              | _                                     | _              |                                   |                                | 7.50E+01             | Kd-SCDM     | -7.00E-02            | EPI   | _                                                | _            | 1.04E+03                      | SCDM           | 1.56E+03                      | calc |
| Chromium (total)                              | 5.20E+01 SCDM                    |                     | SCDM           | _                    | _              | _                                     | _              |                                   |                                | 1.90E+01             | Kd-SCDM     | 2.30E-01             | EPI   | -                                                | _            | 2.92E+03                      | SCDM           | 4.37E+03                      |      |
| Cobalt                                        | 5.89E+01 SCDM                    | insoluble S         | SCDM           | _                    | _              | _                                     | _              |                                   |                                | 4.50E+01             | Kd-SCDM     | 2.30E-01             | EPI   | -                                                | _            | 3.37E+03                      | SCDM           | 5.06E+03                      | calc |
| Lead                                          | 2.07E+02 HSDB                    | insoluble S         | SCDM           | —                    | -              | _                                     | -              |                                   |                                | 9.00E+02             | Kd-SCDM     | 7.30E-01             | SCDM  | —                                                | -            | 2.01E+03                      | HSDB           | 3.02E+03                      | calc |
| Manganese                                     | 5.49E+01 SCDM                    |                     | SCDM           | -                    | -              | -                                     | -              |                                   |                                | 6.50E+01             | Kd-SCDM     | 2.30E-01             | EPI   | -                                                | —            | 2.24E+03                      | SCDM           | 3.35E+03                      | calc |
| Selenium                                      | 7.90E+01 SCDM                    |                     | SCDM           | _                    | —              | -                                     | -              |                                   |                                |                      |             | 2.40E-01             | EPI   | -                                                | —            | 9.57E+02                      | SCDM           | 1.44E+03                      |      |
| Thallium                                      | 2.04E+02 SCDM                    |                     | SCDM           | —                    | -              | -                                     | -              |                                   |                                |                      | Kd-SCDM     | 2.30E-01             | EPI   | -                                                | -            | 1.73E+03                      | SCDM           | 2.60E+03                      |      |
| Vanadium                                      | 5.09E+01 SCDM                    | insoluble S         | SCDM           | -                    | -              | -                                     | -              |                                   |                                | 1.00E+03             | Kd-SCDM     | 2.30E-01             | EPI   | -                                                | -            | -                             | _              | -                             | calc |
| Volatile Organic Compounds (VOC               |                                  |                     |                |                      |                |                                       | 10.5           |                                   |                                |                      |             |                      |       |                                                  |              |                               |                |                               |      |
| Benzene                                       | 7.81E+01 SCDM                    |                     | &E             | 9.50E+01             | SCDM           | 2.26E-01                              | J&E            | 8.80E-02 J&E                      | 9.80E-06 J&E                   | 5.89E+01             | J&E         | 2.13E+00             |       | 7.34E+03                                         | J&E          | 3.53E+02                      | SCDM           | 5.62E+02                      |      |
| 1,1-Dichloroethane                            | 9.90E+01 SCDM                    |                     | &E             | 2.27E+02             | SCDM           | 2.29E-01                              | J&E            | 7.42E-02 J&E                      | 1.05E-05 J&E                   | 3.16E+01             | J&E         | 1.79E+00             |       | 6.90E+03                                         | J&E          | 3.31E+02                      | SCDM           | 5.23E+02                      |      |
| 1,2-Dichloroethane                            | 9.90E+01 SCDM<br>9.69E+01 SCDM   |                     | '&E<br>'&E     | 7.89E+01<br>2.03E+02 | SCDM<br>SCDM   | 3.99E-02<br>1.66E-01                  | J&E<br>J&E     | 1.04E-01 J&E<br>7.36E-02 J&E      | 9.90E-06 J&E<br>1.13E-05 J&E   | 1.74E+01<br>3.55E+01 | J&E<br>J&F  | 1.47E+00<br>1.86E+00 |       | 7.64E+03<br>7.19E+03                             | J&E<br>J&E   | 3.57E+02<br>3.34E+02          | SCDM<br>SCDM   | 5.61E+02<br>5.44E+02          |      |
| cis-1,2-Dichloroethene<br>1,2-Dichloropropane | 1.13E+02 SCDM                    |                     | &E<br> &E      | 2.03E+02<br>5.20E+01 | SCDM           | 1.00E-01<br>1.14E-01                  | J&E<br>J&E     | 7.36E-02 J&E<br>7.82E-02 J&E      | 8.73E-06 J&E                   | 3.55E+01<br>4.37E+01 | J&E<br>J&E  | 1.86E+00<br>1.97E+00 |       | 7.59E+03                                         | J&E<br>J&E   | 3.34E+02<br>3.70E+02          | SCDM           | 5.44E+02<br>5.72E+02          |      |
| 1,2-Dichloropropane<br>1,3-Dichlorobenzene    | 1.13E+02 SCDM<br>1.47E+02 SCDM   |                     | &E<br> &E      | 5.20E+01<br>2.15E+00 | SCDM<br>SCDM   | 1.14E-01<br>1.26E-01                  | J&E<br>J&E     | 7.82E-02 J&E<br>6.92E-02 J&E      | 7.86E-06 J&E                   |                      | J&E<br>J&E  | 1.97E+00<br>3.60E+00 |       | 7.59E+03<br>9.23E+03                             | J&E<br>J&E   | 3.70E+02<br>4.46E+02          | SCDM<br>SCDM   | 5.72E+02<br>6.84E+02          |      |
| Ethylbenzene                                  | 1.06E+02 SCDM                    |                     | &E             | 9.60E+00             | SCDM           | 3.21E-01                              | J&E            | 7.50E-02 J&E                      | 7.80E-06 J&E                   | 3.63E+02             | J&E         | 3.15E+00             |       | 8.50E+03                                         | J&E          | 4.09E+02                      | SCDM           | 6.17E+02                      |      |
| Methyl cyclohexane                            | 9.80E+01 NMED                    |                     | &E             | 4.60E+01             | RAIS           | 4.20E+00                              | J&E            | 7.35E-02 J&E                      | 8.52E-06 J&E                   | 7.85E+01             | J&E         | 3.61E+00             | -     | 0.00E100                                         | _            | 3.74E+02                      | RAIS           | 5.72E+02                      |      |
| Methyl Tert Butyl Ether                       | 8.82E+01 CFATE                   |                     | &E             | 2.49E+02             | CFATE          | 2.55E-02                              | J&E            | 1.02E-01 J&E                      | 1.05E-05 J&E                   | 7.26E+00             | J&E         | 1.24E+00             | CFATE | 6.68E+03                                         | J&E          | 3.28E+02                      | RAIS           | 4.97E+02                      |      |
| Methylene chloride                            | 8.49E+01 SCDM                    |                     | &E             | 4.33E+02             | SCDM           | 8.93E-02                              | J&E            | 1.01E-01 J&E                      | 1.17E-05 J&E                   | 1.17E+01             | J&E         | 1.25E+00             | SCDM  | 6.71E+03                                         | J&E          | 3.13E+02                      | SCDM           | 5.10E+02                      |      |
| Tetrachloroethene                             | 1.66E+02 SCDM                    | 2.00E+02 J          | &E             | 1.86E+01             | SCDM           | 7.50E-01                              | J&E            | 7.20E-02 J&E                      | 8.20E-06 J&E                   | 1.55E+02             | J&E         | 3.40E+00             | CFATE | 8.29E+03                                         | J&E          | 3.94E+02                      | SCDM           | 6.20E+02                      | J&E  |
| Toluene                                       | 9.21E+01 SCDM                    | 5.26E+02 J          | &E             | 2.84E+01             | SCDM           | 2.71E-01                              | J&E            | 8.70E-02 J&E                      | 8.60E-06 J&E                   | 1.82E+02             | J&E         | 2.73E+00             | CFATE | 7.93E+03                                         | J&E          | 3.84E+02                      | SCDM           | 5.92E+02                      | J&E  |
| 1,1,1-Trichloroethane                         | 1.33E+02 SCDM                    | 1.33E+03 J          | &E             | 1.24E+02             | SCDM           | 7.01E-01                              | J&E            | 7.80E-02 J&E                      | 8.80E-06 J&E                   | 1.10E+02             | J&E         | 2.48E+00             | SCDM  | 7.14E+03                                         | J&E          | 3.47E+02                      | SCDM           | 5.45E+02                      | J&E  |
| Trichloroethene                               | 1.31E+02 SCDM                    |                     | &E             | 7.35E+01             | SCDM           | 4.20E-01                              | J&E            | 7.90E-02 J&E                      | 9.10E-06 J&E                   |                      | J&E         | 2.42E+00             |       | 7.51E+03                                         | J&E          | 3.60E+02                      | SCDM           | 5.44E+02                      |      |
| Vinyl chloride                                | 6.25E+01 SCDM                    |                     | &E             | 2.98E+03             | SCDM           | 1.10E+00                              | J&E            | 1.06E-01 J&E                      | 1.23E-05 J&E                   | 1.86E+01             | J&E         | 1.36E+00             |       | 5.25E+03                                         | J&E          | 2.59E+02                      | SCDM           | 4.32E+02                      |      |
| m&p-Xylene                                    | 1.06E+02 SCDM                    |                     | SCDM           | 7.99E+00             | RAIS           | 2.71E-01                              | RAIS           | 7.14E-02 RA/S                     | 9.34E-06 RAIS                  | 1.60E+02             |             | 3.15E+00             | -     | 8.53E+03                                         | J&E          | 4.14E+02                      | est'd          | 6.21E+02                      |      |
| o-Xylene                                      | 1.06E+02 SCDM                    | 1.78E+02 J          | &E             | 6.61E+00             | SCDM           | 2.12E-01                              | J&E            | 8.70E-02 J&E                      | 1.00E-05 J&E                   | 3.63E+02             | J&E         | 3.13E+00             | SCDM  | 8.66E+03                                         | J&E          | 4.18E+02                      | SCDM           | 6.30E+02                      | J&E  |
| Semi Volatile Organic Compounds               |                                  |                     |                |                      |                |                                       |                |                                   |                                |                      |             |                      |       |                                                  |              |                               |                |                               |      |
| Acenaphthylene                                | 1.52E+02 SCDM                    |                     | SCDM           | 9.12E-04             | SCDM           | 4.62E-03                              | SCDM           | 4.39E-02 RA/S                     | 7.53E-06 RAIS                  | 3.09E+03             |             | 3.94E+00             |       | 1.34E+04                                         | calc         | 5.53E+02                      | SCDM           | 8.30E+02                      |      |
| Benzo(a)anthracene                            | 2.28E+02 CFATE<br>2.52E+02 CFATE |                     | CFATE<br>CFATE | 1.05E-07<br>5.49E-09 | CFATE<br>CFATE | 1.37E-04<br>4.62E-05                  | CFATE<br>CFATE | 5.10E-02 SSG2<br>4.30E-02 SSG2    | 9.00E-06 SSG2<br>9.00E-06 SSG2 | 3.98E+05<br>1.02E+06 | SSG2        | 5.66E+00<br>5.97E+00 |       | 1.66E+04<br>1.75E+04                             | calc<br>calc | 7.11E+02<br>7.68E+02          | CFATE<br>CFATE | 1.07E+03<br>1.15E+03          |      |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene        | 2.52E+02 CFATE<br>2.52E+02 CFATE |                     | &E             | 5.49E-09<br>5.00E-07 | CFATE          | 4.62E-05<br>4.52E-03                  | J&E            | 4.30E-02 55G2<br>2.26E-02 J&E     | 5.56E-06 J&E                   | 1.02E+06<br>1.23E+06 | 33G2<br>J&E | 6.12E+00             |       | 1.75E+04<br>1.70E+04                             | J&E          | 7.68E+02<br>7.16E+02          | EPI<br>EPI     | 9.69E+02                      |      |
| Benzo(g,h,i)perylene                          | 2.76E+02 SCDM                    |                     | ∝⊑<br>SCDM     | 1.01E-10             | SCDM           | 4.52E-05<br>5.76E-06                  | J∝E<br>SCDM    | 4.20E-02 J&E<br>4.20E-02 L90-calc | 4.81E-06 L90-calc              |                      | J&E<br>SCDM | 6.58E+00             |       | 2.02E+04                                         | calc         | 7.16E+02<br>7.73E+02          | CFATE          | 9.09E+02<br>1.16E+03          |      |
| Benzo(k)fluoranthene                          | 2.52E+02 SCDM                    |                     | SCDM           | 2.00E-09             | SCDM           | 3.39E-05                              | SCDM           | 2.26E-02 J&E                      | 5.56E-06 J&E                   | 1.24E+06             |             | 6.20E+00             |       | 2.022104                                         | _            | 7.53E+02                      | SCDM           | 1.13E+03                      |      |
| bis(2-Chloroethyl)ether                       | 1.43E+02 SCDM                    |                     | &E             | 1.55E+00             | SCDM           | 7.34E-04                              | J&E            | 6.92E-02 J&E                      | 7.53E-06 J&E                   |                      | J&E         | 1.29E+00             |       | 1.08E+04                                         | J&E          | 4.51E+02                      | SCDM           | 6.60E+02                      |      |
| bis(2-Ethylhexyl)phthalate                    | 3.91E+02 SCDM                    |                     | SCDM           | 6.45E-06             | SCDM           | 4.17E-06                              | SCDM           | 3.51E-02 J&E                      | 3.66E-06 J&E                   | 8.74E+04             |             | 5.11E+00             |       | _                                                | _            | 6.57E+02                      | SCDM           | 9.86E+02                      |      |
| Carbazole                                     | 1.67E+02 SCDM                    | 7.48E+00 S          | SCDM           | 5.19E-07             | SCDM           | 6.25E-07                              | SCDM           | 3.90E-02 J&E                      | 7.03E-06 J&E                   | 3.38E+03             | SCDM        | 3.72E+00             | CFATE | 6.35E+03                                         | calc         | 6.28E+02                      | SCDM           | 9.42E+02                      | calc |
| Dibenz(a,h)anthracene                         | 2.78E+02 CFATE                   | 2.49E-03 C          | FATE           | 1.00E-10             | CFATE          | 6.01E-07                              | CFATE          | 2.02E-02 J&E                      | 5.18E-06 J&E                   | 3.80E+06             | SSG2        | 6.50E+00             | CFATE | 1.25E+04                                         | calc         | 7.97E+02                      | CFATE          | 1.20E+03                      | calc |
| Dimethyl phthalate                            | 1.94E+02 SCDM                    |                     | SCDM           | 1.65E-03             | SCDM           | 4.29E-06                              | SCDM           | 5.68E-02 RA/S                     | 6.29E-06 RAIS                  | 3.50E+01             | SCDM        | 1.57E+00             |       | —                                                | -            | 5.57E+02                      | SCDM           | 8.35E+02                      |      |
| Di-n-octyl phthalate                          | 3.91E+02 SCDM                    |                     | SCDM           | 2.60E-06             | SCDM           | 2.73E-03                              | SCDM           | 1.51E-02 J&E                      | 3.58E-06 J&E                   |                      | SCDM        | 8.06E+00             |       | 4.35E+03                                         | calc         | 7.04E+02                      | EPI            | 1.06E+03                      |      |
| Indeno(1,2,3-cd)pyrene                        | 2.76E+02 CFATE                   |                     | FATE           | 1.00E-10             | CFATE          | 6.54E-05                              | CFATE          | 1.90E-02 SSG2                     | 5.66E-06 SSG2                  |                      |             | 6.58E+00             | CFATE |                                                  | _            | 7.70E+02                      | CFATE          | 1.16E+03                      |      |
| 2-Methylnaphthalene                           | 1.42E+02 SCDM                    |                     | &E             | 5.50E-02             | SCDM           | 2.11E-02                              | J&E            | 5.22E-02 J&E                      | 7.75E-06 J&E                   |                      | J&E         | 3.94E+00             |       | 1.26E+04                                         | J&E          | 5.14E+02                      | SCDM           | 7.61E+02                      |      |
| 3&4-Methylphenol                              | 1.08E+02 SCDM                    |                     | SCDM           | 1.10E-01             | SCDM<br>SCDM   | 3.24E-05                              | SCDM           | 7.40E-02 RAIS                     | 1.00E-05 RAIS                  |                      | SCDM        | 1.95E+00             |       | 7.20E+02                                         | calc         | 4.75E+02                      | SCDM<br>SCDM   | 7.13E+02                      |      |
| Naphthalene<br>Nitrobenzene                   | 1.28E+02 SCDM<br>1.23E+02 SCDM   |                     | '&E<br>'&E     | 8.50E-02<br>2.45E-01 | SCDM<br>SCDM   | 1.97E-02<br>9.78E-04                  | J&E<br>J&E     | 5.90E-02 J&E<br>7.60E-02 J&E      | 7.50E-06 J&E<br>8.60E-06 J&E   | 2.00E+03<br>6.46E+01 | J&E<br>J&E  | 3.30E+00<br>1.84E+00 |       | 1.04E+04<br>1.06E+04                             | J&E<br>J&E   | 4.91E+02<br>4.84E+02          | SCDM<br>SCDM   | 7.48E+02<br>7.19E+02          |      |
| 2-Nitrophenol                                 | 1.39E+02 SCDM                    |                     | ∝⊑<br>SCDM     | 1.13E-01             | SCDM           | 3.87E-04                              | SCDM           | 7.15E-02 J&E<br>7.15E-02 L90-calc | 1.00E-05 est'd                 | 5.50E+01             | J&E<br>SCDM | 1.84E+00<br>1.77E+00 |       | 1.06E+04                                         | JAE          | 4.84E+02<br>4.89E+02          | SCDM           | 7.19E+02<br>7.34E+02          |      |
| 2-Nitrophenoi<br>N-Nitrosodi-n-propylamine    | 1.30E+02 SCDM<br>1.30E+02 SCDM   |                     | SCDM<br>SCDM   | 1.30E-01             | SCDM           | 3.87E-04<br>9.19E-05                  | SCDM           | 5.45E-02 J&E                      | 8.17E-06 J&E                   | 2.38E+01             | SCDM        | 1.77E+00<br>1.36E+00 |       | 1.28E+04                                         | <br>calc     | 4.89E+02<br>4.79E+02          | SCDM           | 7.34E+02<br>7.19E+02          |      |
| 2,2'-oxybis(1-Chloropropane)                  | 1.71E+02 SCDM                    |                     | SCDM           | 8.80E-01             | SCDM           | 4.78E-03                              | SCDM           | 3.50E-02 RAIS                     | 7.36E-06 RAIS                  |                      | SCDM        | 2.48E+00             | -     |                                                  | _            | 4.60E+02                      | SCDM           | 6.90E+02                      |      |
| Pentachlorophenol                             | 2.66E+02 SCDM                    |                     | SCDM           | 3.17E-05             | SCDM           | 9.97E-07                              | SCDM           | 5.60E-02 J&E                      | 6.10E-06 J&E                   | 5.92E+02             |             | 5.09E+00             |       | 1.57E+04                                         | calc         |                               | _              | -                             | calc |
| Phenanthrene                                  | 1.78E+02 SCDM                    |                     | SCDM           | 1.12E-04             | SCDM           | 9.52E-04                              | SCDM           | 5.43E-02 L90-calc                 | 5.85E-06 L90-calc              | 2.97E+04             |             | 4.46E+00             |       | 1.33E+04                                         | calc         | 6.13E+02                      | SCDM           | 9.20E+02                      |      |
| Polychlorinated Biphenyls (PCBs)              |                                  |                     |                |                      |                |                                       |                |                                   |                                | 1                    |             |                      |       |                                                  |              |                               |                |                               |      |
| Aroclor-1242 (PCB-1242)                       | 2.61E+02 HSDB                    | 3.40E-01 R          | RAIS           | 1.30E-03             | HSDB           | 2.28E-02                              | EPI            | 2.14E-02 J&E                      | 5.31E-06 J&E                   | 3.30E+04             | RAIS        | 6.29E+00             | EPI   | _                                                | _            | 6.33E+02                      | EPI            | 9.49E+02                      | calc |
| Aroclor-1248 (PCB-1248)                       | 2.88E+02 HSDB                    |                     | ISDB           | 4.94E-04             | HSDB           | 7.23E-03                              | EPI            | 4.97E-02 L90-calc                 | 4.84E-06 L90-calc              |                      | RAIS        | 6.34E+00             |       | 1.37E+03                                         | calc         | 6.33E+02                      | EPI            | 9.49E+02                      |      |
| Aroclor-1254 (PCB-1254)                       | 3.27E+02 HSDB                    | 6.00E-02 F          | RAIS           | 6.53E-06             | EPI            | 5.93E-03                              | EPI            | 1.56E-02 J&E                      | 5.00E-06 J&E                   | 2.00E+05             | RAIS        | 6.79E+00             | EPI   | 1.33E+03                                         | calc         | 6.51E+02                      | EPI            | 9.77E+02                      | calc |
| Aroclor-1260 (PCB-1260)                       | 3.76E+02 HSDB                    | 8.00E-02 R          | RAIS           | 4.05E-05             | HSDB           | 3.02E-03                              | HSDB           | 1.38E-02 J&E                      | 4.32E-06 J&E                   | 2.90E+05             | RAIS        | 8.27E+00             | EPI   | 1.25E+03                                         | calc         | 6.89E+02                      | EPI            | 1.03E+03                      | calc |

| Table A-11                                                                               |
|------------------------------------------------------------------------------------------|
| Physical and Chemical Properties                                                         |
| Former General Motors North American Operations Facility (otherwise known as Buick City) |
| Flint, Mchigan                                                                           |

|             |               |                    |                     |               |                 | gan                          |              |           |                                   |               |              |
|-------------|---------------|--------------------|---------------------|---------------|-----------------|------------------------------|--------------|-----------|-----------------------------------|---------------|--------------|
|             |               |                    |                     | Henry's       |                 |                              | Koc          |           | Enthalpy of                       | Normal        | Critical     |
|             | Molecular     | Water              | Vapor               | Law Constant  | Diffusivity     | Diffusivity                  | or           |           | vaporization at                   | boiling point | temperature, |
| Constituent | Weight        | Solubility         | Pressure            | (unitless)    | in Air          | in Water                     | Kd           | Log       | boiling point,                    | Tb            | Tc           |
|             | (g/mol) [ref] | (mg/L 25 °C) [ref] | (mm Hg 25 °C) [ref] | (25 °C) [ref] | (cm²/sec) [ref] | (cm <sup>2</sup> /sec) [ref] | (mL/g) [ref] | Kow [ref] | ∆H <sub>v,b (cal/mol)</sub> [ref] | о<br>(К)      | o<br>(K)     |
|             |               | r                  | 1                   | 1             | 1               | r                            | 1            |           |                                   |               |              |

References [ref]: CFATE (SRC 2008); HSDB (NLM 2008); EPISuite (USEPA 2004a); J&E (USEPA 2003); RAIS (ORNL 2010); SCDM (USEPA 2004b); SSG2 (USEPA 2002).

atm-m3/mol Atmospheres x cubic meters per mole. °C Degrees Celsius. cm²/sec Square centimeters per second. Calculated. calc'd est'd Estimated. g/mol Kd Grams per mole. Soil-water distribution coefficient (inorganics). Koc Organic carbon partition coefficient (organics). Kow L/kg mg/L mL/g Octanol-water partition coefficient. Liters per kilogram. Milligrams per liter. Milliliters per gram. mm Hg NA Millimeters of mercury. Not available.

### Table A-12 Dermal Absorption Parameters Former General Motors North American Operations Facility (otherwise known as Buick City)

Flint, Mchigan

|                                |            |         | ty Constant |            | -Steady State D | ermal Absorptio | n Parameters [c] | ]      | DA_1hr                     |
|--------------------------------|------------|---------|-------------|------------|-----------------|-----------------|------------------|--------|----------------------------|
| Constituent of                 | ABSd       |         | hour) [b]   | FA         | τ               | t*              | В                |        | [d]                        |
| Potential Concern              | [a]        | Value   | [Ref]       | (unitless) | (hour)          | (hour)          | (unitless)       | Source | (L/cm <sup>2</sup> /event) |
| Inorganics                     |            |         |             |            |                 |                 |                  |        |                            |
| Arsenic                        | 0.03       | 1.0E-03 | W           | —          | —               | —               | —                |        | 1.00E-06                   |
| Barium                         | 0          | 1.0E-03 | W           | —          | —               | —               | —                |        | 1.00E-06                   |
| Beryllium                      | 0          | 1.0E-03 | W           | —          | —               | —               | —                |        | 1.00E-06                   |
| Cadmium                        | 0.001      | 1.0E-03 | DRA         | —          | —               | —               | —                |        | 1.00E-06                   |
| Chromium (total)               | 0          | 2.0E-03 | DRA         | _          | —               | _               | —                |        | 2.00E-06                   |
| Cobalt                         | 0          | 4.0E-04 | DRA         |            | —               | _               | —                |        | 4.00E-07                   |
| Lead                           | 0          | 1.0E-04 | DRA         | —          | —               | —               | —                |        | 1.00E-07                   |
| Manganese                      | 0          | 1.0E-03 | W           | —          | —               | —               | —                |        | 1.00E-06                   |
| Selenium                       | 0          | 1.0E-03 | W           | —          | —               | —               | —                |        | 1.00E-06                   |
| Thallium                       | 0          | 1.0E-03 | W           |            | —               | _               | —                |        | 1.00E-06                   |
| Vanadium                       | 0          | 1.0E-03 | W           | —          | —               | —               | —                |        | 1.00E-06                   |
| Volatile Organic Compounds (VC | )Cs)       |         |             |            |                 |                 |                  |        |                            |
| Benzene                        | 0          | 1.5E-02 | DRA         | 1.0        | 0.29            | 0.70            | 0.0501           | DRA    | 2.34E-05                   |
| 1,1-Dichloroethane             | 0          | 6.7E-03 | DRA         | 1.0        | 0.38            | 0.92            | 0.0257           | DRA    | 1.18E-05                   |
| 1,2-Dichloroethane             | 0          | 4.2E-03 | DRA         | 1.0        | 0.38            | 0.92            | 0.0158           | DRA    | 7.38E-06                   |
| cis-1,2-Dichloroethene         | 0          | 7.7E-03 | calc        | 1.0        | 0.37            | 0.89            | 0.029            | calc   | 1.33E-05                   |
| 1,2-Dichloropropane            | 0          | 7.8E-03 | DRA         | 1.0        | 0.46            | 1.10            | 0.0319           | DRA    | 1.46E-05                   |
| 1,3-Dichlorobenzene            | 0          | 5.8E-02 | DRA         | 1.0        | 0.71            | 1.71            | 0.2705           | DRA    | 1.35E-04                   |
| Ethylbenzene                   | 0          | 4.9E-02 | DRA         | 1.0        | 0.42            | 1.01            | 0.192            | DRA    | 8.78E-05                   |
| Methyl cyclohexane             | 0          | 1.8E-01 | RAIS        | —          | —               | —               | —                |        | 1.75E-04                   |
| Methyl Tert Butyl Ether        | 0          | 3.4E-03 | calc        | 1.0        | 0.33            | 0.79            | 0.012            | calc   | 5.63E-06                   |
| Methylene chloride             | 0          | 3.5E-03 | DRA         | 1.0        | 0.32            | 0.76            | 0.0126           | DRA    | 5.72E-06                   |
| Tetrachloroethene              | 0          | 3.3E-02 | DRA         | 1.0        | 0.91            | 2.18            | 0.163            | DRA    | 8.70E-05                   |
| Toluene                        | 0          | 3.1E-02 | DRA         | 1.0        | 0.35            | 0.84            | 0.113            | DRA    | 5.20E-05                   |
| 1,1,1-Trichloroethane          | 0          | 1.3E-02 | DRA         | 1.0        | 0.60            | 1.43            | 0.0577           | DRA    | 2.78E-05                   |
| Trichloroethene                | 0          | 1.2E-02 | DRA         | 1.0        | 0.58            | 1.39            | 0.0529           | DRA    | 2.53E-05                   |
| Vinyl chloride                 | 0          | 5.6E-03 | DRA         | 1.0        | 0.24            | 0.57            | 0.017            | DRA    | 8.24E-06                   |
| m&p-Xylene                     | 0          | 5.3E-02 | DRA         | 1.0        | 0.42            | 1.01            | 0.21             | DRA    | 9.49E-05                   |
| o-Xylene                       | 0          | 5.3E-02 | DRA         | 1.0        | 0.42            | 1.01            | 0.21             | DRA    | 9.49E-05                   |
| Semi Volatile Organic Compound | ls (SVOCs) |         |             |            |                 |                 |                  |        |                            |
| Acenaphthylene                 | 0.13       | 1.4E-01 | EPI         | 1.0        | 0.75            | 2.94            | 0.669            | calc   | 3.38E-04                   |
| Benzo(a)anthracene             | 0.13       | 4.7E-01 | DRA         | 1.0        | 2.03            | 8.53            | 2.8              | DRA    | 1.85E-03                   |
| Benzo(a)pyrene                 | 0.13       | 7.0E-01 | DRA         | 1.0        | 2.69            | 11.67           | 4.28             | DRA    | 3.17E-03                   |
| Benzo(b)fluoranthene           | 0.13       | 7.0E-01 | DRA         | 1.0        | 2.77            | 12.03           | 4.28             | DRA    | 3.22E-03                   |

### Table A-12 Dermal Absorption Parameters Former General Motors North American Operations Facility (otherwise known as Buick City)

Flint, Mchigan

|                                  |      |         | ty Constant |            | -Steady State D | ermal Absorptio |            |        | DA_1hr                     |
|----------------------------------|------|---------|-------------|------------|-----------------|-----------------|------------|--------|----------------------------|
| Constituent of                   | ABSd |         | /hour) [b]  | FA         | τ               | t*              | В          |        | [d]                        |
| Potential Concern                | [a]  | Value   | [Ref]       | (unitless) | (hour)          | (hour)          | (unitless) | Source | (L/cm <sup>2</sup> /event) |
| Benzo(g,h,i)perylene             | 0.13 | 1.9E+00 | EPI         | 0.6        | 3.70            | 16.86           | 11.83      | calc   | 5.90E-03                   |
| Benzo(k)fluoranthene             | 0.13 | 1.2E+00 | EPI         | 0.8        | 2.72            | 12.17           | 7.331      | calc   | 4.38E-03                   |
| bis(2-Chloroethyl)ether          | 0    | 1.8E-03 | DRA         | 1.0        | 0.68            | 1.62            | 0.0082     | DRA    | 4.10E-06                   |
| bis(2-Ethylhexyl)phthalate       | 0.1  | 2.5E-02 | DRA         | 0.8        | 16.64           | 39.93           | 0.19       | DRA    | 2.25E-04                   |
| Carbazole                        | 0.1  | 8.0E-02 | EPI         | 1.0        | 0.91            | 2.18            | 0.396      | calc   | 2.10E-04                   |
| Dibenz(a,h)anthracene            | 0.13 | 1.5E+00 | DRA         | 0.6        | 3.88            | 17.57           | 9.7        | DRA    | 4.90E-03                   |
| Dimethyl phthalate               | 0.1  | 1.4E-03 | DRA         | 1.0        | 1.30            | 3.13            | 0.0075     | DRA    | 4.41E-06                   |
| Di-n-octyl phthalate             | 0.1  | 4.5E+00 | EPI         | 0.3        | 16.16           | 75.22           | 33.82      | calc   | 1.48E-02                   |
| Indeno(1,2,3-cd)pyrene           | 0.13 | 1.0E+00 | DRA         | 0.6        | 3.78            | 16.83           | 6.7        | DRA    | 3.22E-03                   |
| 2-Methylnaphthalene              | 0.13 | 1.4E-01 | EPI         | 1.0        | 0.66            | 2.60            | 0.651      | calc   | 3.19E-04                   |
| 3&4-Methylphenol                 | 0.1  | 7.7E-03 | DRA         | 1.0        | 0.43            | 1.03            | 0.0314     | DRA    | 1.40E-05                   |
| Naphthalene                      | 0.13 | 4.7E-02 | DRA         | 1.0        | 0.56            | 1.34            | 0.205      | DRA    | 9.72E-05                   |
| Nitrobenzene                     | 0    | 5.6E-03 | calc        | 1.0        | 0.51            | 1.20            | 0.024      | calc   | 1.11E-05                   |
| 2-Nitrophenol                    | 0.1  | 4.1E-03 | DRA         | 1.0        | 0.63            | 1.50            | 0.018      | calc   | 8.99E-06                   |
| N-Nitrosodi-n-propylamine        | 0.1  | 2.3E-03 | DRA         | 1.0        | 0.57            | 1.37            | 0.0103     | DRA    | 4.80E-06                   |
| 2,2'-oxybis(1-Chloropropane)     | 0    | 8.0E-03 | calc        | 1.0        | 0.95            | 2.30            | 0.04       | calc   | 2.16E-05                   |
| Pentachlorophenol                | 0.25 | 3.9E-01 | DRA         | 0.9        | 3.33            | 13.82           | 2.448      | DRA    | 1.77E-03                   |
| Phenanthrene                     | 0.13 | 1.4E-01 | DRA         | 1.0        | 1.06            | 4.11            | 0.719      | DRA    | 3.98E-04                   |
| Polychlorinated Biphenyls (PCBs) |      |         |             |            |                 |                 |            |        |                            |
| Aroclor-1242 (PCB-1242)          | 0.14 | 9.2E-01 | EPI         | 0.8        | 3.04            | 13.43           | 5.73       | calc   | 3.55E-03                   |
| Aroclor-1248 (PCB-1248)          | 0.14 | 9.9E-01 | EPI         | 0.7        | 4.31            | 19.16           | 6.47       | calc   | 3.98E-03                   |
| Aroclor-1254 (PCB-1254)          | 0.14 | 1.3E+00 | EPI         | 0.6        | 7.12            | 32.12           | 8.97       | calc   | 5.71E-03                   |
| Aroclor-1260 (PCB-1260)          | 0.14 | 5.5E+00 | EPI         | 0.1        | 12.39           | 57.78           | 40.5       | calc   | 5.33E-03                   |

References [ref]:

calc Calculated value (USEPA 2004c).

DRA Dermal Risk Assessment Guidance (USEPA 2004c). The B values are calculated but are consistent with values presented in the guidance.

EPI EPI Suite (USEPA 2004a).

RAIS Oak Ridge National Laboratory (ORNL), Risk Assessment Information System (RAIS; ORNL 2010).

W Assumed to be equal to the value for water (USEPA 2004c).

cm Centimeter.

L Liter.

[a] Dermal absorption efficiency for uptake of constituents from a soil matrix (unitless) (USEPA 2004c).

### Table A-12 Dermal Absorption Parameters Former General Motors North American Operations Facility (otherwise known as Buick City)

Flint, Mchigan

|                   |      | Permeabilit | ty Constant | Non        |        | DA_1hr |            |        |                            |
|-------------------|------|-------------|-------------|------------|--------|--------|------------|--------|----------------------------|
| Constituent of    | ABSd | Kp (cm/     | hour) [b]   | FA         | τ      | τ t*   |            |        | [d]                        |
| Potential Concern | [a]  | Value [Ref] |             | (unitless) | (hour) | (hour) | (unitless) | Source | (L/cm <sup>2</sup> /event) |
|                   | I    |             |             |            |        |        |            |        |                            |

[b] Permeability coefficient for dermal contact with constituents in water (centimeters per hour).

[c] Absorption parameters for use in the non-steady state model for dermal contact with constituents in water.

 $\tau$  = Lag time for dermal absorption through the skin.

B = Ratio of the permeability coefficient through the stratus corneum relative to the permeability coefficient across the viable epidermis.

FA = Fraction of absorbed water.

t\* = Time required to reach steady state.

[d] Dermal absorption (DA) calculated according to equations presented in USEPA 2004 based on exposure time (ET) = 1 hour.

## Table A-13 Soil Volatilization Factors Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Mchigan

| Volatilization Factors:       | (calculated only f                      | or volatile organic co                               | mpounds)                                                  |                                                             |                                                                     |                                             |                                                           |                                                        |
|-------------------------------|-----------------------------------------|------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|
| Constituent                   | Solubility<br>in Water<br>(mg/L)<br>(S) | Saturation<br>Limit in Soil<br>(mg/kg)<br>(Csat) [a] | Diffusivity<br>in Air<br>(cm²/sec)<br>(D <sub>air</sub> ) | Diffusivity<br>in Water<br>(cm²/sec)<br>(D <sub>wat</sub> ) | Henry's<br>Law Constant<br>(unitless)<br>at 10 °C (H <sub>o</sub> ) | Partition<br>Coefficient<br>(mL/g)<br>(Koc) | Apparent<br>Diffusivity<br>(cm²/sec)<br>(D <sub>A</sub> ) | Volatilization Factor<br>(m³/kg - VF)<br>Soil Invasive |
| Inorganics                    |                                         |                                                      |                                                           |                                                             |                                                                     |                                             |                                                           |                                                        |
| Arsenic                       | insoluble                               | _                                                    | _                                                         | _                                                           | _                                                                   | _                                           | _                                                         | _                                                      |
| Barium                        | insoluble                               | _                                                    | _                                                         | _                                                           | _                                                                   | _                                           | _                                                         | _                                                      |
| Beryllium                     | insoluble                               | _                                                    | _                                                         | _                                                           | _                                                                   | _                                           | _                                                         | _                                                      |
| Cadmium                       | insoluble                               | _                                                    | _                                                         | _                                                           | _                                                                   | _                                           | _                                                         | _                                                      |
| Chromium (total)              | insoluble                               | _                                                    | _                                                         | _                                                           | _                                                                   | _                                           | _                                                         | _                                                      |
| Cobalt                        | insoluble                               | _                                                    | _                                                         | _                                                           | _                                                                   | _                                           | _                                                         |                                                        |
| Lead                          | insoluble                               | _                                                    | _                                                         | _                                                           | _                                                                   | _                                           | _                                                         | _                                                      |
| Manganese                     | insoluble                               | _                                                    | _                                                         | _                                                           | _                                                                   | _                                           | _                                                         | _                                                      |
| Selenium                      | insoluble                               | _                                                    | _                                                         | _                                                           | _                                                                   | _                                           | _                                                         |                                                        |
| Thallium                      | insoluble                               | _                                                    | _                                                         | _                                                           | _                                                                   | _                                           | _                                                         | _                                                      |
| Vanadium                      | insoluble                               | _                                                    | _                                                         | —                                                           | _                                                                   | _                                           | —                                                         | _                                                      |
| Volatile Organic Compounds (V | /OCs)                                   |                                                      |                                                           |                                                             |                                                                     |                                             |                                                           |                                                        |
| Benzene                       | 1.79E+03                                | 2.73E+03                                             | 8.80E-02                                                  | 9.80E-06                                                    | 9.05E-02                                                            | 5.89E+01                                    | 2.99E-03                                                  | 1.56E+02                                               |
| 1,1-Dichloroethane            | 5.06E+03                                | 6.91E+03                                             | 7.42E-02                                                  | 1.05E-05                                                    | 9.16E-02                                                            | 3.16E+01                                    | 2.85E-03                                                  | 1.60E+02                                               |
| 1,2-Dichloroethane            | 8.52E+03                                | 9.68E+03                                             | 1.04E-01                                                  | 9.90E-06                                                    | 1.60E-02                                                            | 1.74E+01                                    | 8.39E-04                                                  | 2.94E+02                                               |
| cis-1,2-Dichloroethene        | 3.50E+03                                | 4.69E+03                                             | 7.36E-02                                                  | 1.13E-05                                                    | 6.65E-02                                                            | 3.55E+01                                    | 2.09E-03                                                  | 1.86E+02                                               |
| 1,2-Dichloropropane           | 2.80E+03                                | 3.78E+03                                             | 7.82E-02                                                  | 8.73E-06                                                    | 4.57E-02                                                            | 4.37E+01                                    | 1.52E-03                                                  | 2.19E+02                                               |
| 1,3-Dichlorobenzene           | 1.34E+02                                | 1.70E+03                                             | 6.92E-02                                                  | 7.86E-06                                                    | 5.05E-02                                                            | 1.98E+03                                    | 1.55E-04                                                  | 6.85E+02                                               |
| Ethylbenzene                  | 1.69E+02                                | 5.80E+02                                             | 7.50E-02                                                  | 7.80E-06                                                    | 1.28E-01                                                            | 3.63E+02                                    | 1.61E-03                                                  | 2.12E+02                                               |
| Methyl cyclohexane            | 1.40E+01                                | 6.60E+01                                             | 7.35E-02                                                  | 8.52E-06                                                    | 1.68E+00                                                            | 7.85E+01                                    | 1.50E-02                                                  | 6.95E+01                                               |
| Methyl Tert Butyl Ether       | 5.10E+04                                | 5.42E+04                                             | 1.02E-01                                                  | 1.05E-05                                                    | 1.02E-02                                                            | 7.26E+00                                    | 5.63E-04                                                  | 3.59E+02                                               |
| Methylene chloride            | 1.30E+04                                | 1.48E+04                                             | 1.01E-01                                                  | 1.17E-05                                                    | 3.57E-02                                                            | 1.17E+01                                    | 1.82E-03                                                  | 2.00E+02                                               |
| Tetrachloroethene             | 2.00E+02                                | 5.00E+02                                             | 7.20E-02                                                  | 8.20E-06                                                    | 3.00E-01                                                            | 1.55E+02                                    | 4.93E-03                                                  | 1.21E+02                                               |
| Toluene                       | 5.26E+02                                | 1.21E+03                                             | 8.70E-02                                                  | 8.60E-06                                                    | 1.08E-01                                                            | 1.82E+02                                    | 2.35E-03                                                  | 1.76E+02                                               |
| 1,1,1-Trichloroethane         | 1.33E+03                                | 2.94E+03                                             | 7.80E-02                                                  | 8.80E-06                                                    | 2.80E-01                                                            | 1.10E+02                                    | 5.70E-03                                                  | 1.13E+02                                               |
| Trichloroethene               | 1.47E+03                                | 3.40E+03                                             | 7.90E-02                                                  | 9.10E-06                                                    | 1.68E-01                                                            | 1.66E+02                                    | 3.28E-03                                                  | 1.49E+02                                               |
| Vinyl chloride                | 8.80E+03                                | 1.73E+04                                             | 1.06E-01                                                  | 1.23E-05                                                    | 4.40E-01                                                            | 1.86E+01                                    | 1.36E-02                                                  | 7.30E+01                                               |
| m&p-Xylene                    | 1.75E+02                                | 3.80E+02                                             | 7.14E-02                                                  | 9.34E-06                                                    | 1.08E-01                                                            | 1.60E+02                                    | 2.04E-03                                                  | 1.88E+02                                               |
| o-Xylene                      | 1.78E+02                                | 5.90E+02                                             | 8.70E-02                                                  | 1.00E-05                                                    | 8.46E-02                                                            | 3.63E+02                                    | 1.26E-03                                                  | 2.40E+02                                               |

|                                  |          |          | Flint,   | Mchigan  | ·        | -        |          |          |
|----------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Semi Volatile Organic Compounds  | (SVOCs)  |          |          |          |          |          |          |          |
| Acenaphthylene                   | 1.61E+01 | —        | 4.39E-02 | 7.53E-06 | 1.85E-03 | 3.09E+03 | 2.40E-06 | 5.50E+03 |
| Benzo(a)anthracene               | 9.40E-03 | —        | 5.10E-02 | 9.00E-06 | 5.48E-05 | 3.98E+05 | 9.12E-10 | _        |
| Benzo(a)pyrene                   | 1.62E-03 | —        | 4.30E-02 | 9.00E-06 | 1.85E-05 | 1.02E+06 | 1.69E-10 | _        |
| Benzo(b)fluoranthene             | 1.50E-03 | —        | 2.26E-02 | 5.56E-06 | 1.81E-03 | 1.23E+06 | 3.22E-09 | _        |
| Benzo(g,h,i)perylene             | 2.60E-04 | —        | 4.20E-02 | 4.81E-06 | 2.30E-06 | 3.86E+06 | 1.57E-11 | _        |
| Benzo(k)fluoranthene             | 8.00E-04 | —        | 2.26E-02 | 5.56E-06 | 1.36E-05 | 1.24E+06 | 7.16E-11 | _        |
| bis(2-Chloroethyl)ether          | 1.72E+04 | 1.88E+04 | 6.92E-02 | 7.53E-06 | 2.93E-04 | 1.55E+01 | 1.11E-05 | 2.56E+03 |
| bis(2-Ethylhexyl)phthalate       | 3.40E-01 | 1.80E+02 | 3.51E-02 | 3.66E-06 | 1.67E-06 | 8.74E+04 | 5.11E-10 | _        |
| Carbazole                        | 7.48E+00 | _        | 3.90E-02 | 7.03E-06 | 2.50E-07 | 3.38E+03 | 2.15E-08 | _        |
| Dibenz(a,h)anthracene            | 2.49E-03 | _        | 2.02E-02 | 5.18E-06 | 2.40E-07 | 3.80E+06 | 1.47E-11 | _        |
| Dimethyl phthalate               | 4.00E+03 | 4.84E+03 | 5.68E-02 | 6.29E-06 | 1.72E-06 | 3.50E+01 | 3.80E-07 | _        |
| Di-n-octyl phthalate             | 2.00E-02 | 1.00E+04 | 1.51E-02 | 3.58E-06 | 1.09E-03 | 8.38E+07 | 1.92E-11 | _        |
| Indeno(1,2,3-cd)pyrene           | 2.20E-05 | _        | 1.90E-02 | 5.66E-06 | 2.62E-05 | 3.47E+06 | 3.11E-11 | _        |
| 2-Methylnaphthalene              | 2.46E+01 | —        | 5.22E-02 | 7.75E-06 | 8.45E-03 | 2.81E+03 | 1.42E-05 | 2.27E+03 |
| 3&4-Methylphenol                 | 2.15E+04 | _        | 7.40E-02 | 1.00E-05 | 1.29E-05 | 8.26E+01 | 7.97E-07 | _        |
| Naphthalene                      | 3.10E+01 | _        | 5.90E-02 | 7.50E-06 | 7.88E-03 | 2.00E+03 | 2.05E-05 | 1.88E+03 |
| Nitrobenzene                     | 2.09E+03 | 2.91E+03 | 7.60E-02 | 8.60E-06 | 3.91E-04 | 6.46E+01 | 1.27E-05 | 2.39E+03 |
| 2-Nitrophenol                    | 2.19E+03 | _        | 7.15E-02 | 1.00E-05 | 1.55E-04 | 5.50E+01 | 5.25E-06 | _        |
| N-Nitrosodi-n-propylamine        | 9.89E+03 | 1.13E+04 | 5.45E-02 | 8.17E-06 | 3.68E-05 | 2.38E+01 | 1.46E-06 | _        |
| 2,2'-oxybis(1-Chloropropane)     | 1.70E+03 | 4.50E+03 | 3.50E-02 | 7.36E-06 | 1.91E-03 | 2.74E+02 | 1.47E-05 | 2.23E+03 |
| Pentachlorophenol                | 1.95E+03 | _        | 5.60E-02 | 6.10E-06 | 3.99E-07 | 5.92E+02 | 8.89E-08 | _        |
| Phenanthrene                     | 1.15E+00 | —        | 5.43E-02 | 5.85E-06 | 3.81E-04 | 2.97E+04 | 6.82E-08 | 3.26E+04 |
| Polychlorinated Biphenyls (PCBs) |          |          |          |          |          |          |          |          |
| Aroclor-1242 (PCB-1242)          | 3.40E-01 | _        | 2.14E-02 | 5.31E-06 | 9.14E-03 | 3.30E+04 | 5.65E-07 | —        |
| Aroclor-1248 (PCB-1248)          | 5.40E-02 | _        | 4.97E-02 | 4.84E-06 | 2.89E-03 | 5.03E+05 | 2.74E-08 | _        |
| Aroclor-1254 (PCB-1254)          | 6.00E-02 | _        | 1.56E-02 | 5.00E-06 | 2.37E-03 | 2.00E+05 | 1.79E-08 | _        |
| Aroclor-1260 (PCB-1260)          | 8.00E-02 | —        | 1.38E-02 | 4.32E-06 | 1.21E-03 | 2.90E+05 | 5.65E-09 | —        |

## Table A-13 Soil Volatilization Factors Former General Motors North American Operations Facility (otherwise known as Buick City)

#### Model Input Parameters:

|        | Passive |          |
|--------|---------|----------|
| Soil = | SI      | Silt     |
| Ts =   | 10      | °C       |
| Foc =  | 0.006   | unitless |

Predominant soil type in the vadose zone (SI = 1.82) Annual average soil temperature in Michigan (MDEQ 2007) Fraction organic carbon (USEPA 2002, default)

#### Table A-13 Soil Volatilization Factors Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Mchigan

| θ-<br>θ <sub>a:</sub><br>θ <sub>w:</sub><br>Q/C <sub>vol_cwuv</sub> | $\begin{array}{c} T = \\ T = \\$ | 0.167<br>0.489<br>0.322<br>0.167<br>14.31<br>.3E+06 | g/cm <sup>3</sup><br>unitless<br>unitless<br>unitless<br>(g/m <sup>2</sup> /sec)/(kg/m <sup>3</sup> )<br>sec | Total soil poros<br>Air-filled soil po<br>Water-filled soi<br>Volatilization flu | Pansity for Silt soil (USEPA 2<br>bity for Silt soil (USEPA 200<br>prosity [ = $\theta_T - \theta_{ws}$ ]<br>I porosity for Silt soil (USEF<br>ux per unit concentration un<br>val (site-specific ED=365 da | 3).<br>PA 2003).<br>Ider soil invasive condit | tions (USEPA 2002, default)     |  |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------|--|
| <br>atm<br>cm<br>g                                                  | Not ava<br>Atmosp<br>Centime<br>Gram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | here.                                               |                                                                                                              | kg<br>L<br>m<br>mg                                                               | Kilogram.<br>Liter.<br>Meter.<br>Milligram.                                                                                                                                                                 | mL<br>mol<br>sec                              | Milliliter.<br>Mole.<br>Second. |  |

[a] Csat was calculated for constituents that might potentially be liquid at soil temperature of 30°C (i.e. for constituents whose melting point is less than 30°C).

## Table A-14Particulate Emission Factor for Construction ActivitiesFormer General Motors North American Operations Facility (otherwise known as Buick City)Flint, Michigan

|                             |                         |      | $PEF_{sc} = \frac{Q}{C_{sr}} \times \frac{1}{F_{D}} \times \left[ \frac{T \times A_{R}}{556 \times \left(\frac{W}{3}\right)^{0.4} \times \frac{365 - p}{365} \times \Sigma VKT} \right]$ |          |                       |
|-----------------------------|-------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|
| PEF <sub>sc</sub><br>where: |                         | =    | Subchronic particulate emission factor for trucking activities ( $m^3/kg$ ) = <b>1.6</b>                                                                                                 | 0E+07    |                       |
|                             | Q/C <sub>sr</sub>       | =    | Inverse of 1-hr avg. air concentration at center of the square emission source                                                                                                           |          |                       |
|                             |                         |      | (g/m <sup>2</sup> -s per kg/m <sup>3</sup> ) =                                                                                                                                           | 18.44    | Calculated            |
|                             | where                   | Q/C  | $C_{sr} = A * exp[(ln A_c - B)^2/C]$                                                                                                                                                     |          |                       |
|                             | А                       | =    | Constant =                                                                                                                                                                               | 12.9351  | USEPA, 2002           |
|                             | В                       | =    | Constant =                                                                                                                                                                               | 5.7383   | USEPA, 2002           |
|                             | С                       | =    | Constant =                                                                                                                                                                               | 71.7711  | USEPA, 2002           |
|                             | $A_{c}$                 | =    | Areal extent of site (acres) =                                                                                                                                                           | 2        | Site-specific         |
|                             | F <sub>D</sub><br>where |      | Dispersion correction factor (unitless) =<br>= $0.1852+(5.3537/t_c)+(-9.6318/t_c^2) =$                                                                                                   | 1.88E-01 | Calculated            |
|                             | t <sub>c</sub>          | =    | Duration of activity (8-hour days) (hr) =                                                                                                                                                | 2000     | Calculated            |
|                             | •                       |      | Number of days of activity per year * number of years =                                                                                                                                  | 250      | USEPA, 2002           |
|                             | т                       | =    | Total activity time (seconds) =                                                                                                                                                          | 7.20E+06 | Calculated            |
|                             | A <sub>R</sub>          | =    | Surface area of road $(m^2) =$                                                                                                                                                           | 540      | Calculated            |
|                             | wh                      | ere: | $A_R = L_R \times W_R$                                                                                                                                                                   |          |                       |
|                             |                         |      | $L_{R} = (A_{c} \text{ acres x 4047 m}^{2}/\text{acre})^{0.5}$                                                                                                                           | 90       | Calculated            |
|                             |                         |      | W <sub>R</sub> = (meters)                                                                                                                                                                | 6.0      | USEPA, 2002           |
|                             | W                       | _    | Mean vehicle weight (20 2-ton cars and 10 20-ton trucks) (tons) =                                                                                                                        | 8        | USEPA, 2002           |
|                             | D                       |      | Number of days with 0.01 inces of precipitation (days/year) =                                                                                                                            | 130      | USEPA, 2002           |
|                             | ν<br>ΣVKT               |      | Sum of fleet vehicle kilometers traveled (km) =                                                                                                                                          | 45       | Calculated            |
|                             |                         | _    | (Number of vehicles x $L_R$ x Number of Active Days per year x number of yea                                                                                                             | -        | Carculatou            |
|                             | wh                      | ere: | Number of vehicles                                                                                                                                                                       |          | Professional Judgment |
|                             |                         |      |                                                                                                                                                                                          | -        | ,                     |

Table A-15 Health-Based Concentration Goal Equations for Redevelopment Construction Worker Exposure to Soil,

Former General Motors North American Operations Facility (otherwise known as Buick City), Flint, Michigan

ROUTE-SPECIFIC CONCENTRATION GOALS:

| <u>Oral:</u>                     | $(HBG_o)_{C or NC} = -$                    | $(\text{TCR or THQ}) \times \text{BW} \times (\text{AT}_{\text{C}} \text{ or AT}_{\text{NC}}) \times (10^{6} \text{ mg/kg})$ $\text{IRs} \times \text{FI} \times \text{EF} \times \text{ED} \times (\text{CSF}_{\text{o}} \text{ or } [1/\text{RfD}_{\text{o}}])$                                                            |
|----------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Dermal:</u>                   | (HBG <sub>d</sub> ) <sub>C or NC</sub> = - | $\begin{array}{l} (\text{TCR or THQ}) \times \text{BW} \times (\text{AT}_{\text{C}} \text{ or } \text{AT}_{\text{NC}}) \times (10^{6} \text{ mg/kg}) \\ \text{SSAs} \times \text{SAR} \times \text{ABSd} \times \text{EF} \times \text{ED} \times (\text{CSF}_{\text{a}} \text{ or } [1/\text{RfD}_{\text{a}}]) \end{array}$ |
| Inhalation:<br>(VOCs)            | (HBG <sub>i</sub> ) <sub>C or NC</sub> = - | $(\text{TCR or THQ}) \times \text{BW} \times \text{VF}_{\text{SC}} \times (\text{AT}_{\text{C}} \text{ or } \text{AT}_{\text{NC}})$<br>BRs × EF × ED × ( CSF <sub>i</sub> or [1/RfD <sub>i</sub> ])                                                                                                                          |
|                                  | VF <sub>SC</sub> =                         | $\frac{Q/C_{sa} \times (1/F_D) \times [3.14 \times D_A \times T]^{1/2}}{2 \times \rho_b \times D_A \times (10,000 \text{ cm}^2/\text{m}^2)}$                                                                                                                                                                                 |
|                                  | D <sub>A</sub> =                           | $\frac{\left[\left(\theta_{as}^{3.33} \times D_{air} \times H_{o}\right) + \left(\theta_{ws}^{3.33} \times D_{wat}\right)\right] / \theta_{T}^{2}}{\left(\rho_{b} \times \text{Koc} \times \text{Foc}\right) + \theta_{ws} + \left(\theta_{as} \times H_{o}\right)}$                                                         |
| <u>Inhalation:</u><br>(non-VOCs) | (HBG <sub>i</sub> ) <sub>C or NC</sub> = - | $(\text{TCR or THQ}) \times \text{BW} \times \text{PEF}_{\text{SC}} \times (\text{AT}_{\text{C}} \text{ or } \text{AT}_{\text{NC}})$<br>BRs × EF × ED × (CSF <sub>i</sub> or [1/RfD <sub>i</sub> ])                                                                                                                          |
|                                  | PEF <sub>SC</sub> =                        | $\frac{Q/C_{sr} \times (1/F_{D}) \times T \times A_{R}}{556 \times (W/3)^{0.4} \times [(365 - p)/365] \times \Sigma V KT}$                                                                                                                                                                                                   |

CONCENTRATION GOAL BASED ON CANCER EFFECTS: (combining all exposure routes)

$$HBG_{c} = \frac{1}{[1 / (HBG_{o})_{c}] + [1 / (HBG_{d})_{c}] + [1 / (HBG_{i})_{c}]}$$

CONCENTRATION GOAL BASED ON NON-CANCER EFFECTS: (combining all exposure routes)

$$HBG_{NC} = \frac{1}{[1 / (HBG_{o})_{NC}] + [1 / (HBG_{d})_{NC}] + [1 / (HBG_{i})_{NC}]}$$

HBG = MINIMUM of HBG<sub>C</sub> and HBG<sub>NC</sub>

RBG for VOCs with melting point less than 30°C should not exceed the soil saturation limit (Csat):

$$C_{sat} = \frac{S}{\rho_b} \times [(Koc \times Foc \times \rho_b) + \theta_{ws} + (H_o \times \theta_{as})]$$

| Variable D    | Definitions:                                          |
|---------------|-------------------------------------------------------|
| $\theta_{as}$ | Air-filled porosity of the soil (unitless).           |
| $\theta_{T}$  | Total soil porosity (unitless).                       |
| $\theta_{ws}$ | Water-filled porosity of the soil (unitless).         |
| $\rho_{b}$    | Dry soil bulk density (g/cm <sup>3</sup> ).           |
| ABSd          | Dermal absorption efficiency (unitless) (Table A-12). |

Health-Based Concentration Goal Equations for Redevelopment Construction Worker Exposure to Soil,

| A <sub>R</sub> Surface area of contaminated road segment (m <sup>2</sup> ).           AT <sub>C</sub> Averaging time for cancer effects (days) (Table A-10).           AT <sub>K</sub> Averaging time for non-cancer effects (days) (Table A-10).           BRs         Breathing rate for soil exposure scenario (m <sup>3</sup> /day) (20).           BW         Body weight (kg) (Table A-10).           Cast         Constituent saturation limit in soil (mg/kg).           CSF         Cancer slope factor for oral (CSFo), dermal (adjusted to an absorbed dose, CSFa), or inhalation (CSFi) exposure (kg-day/mg [inverse mg/kg/day]) (Table A-8 and A-9).           D <sub>A</sub> Apparent diffusivity in soil (cm <sup>2</sup> /sec) (Table A-11).           D <sub>M</sub> Constituent diffusivity in water (cm <sup>2</sup> /sec) (Table A-11).           E         Exposure frequency (days/year) (Table A-10).           FI         Fraction ingested from area of concern (unilless).           Fo         Dispersion correction factor (unilless) (0.186) (USEPA 2002).           H         Henry's law constant (unilless): calculated as Ho = H / RT.           HBG         Health-based concentration goal for soil (mg/kg).           IRs         Ingestion rate of soil (mg/kg).           R         Ingestion carbon partition coefficient (cm <sup>3</sup> /g = mL/g = L/g) (Table A-11).           P         Dimensionless Henry's law constant (unilless): calculated as Ho = H / RT.           HBG         Health-                                                                                                                       |                  | Former General Motors North American Operations Facility (otherwise known as Buick City), Flint, Michigan |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------|
| AT <sub>NC</sub> Averaging time for non-cancer effects (days) (Table A-10).         BRs       Breathing rate for soil exposure scenario (m³/day) (20).         BW       Body weight (kg) (Table A-10).         C <sub>sat</sub> Constituent saturation limit in soil (mg/kg).         CSF       Cancer slope factor for oral (CSFo), dermal (adjusted to an absorbed dose, CSFa), or inhalation (CSFi) exposure (kg-day/mg [inverse mg/kg/day]) (Tables A-8 and A-9).         D <sub>A</sub> Apparent diffusivity in soil (cm <sup>2</sup> /sec).         D <sub>air</sub> Constituent diffusivity in a (cm <sup>2</sup> /sec) (Table A-11).         ED       Exposure duration (years) (Table A-10).         EF       Exposure duration (years) (Table A-10).         FI       Fraction ingested from area of concern (unitless) (Table A-10).         Fo       Dispersion correction factor (unitless) (USEPA 2002).         H       Henry's law constant (unitless) (SIS (USEPA 2002).         H       Henry's law constant (unitless): calculated as Ho = H / RT.         HBG       Health-based concentration goal for soil (mg/kg).         IRs       Ingestion rate of soil (mg/day) (Table A-10).         ¢       Organic carbon partition coefficient (cm <sup>3</sup> /ge mL/g = L/kg) (Table A-11).         p       Number of days with at least 0.01 inches of precipitation (days/year)         PEF <sub>SC</sub> Subchronic road particulate emission factor (m <sup>3</sup> /gg); used for non-VOCs.                                                                                                                                                | A <sub>R</sub>   | Surface area of contaminated road segment (m <sup>2</sup> ).                                              |
| BRs         Breathing rate for soil exposure scenario (m³/day) (20).           BW         Body weight (kg) (Table A-10).           Cast         Constituent saturation limit in soil (mg/kg).           CSF         Cancer slope factor for oral (CSFo), dermal (adjusted to an absorbed dose, CSFa), or inhalation (CSFi) exposure (kg-day/mg [inverse mg/kg/day]) (Tables A-8 and A-9).           D <sub>A</sub> Apparent diffusivity in soil (cm²/sec).           D <sub>ar</sub> Constituent diffusivity in vare (cm²/sec) (Table A-11).           D <sub>watt</sub> Constituent diffusivity in vare (cm²/sec) (Table A-11).           D <sub>watt</sub> Constituent diffusivity in vare (cm²/sec) (Table A-10).           FF         Exposure frequency (day/sylear) (Table A-10).           FI         Fraction ingested from area of concern (unitless) (Table A-10).           Fo         Dispersion correction factor (unitless) (0.185) (USEPA 2002).           H         Henry's law constant (unitless)         Calculated as Ho = H / RT.           HBG         Health-based concentration goal for soil (mg/kg).         Rs         Ingestion rate of soil (mg/day) (Table A-10).           Kcc         Organic carbon partition coefficient (cm²/g = mL/g = L/kg) (Table A-11).         Public = Math-based concentration goal for soil (mg/kg).           Rs         Ingestion rate of soil (mg/day) (Table A-10).         Constituent substope days with at least 0.01 inches of precipitation (days/year)                                                                                                                                        | AT <sub>C</sub>  | Averaging time for cancer effects (days) (Table A-10).                                                    |
| BW       Body weight (kg) (Table A-10).         Csat       Constituent saturation limit in soil (mg/kg).         CSF       Cancer slope factor for oral (CSFo), dermal (adjusted to an absorbed dose, CSFa), or inhalation (CSFi) exposure (kg-day/mg [inverse mg/kg/day]) (Tables A-8 and A-9).         D <sub>A</sub> Apparent diffusivity in soil (cm²/sec).         D <sub>air</sub> Constituent diffusivity in air (cm²/sec) (Table A-11).         D <sub>watt</sub> Constituent diffusivity in water (cm²/sec) (Table A-11).         ED       Exposure duration (years) (Table A-10).         FF       Exposure frequency (days/year) (Table A-10).         Fo       Fraction ingested from area of concern (unitless) (Table A-10).         Fo       Fraction ingested from area of concern (unitless).         Fp       Dispersion correction factor (unitless) (0.185) (USEPA 2002).         H       Henry's law constant (atm-m³/mol) (Table A-11).         Ho       Dimensionless Henry's law constant (unitless).         Fp       Dispersion carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11).         HBG       Health-based concentration goal for soil (mg/kg).         IRs       Ingestion rate of soil (mg/day) (Table A-10).         Koc       Organic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11).         p       Number of days with at least 0.01 inches of precipitation (days/year)         <                                                                                                                                                                                                          | $AT_{NC}$        | Averaging time for non-cancer effects (days) (Table A-10).                                                |
| CastConstituent saturation limit in soil (mg/kg).CSFCancer slope factor for oral (CSFo), dermal (adjusted to an absorbed dose, CSFa), or inhalation (CSFi)<br>exposure (kg-day/mg [inverse mg/kg/day]) (Tables A-8 and A-9).DAApparent diffusivity in soil (cm <sup>4</sup> /sec).DarConstituent diffusivity in soil (cm <sup>4</sup> /sec) (Table A-11).DwatConstituent diffusivity in air (cm <sup>2</sup> /sec) (Table A-11).EDExposure duration (years) (Table A-10).EFExposure duration (years) (Table A-10).FIFraction ingested from area of concern (unitless) (Table A-10).FocFraction organic carbon in the soil (unitless).FoDispersion correction factor (unitless) (0.185) (USEPA 2002).HHenry's law constant (atm-m <sup>3</sup> /mol) (Table A-11).HoDimensionless Henry's law constant (unitless): calculated as Ho = H / RT.HBGHealth-based concentration goal for soil (mg/kg).IRsIngestion rate of soil (mg/day) (Table A-10).KocOrganic carbon partition coefficient (cm <sup>3</sup> /g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m <sup>3</sup> /g): used for non-VOCs.Q/CsmValatilization flux per unit concentration for construction scenario [(g/m <sup>3</sup> /sec)/(kg/m <sup>3</sup> )].RIDReference dose for oral (RDO), dermal (adjusted to an absorbed dose, RDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 × 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.S                            | BRs              | Breathing rate for soil exposure scenario (m <sup>3</sup> /day) (20).                                     |
| CSFCancer slope factor for oral (CSFo), demal (adjusted to an absorbed dose, CSFa), or inhalation (CSFi)<br>exposure (kg-day/mg [inverse mg/kg/day]) (Tables A-8 and A-9).D_AApparent diffusivity in soil (cm?/sec) (Table A-11).D_aurConstituent diffusivity in water (cm?/sec) (Table A-11).D_watConstituent diffusivity in water (cm?/sec) (Table A-11).EDExposure duration (years) (Table A-10).EFExposure frequency (day/year) (Table A-10).FIFraction ingested from area of concern (unitless) (Table A-10).FocFraction organic carbon in the soil (unitless).Fo_Dispersion correction factor (unitless) (DSEPA 2002).HHenry's law constant (atm-m³/mol) (Table A-11).HoDimensionless Henry's law constant (unitless); calculated as Ho = H / RT.HBGHealth-based concentration goal for soil (mg/kg).IRsIngestion rate of soil (mg/day) (Table A-10).KccOrganic carbon partition ceefficient (cm³/g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/CasVolatilization flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RIDReference dose for oral (RtDo), dermal (adjusted to an absorbed dose, RtDa), or inhalation (RtDi)<br>exposure (mg/kg/day) (Table A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 x 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SAConstituent solubility limit in water (mg/L).S                                                                                                                    | BW               | Body weight (kg) (Table A-10).                                                                            |
| exposure (kg-day/mg [inverse mg/kg/day]) (Tables A-8 and A-9). $D_A$ Apparent diffusivity in soil (cm²/sec). $D_{atr}$ Constituent diffusivity in air (cm²/sec) (Table A-11). $D_{wat}$ Constituent diffusivity in water (cm²/sec) (Table A-11).EDExposure duration (years) (Table A-10).EFExposure frequency (days/year) (Table A-10).FIFraction ingested from area of concern (unitless) (Table A-10).FocFraction organic carbon in the soil (unitless).FpDispersion correction factor (unitless) (0.185) (USEPA 2002).HHenry's law constant (atm-m³/mol) (Table A-11).HoDimensionless Henry's law constant (unitless): calculated as Ho = H / RT.HBGHealth-based concentration goal for soil (mg/kg).IRsIngestion rate of soil (mg/day) (Table A-10).KccOrganic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEF <sub>SC</sub> Subchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/C <sub>sa</sub> Volatilization flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/C <sub>sa</sub> Volatilization flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RfDProduct of the universal gas constant (R = 8.206 x 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L). <td>C<sub>sat</sub></td> <td>Constituent saturation limit in soil (mg/kg).</td> | C <sub>sat</sub> | Constituent saturation limit in soil (mg/kg).                                                             |
| DAApparent diffusivity in soil (cm²/sec).DairConstituent diffusivity in air (cm²/sec) (Table A-11).DwatConstituent diffusivity in water (cm²/sec) (Table A-11).EDExposure duration (years) (Table A-10).EFExposure frequency (days/year) (Table A-10).FIFraction ingested from area of concern (unitless) (Table A-10).FocFraction organic carbon in the soil (unitless).FpDispersion correction factor (unitless) (0.185) (USEPA 2002).HHenry's law constant (atm-m³/mol) (Table A-11).HoDimensionless Henry's law constant (unitless): calculated as Ho = H / RT.HBGHealth-based concentration goal for soil (mg/kg).IRsIngestion rate of soil (mg/day) (Table A-10).KocOrganic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrPorticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Table A-6 and A-7).RfDProduct of the universal gas constant (R = 8.206 x 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SAConstitue                                                                                                                            | CSF              | Cancer slope factor for oral (CSFo), dermal (adjusted to an absorbed dose, CSFa), or inhalation (CSFi)    |
| $D_{arr}$ Constituent diffusivity in air (cm²/sec) (Table A-11). $D_{wet}$ Constituent diffusivity in water (cm²/sec) (Table A-11). $ED$ Exposure duration (years) (Table A-10). $EF$ Exposure frequency (days/year) (Table A-10). $FI$ Fraction ingested from area of concern (unitless) (Table A-10). $Foc$ Fraction organic carbon in the soil (unitless). $F_0$ Dispersion correction factor (unitless) (0.185) (USEPA 2002). $H$ Henry's law constant (atm-m³/mol) (Table A-11). $H_0$ Dimensionless Henry's law constant (unitless): calculated as Ho = H / RT.HBGHealth-based concentration goal for soil (mg/kg).IRsIngestion rate of soil (mg/day) (Table A-10).KocOrganic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11). $p$ Number of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs. $Q/C_{sar}$ Volatilization flux per unit concentration for construction scenario [(g/m³/sec)/(kg/m³)]. $RID$ Reference dose for oral (RIDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7). $RT$ Product of the universal gas constant (mg/L). $SAR$ Soil-to-skin adherence rate (mg/cm²/day) (Table A-10). $SAR$ Singer cancer risk (unitless). $THQ$                                                                                                                                          |                  | exposure (kg-day/mg [inverse mg/kg/day]) (Tables A-8 and A-9).                                            |
| DwatConstituent diffusivity in water (cm²/scc) (Table A-11).EDExposure duration (years) (Table A-10).EFExposure frequency (days/year) (Table A-10).FIFraction ingested from area of concern (unitless) (Table A-10).FocFraction organic carbon in the soil (unitless).Fo_Dispersion correction factor (unitless) (DaBS) (USEPA 2002).HHenry's law constant (atm-m³/mol) (Table A-11).HoDimensionless Henry's law constant (unitless); calculated as Ho = H / RT.HBGHealth-based concentration goal for soil (mg/kg).IRsIngestion rate of soil (mg/day) (Table A-10).KocOrganic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/CsmVolatilization flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (R/Do), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/uy) (Tables A-6 and A-7).RTProduct of the universal gas constant (mg/L).SAConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SASExposure intraval (sec).TCRTaget cancer risk (unitless).TLQTaget cancer risk (unitless).TLQTaget cancer risk (unitless).SAGSupposure intraval (sec).SASExposure interval (sec).TCRTaget cancer risk (unitless). </td <td>D<sub>A</sub></td> <td>Apparent diffusivity in soil (cm<sup>2</sup>/sec).</td>                                                                                                                                                 | D <sub>A</sub>   | Apparent diffusivity in soil (cm <sup>2</sup> /sec).                                                      |
| EDExposure duration (years) (Table A-10).EFExposure frequency (days/year) (Table A-10).FIFraction ingested from area of concern (unitless) (Table A-10).FocFraction organic carbon in the soil (unitless).FpDispersion correction factor (unitless) (0.185) (USEPA 2002).HHenry's law constant (atm-m³/mol) (Table A-11).HoDimensionless Henry's law constant (unitless): calculated as Ho = H / RT.HBGHealth-based concentration goal for soil (mg/kg).IRsIngestion rate of soil (mg/day) (Table A-10).KocOrganic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 x 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SARSoil-to-skin adherence rate (mg/cm³/day) (Table A-10).SARSoil-to-skin adherence rate for soil contact (cm²) (Table A-10).SARSoil-to-skin adherence rate for soil contact (cm²) (Table A-10).TLExposure interval (sec).TCRTaget cancer risk (unitless).THQTaget cancer risk (unitless).THQTaget cancer risk (unitless).THQTa                                                                                                                                                                                  | D <sub>air</sub> | Constituent diffusivity in air (cm <sup>2</sup> /sec) (Table A-11).                                       |
| EFExposure frequency (days/year) (Table A-10).FIFraction ingested from area of concern (unitless) (Table A-10).FocFraction organic carbon in the soil (unitless).FoDispersion correction factor (unitless) (0.185) (USEPA 2002).HHenry's law constant (atm-m³/mol) (Table A-11).HoDimensionless Henry's law constant (unitless); calculated as Ho = H / RT.HBGHealth-based concentration goal for soil (mg/kg).IRsIngestion rate of soil (mg/day) (Table A-10).KocOrganic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 × 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SASExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget cancer risk (unitless).THQTarget hazard quot                                                                                                                                                       | D <sub>wat</sub> | Constituent diffusivity in water (cm <sup>2</sup> /sec) (Table A-11).                                     |
| FIFraction ingested from area of concern (unitless) (Table A-10).FocFraction organic carbon in the soil (unitless).FoDispersion correction factor (unitless) (0.185) (USEPA 2002).HHenry's law constant (atm-m³/mol) (Table A-11).H_oDimensionless Henry's law constant (unitless); calculated as Ho = H / RT.HBGHealth-based concentration goal for soil (mg/kg).IRsIngestion rate of soil (mg/day) (Table A-10).KocOrganic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 x 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SASExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VFscVolatilization factor for construction worker scenario (m³/kg); used for VOCs.SVKTSum of vehicle kilometers traveled during the ex                                                                                                                            | ED               | Exposure duration (years) (Table A-10).                                                                   |
| FocFraction organic carbon in the soil (unitless).FDDispersion correction factor (unitless) (0.185) (USEPA 2002).HHenry's law constant (atm-m³/mol) (Table A-11).HoDimensionless Henry's law constant (unitless); calculated as Ho = H / RT.HBGHealth-based concentration goal for soil (mg/kg).IRsIngestion rate of soil (mg/day) (Table A-10).KocOrganic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].R/DReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 × 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VFscVolatilization factor for construction worker scenario (m³/kg); used for VOCs.EVKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                           | EF               | Exposure frequency (days/year) (Table A-10).                                                              |
| $F_D$ Dispersion correction factor (unitless) (0.185) (USEPA 2002).HHenry's law constant (atm-m³/mol) (Table A-11). $H_o$ Dimensionless Henry's law constant (unitless); calculated as Ho = H / RT.HBGHealth-based concentration goal for soil (mg/kg).IRsIngestion rate of soil (mg/day) (Table A-10).KocOrganic carbon partition coefficient (cm²/g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/CsaVolatilization flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsaParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 × 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SASExposed skin surface area for soil contact (cm²) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VFscVolatilization factor for construction worker scenario (m³/kg); used for VOCs.EVKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                         | FI               | Fraction ingested from area of concern (unitless) (Table A-10).                                           |
| HHenry's law constant (atm-m³/mol) (Table A-11).HoDimensionless Henry's law constant (unitless); calculated as Ho = H / RT.HBGHealth-based concentration goal for soil (mg/kg).IRsIngestion rate of soil (mg/day) (Table A-10).KocOrganic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/CsaVolatilization flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 × 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VFscVolatilization factor for construction worker scenario (m³/kg); used for VOCs.EVKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                | Foc              | Fraction organic carbon in the soil (unitless).                                                           |
| H₀Dimensionless Henry's law constant (unitless); calculated as H₀ = H / RT.HBGHealth-based concentration goal for soil (mg/kg).IRsIngestion rate of soil (mg/day) (Table A-10).KocOrganic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/CsaVolatilization flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 × 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SASExposed skin surface area for soil contact (cm²) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VFscVolatilization factor for construction worker scenario (m³/kg); used for VOCs.ΣVKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                 | F <sub>D</sub>   | Dispersion correction factor (unitless) (0.185) (USEPA 2002).                                             |
| HBGHealth-based concentration goal for soil (mg/kg).IRsIngestion rate of soil (mg/day) (Table A-10).KocOrganic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/CsaVolatilization flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 × 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SSAsExposed skin surface area for soil contact (cm²) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VFscVolatilization factor for construction worker scenario (m³/kg); used for VOCs.ΣVKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                           | н                | Henry's law constant (atm-m <sup>3</sup> /mol) (Table A-11).                                              |
| IRsIngestion rate of soil (mg/day) (Table A-10).KocOrganic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/CsaVolatilization flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 × 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SConstituent solubility limit in water (cm²) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).V/FscVolatilization factor for construction worker scenario (m³/kg); used for VOCs.ΣVKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                      | H <sub>o</sub>   | Dimensionless Henry's law constant (unitless); calculated as Ho = H / RT.                                 |
| KocOrganic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table A-11).pNumber of days with at least 0.01 inches of precipitation (days/year)PEF <sub>SC</sub> Subchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/C <sub>sa</sub> Volatilization flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/C <sub>sr</sub> Particulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 × 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SASExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VF <sub>SC</sub> Volatilization factor for construction worker scenario (m³/kg); used for VOCs.ΣVKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HBG              | Health-based concentration goal for soil (mg/kg).                                                         |
| pNumber of days with at least 0.01 inches of precipitation (days/year)PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/CsaVolatilization flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Table A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 x 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SAR        | IRs              | Ingestion rate of soil (mg/day) (Table A-10).                                                             |
| PEFscSubchronic road particulate emission factor (m³/kg); used for non-VOCs.Q/CsaVolatilization flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 × 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SASExposed skin surface area for soil contact (cm²) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VFscVolatilization factor for construction worker scenario (m³/kg); used for VOCs.ΣVKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Koc              | Organic carbon partition coefficient ( $cm^3/g = mL/g = L/kg$ ) (Table A-11).                             |
| Q/CsaVolatilization flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 × 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SExposed skin surface area for soil contact (cm²) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VFscVolatilization factor for construction worker scenario (m³/kg); used for VOCs.ΣVKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | р                | Number of days with at least 0.01 inches of precipitation (days/year)                                     |
| Q/CsrParticulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 × 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VFscVolatilization factor for construction worker scenario (m³/kg); used for VOCs.ΣVKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $PEF_{SC}$       | Subchronic road particulate emission factor (m <sup>3</sup> /kg); used for non-VOCs.                      |
| RfDReference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)<br>exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = 8.206 × 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SSAsExposure interval (sec).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VFscVolatilization factor for construction worker scenario (m³/kg); used for VOCs.ΣVKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $Q/C_{sa}$       | Volatilization flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].                |
| exposure (mg/kg/day) (Tables A-6 and A-7).RTProduct of the universal gas constant (R = $8.206 \times 10-5$ atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = $0.02447$ atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SSAsExposed skin surface area for soil contact (cm²) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VFscVolatilization factor for construction worker scenario (m³/kg); used for VOCs.ΣVKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Q/C_{sr}$       | Particulate emission flux per unit concentration for construction scenario [(g/m²/sec)/(kg/m³)].          |
| RTProduct of the universal gas constant (R = 8.206 × 10-5 atm-m3/mol/K) and the relevant Kelvin<br>temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SSAsExposed skin surface area for soil contact (cm²) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VFscVolatilization factor for construction worker scenario (m³/kg); used for VOCs.£VKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RfD              | Reference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)         |
| temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SSAsExposed skin surface area for soil contact (cm²) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VF <sub>SC</sub> Volatilization factor for construction worker scenario (m³/kg); used for VOCs.£VKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | exposure (mg/kg/day) (Tables A-6 and A-7).                                                                |
| SConstituent solubility limit in water (mg/L).SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SSAsExposed skin surface area for soil contact (cm²) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VF <sub>SC</sub> Volatilization factor for construction worker scenario (m³/kg); used for VOCs. $\Sigma VKT$ Sum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RT               | Product of the universal gas constant (R = $8.206 \times 10-5$ atm-m3/mol/K) and the relevant Kelvin      |
| SARSoil-to-skin adherence rate (mg/cm²/day) (Table A-10).SSAsExposed skin surface area for soil contact (cm²) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VFscVolatilization factor for construction worker scenario (m³/kg); used for VOCs. $\Sigma VKT$ Sum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.                                                      |
| SSAsExposed skin surface area for soil contact (cm²) (Table A-10).TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless).VF <sub>sc</sub> Volatilization factor for construction worker scenario (m³/kg); used for VOCs. $\Sigma VKT$ Sum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                | Constituent solubility limit in water (mg/L).                                                             |
| TExposure interval (sec).TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless). $VF_{SC}$ Volatilization factor for construction worker scenario (m³/kg); used for VOCs. $\Sigma VKT$ Sum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAR              | Soil-to-skin adherence rate (mg/cm²/day) (Table A-10).                                                    |
| TCRTarget cancer risk (unitless).THQTarget hazard quotient for non-cancer effects (unitless). $VF_{SC}$ Volatilization factor for construction worker scenario (m³/kg); used for VOCs. $\Sigma VKT$ Sum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SSAs             | Exposed skin surface area for soil contact (cm <sup>2</sup> ) (Table A-10).                               |
| <ul> <li>THQ Target hazard quotient for non-cancer effects (unitless).</li> <li>VF<sub>SC</sub> Volatilization factor for construction worker scenario (m<sup>3</sup>/kg); used for VOCs.</li> <li>ΣVKT Sum of vehicle kilometers traveled during the exposure duration (km).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | т                | Exposure interval (sec).                                                                                  |
| VFscVolatilization factor for construction worker scenario (m³/kg); used for VOCs.ΣVKTSum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TCR              | Target cancer risk (unitless).                                                                            |
| ΣVKT Sum of vehicle kilometers traveled during the exposure duration (km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THQ              | Target hazard quotient for non-cancer effects (unitless).                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $VF_{SC}$        | Volatilization factor for construction worker scenario (m <sup>3</sup> /kg); used for VOCs.               |
| W Mean vehicle weight (tons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΣVKT             | Sum of vehicle kilometers traveled during the exposure duration (km).                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W                | Mean vehicle weight (tons).                                                                               |

VOCs Volatile organic compounds.

#### Health-Based Concentration Goal Calculations for Exposure to Soil for a Hypothetical Construction Worker Receptor

Former General Motors North American Operations Facility (otherwise known as Buick City)

Flint, Mchigan

|                                     |            |                     | CANC                             | ER EFFECTS                       |         |                                   | NON-CAN                           | ICER EFFECTS                      |                   | Minimum |   |
|-------------------------------------|------------|---------------------|----------------------------------|----------------------------------|---------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------|---------|---|
|                                     |            | Route-              | Specific HBG                     | (mg/kg)                          | HBG     | Route-S                           | Specific HBG                      | i (mg/kg)                         | HBG <sub>NC</sub> | HBG     |   |
|                                     | VF or      |                     | (TCR = 10 <sup>-5</sup> )        |                                  | (mg/kg) | (THQ = 1)                         |                                   |                                   | (mg/kg)           |         |   |
| Constituent                         | PEF [a]    | Oral                | Dermal                           | Inhalation                       | TCR =   | Oral                              | Dermal                            | Inhalation                        | THQ =             | (mg/kg) |   |
|                                     | (m³/kg)    | (HBG₀) <sub>c</sub> | (HBG <sub>d</sub> ) <sub>C</sub> | (HBG <sub>i</sub> ) <sub>C</sub> | 1E-05   | (HBG <sub>o</sub> ) <sub>NC</sub> | (HBG <sub>d</sub> ) <sub>NC</sub> | (HBG <sub>i</sub> ) <sub>NC</sub> | 1                 | [b]     |   |
| Inorganics                          |            |                     |                                  |                                  |         |                                   |                                   |                                   |                   |         |   |
| Arsenic                             | 6.82E+08 P | 1.4E+02             | 2.4E+03                          | 4.8E+05                          | 1.4E+02 | 9.3E+01                           | 1.5E+03                           | 4.4E+04                           | 8.7E+01           | 8.7E+01 | Ν |
| Chromium (total)                    | 1.60E+07 P | 4.3E+02             | _                                | 4.1E+04                          | 4.3E+02 | 6.2E+03                           | _                                 | 7.0E+03                           | 3.3E+03           | 4.3E+02 | С |
| Lead [c]                            | 6.82E+08 P | NA                  | _                                | NA                               | NA      | NA                                | _                                 | NA                                | NA                | NA      |   |
| Vanadium                            | 6.82E+08 P | NA                  | _                                | NA                               | NA      | 2.2E+02                           | _                                 | NA                                | 2.2E+02           | 2.2E+02 | Ν |
| Volatile Organic Compounds (VOCs)   |            |                     |                                  |                                  |         |                                   |                                   |                                   |                   |         |   |
| Benzene                             | 1.56E+02 V | 3.9E+03             | _                                | 6.1E+01                          | 6.0E+01 | 3.1E+03                           | _                                 | 5.4E+01                           | 5.3E+01           | 5.3E+01 | Ν |
| 1,1-Dichloroethane                  | 1.60E+02 V | 3.8E+04             | _                                | 3.0E+02                          | 3.0E+02 | 6.2E+05                           | _                                 | NA                                | 6.2E+05           | 3.0E+02 | С |
| Ethylbenzene                        | 2.12E+02 V | 2.0E+04             | _                                | 2.6E+02                          | 2.5E+02 | 1.5E+04                           | _                                 | 8.3E+03                           | 5.4E+03           | 2.5E+02 | С |
| Methyl cyclohexane                  | 6.95E+01 V | NA                  | _                                | NA                               | NA      | 2.7E+05                           | _                                 | NA                                | 2.7E+05           | 2.7E+05 | Ν |
| 1,1,1-Trichloroethane               | 1.13E+02 V | NA                  | _                                | NA                               | NA      | 2.2E+06                           | _                                 | 2.5E+03                           | 2.5E+03           | 2.5E+03 | Ν |
| Semi Volatile Organic Compounds (SV | DCs)       |                     |                                  |                                  |         |                                   |                                   |                                   |                   |         |   |
| Acenaphthylene                      | 5.50E+03 V | NA                  | NA                               | NA                               | NA      | 1.9E+05                           | 7.1E+05                           | NA                                | 1.5E+05           | 1.5E+05 | Ν |
| Benzo(a)anthracene                  | 6.82E+08 P | 3.0E+02             | 1.1E+03                          | 1.9E+07                          | 2.4E+02 | NA                                | NA                                | NA                                | NA                | 2.4E+02 | С |
| Benzo(a)pyrene                      | 6.82E+08 P | 3.0E+01             | 1.1E+02                          | 1.9E+06                          | 2.4E+01 | NA                                | NA                                | NA                                | NA                | 2.4E+01 | С |
| Benzo(b)fluoranthene                | 6.82E+08 P | 3.0E+02             | 1.1E+03                          | 1.9E+07                          | 2.4E+02 | NA                                | NA                                | NA                                | NA                | 2.4E+02 | С |
| Benzo(g,h,i)perylene                | 6.82E+08 P | NA                  | NA                               | NA                               | NA      | 9.3E+03                           | 3.6E+04                           | NA                                | 7.4E+03           | 7.4E+03 | Ν |
| Benzo(k)fluoranthene                | 6.82E+08 P | 3.0E+03             | 1.1E+04                          | 1.9E+07                          | 2.4E+03 | NA                                | NA                                | NA                                | NA                | 2.4E+03 | С |
| Carbazole                           | 6.82E+08 P | 1.1E+04             | 5.4E+04                          | NA                               | 9.0E+03 | NA                                | NA                                | NA                                | NA                | 9.0E+03 | С |
| Dibenz(a,h)anthracene               | 6.82E+08 P | 3.0E+01             | 1.1E+02                          | 1.7E+06                          | 2.4E+01 | NA                                | NA                                | NA                                | NA                | 2.4E+01 | С |
| Dimethyl phthalate                  | 6.82E+08 P | NA                  | NA                               | NA                               | NA      | 3.1E+06                           | 1.5E+07                           | NA                                | 2.6E+06           | 2.6E+06 | Ν |
| Di-n-octyl phthalate                | 6.82E+08 P | NA                  | NA                               | NA                               | NA      | 1.2E+05                           | 6.2E+05                           | NA                                | 1.0E+05           | 1.0E+05 | Ν |
| Indeno(1,2,3-cd)pyrene              | 6.82E+08 P | 3.0E+02             | 1.1E+03                          | 1.9E+07                          | 2.4E+02 | NA                                | NA                                | NA                                | NA                | 2.4E+02 | С |
| 3&4-Methylphenol                    | 6.82E+08 P | NA                  | NA                               | NA                               | NA      | 1.5E+03                           | 7.7E+03                           | 1.8E+09                           | 1.3E+03           | 1.3E+03 | Ν |
| Naphthalene                         | 1.88E+03 V | NA                  | NA                               | 1.7E+02                          | 1.7E+02 | 6.2E+04                           | 2.4E+05                           | 2.5E+01                           | 2.5E+01           | 2.5E+01 | Ν |
| 2-Nitrophenol                       | 6.82E+08 P | NA                  | NA                               | NA                               | NA      | NA                                | NA                                | 1.5E+06                           | 1.5E+06           | 1.5E+06 | Ν |
| N-Nitrosodi-n-propylamine           | 6.82E+08 P | 3.1E+01             | 1.5E+02                          | 1.0E+06                          | 2.6E+01 | NA                                | NA                                | NA                                | NA                | 2.6E+01 | С |
| Phenanthrene                        | 3.26E+04 V | NA                  | NA                               | NA                               | NA      | 9.3E+05                           | 3.6E+06                           | NA                                | 7.4E+05           | 7.4E+05 | Ν |
| Polychlorinated Biphenyls (PCBs)    |            |                     |                                  |                                  |         |                                   |                                   |                                   |                   |         |   |
| Aroclor-1242 (PCB-1242)             | 6.82E+08 P | 1.1E+02             | 3.9E+02                          | 3.6E+06                          | 8.5E+01 | NA                                | NA                                | NA                                | NA                | 8.5E+01 | С |
| Aroclor-1248 (PCB-1248)             | 6.82E+08 P | 1.1E+02             | 3.9E+02                          | 3.6E+06                          | 8.5E+01 | NA                                | NA                                | NA                                | NA                | 8.5E+01 | С |
| Aroclor-1254 (PCB-1254)             | 6.82E+08 P | 1.1E+02             | 3.9E+02                          | 3.6E+06                          | 8.5E+01 | 1.5E+01                           | 5.5E+01                           | NA                                | 1.2E+01           | 1.2E+01 | Ν |
| Aroclor-1260 (PCB-1260)             | 6.82E+08 P | 1.1E+02             | 3.9E+02                          | 3.6E+06                          | 8.5E+01 | NA                                | NA                                | NA                                | NA                | 8.5E+01 | С |

#### Health-Based Concentration Goal Calculations for Exposure to Soil for a Hypothetical Construction Worker Receptor

Former General Motors North American Operations Facility (otherwise known as Buick City)

#### Flint, Mchigan

|             |         |                     | CANCER EFFECTS                   |                                  |         |                                   | NON-CAN                           | S                                 | Minimum           |         |
|-------------|---------|---------------------|----------------------------------|----------------------------------|---------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------|---------|
|             |         | Route-              | Route-Specific HBG (mg/kg)       |                                  | HBG     | Route-Specific HBG (mg/kg)        |                                   |                                   | HBG <sub>NC</sub> | HBG     |
|             | VF or   |                     | (TCR = 10 <sup>-5</sup> )        |                                  | (mg/kg) |                                   | (THQ = 1)                         |                                   | (mg/kg)           |         |
| Constituent | PEF [a] | Oral                | Dermal                           | Inhalation                       | TCR =   | Oral                              | Dermal                            | Inhalation                        | THQ =             | (mg/kg) |
|             | (m³/kg) | (HBG₀) <sub>c</sub> | (HBG <sub>d</sub> ) <sub>C</sub> | (HBG <sub>i</sub> ) <sub>C</sub> | 1E-05   | (HBG <sub>o</sub> ) <sub>NC</sub> | (HBG <sub>d</sub> ) <sub>NC</sub> | (HBG <sub>i</sub> ) <sub>NC</sub> | 1                 | [b]     |

[a] Minimum of the volatilization factor (identified with [V]) and the particulate emission factor (identified with [P]), both derived on Table A-9.

[b] Minimum of the HBG<sub>C</sub> (identified by "C") and HBG<sub>NC</sub> (identified by "N") for TCR = 10-6 and RBGNC for THQ = 1.

[c] HBGs for lead can not be calculated using these methods.

| _         | Not applicable.                   | PEF  |
|-----------|-----------------------------------|------|
| HBG       | Heath-based concentration goal.   | TCR  |
| NA        | Not available; insufficient data. | THQ  |
| m³/kg     | Cubic meters per kilogram.        | VOCs |
| mg/kg     | Milligrams per kilogram.          |      |
| Equations |                                   |      |

Particulate emission factor. Target cancer risk. Target hazard quotient for non-cancer effects.

Volatile organic compounds.

Equations:

(HBGo)c = (TCR × 70 × 25,550 × 1,000,000) / (330 × 1 × 250 × 1 × CSFo) (HBGd)c = (TCR × 70 × 25,550 × 1,000,000) / (3,300 × 0.2 × ABSd × 250 × 1 × CSFa) (HBGi)c = (TCR × [VF or PEF] × 25,550) / (0.042 × 8 × 250 × 1 × IUR) (HBGo)nc = (THQ × 70 × 350× 1,000,000) / (330 × 1 × 250 × 1 × [1/RfDo]) (HBGd)nc = (THQ × 70 × 350 × 1,000,000) / (3,300 × 0.2 × ABSd × 250 × 1 × [1/RfDa]) (HBGi)nc = (THQ × [VF or PEF] × 350) / (0.042 × 8 × 250 × 1 × [1/RfC]) Table A-17Health-Based Concentration Goal Equations for Groundwater Based on Redevelopment Construction Worker<br/>Exposure, Former General Motors North American Operations Facility (otherwise known as Buick City), Flint,<br/>Michigan

#### ROUTE-SPECIFIC CONCENTRATION GOALS:

$$HBG_{NC} = [1 / (HBG_{o})_{NC}] + [1 / (HBG_{d})_{NC}] + [1 / (HBG_{i})_{NC}]$$

HBG = MINIMUM of HBG<sub>C</sub> and HBG<sub>NC</sub>

| Variable De      | efinitions:                                                                                                    |
|------------------|----------------------------------------------------------------------------------------------------------------|
| τ                | Lag time for dermal absorption through the skin (hour) (Table A-12).                                           |
| AT <sub>C</sub>  | Averaging time for cancer effects (days) (Table A-10).                                                         |
| AT <sub>NC</sub> | Averaging time for non-cancer effects (days) (Table A-10).                                                     |
| В                | Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum                  |
|                  | relative to its permeability coefficient across the viable epidermis (unitless) (Table A-12).                  |
| BRgw             | Breathing rate for groundwater exposure (m <sup>3</sup> /day) (Table A-10).                                    |
| BW               | Body weight (kg) (Table A-10).                                                                                 |
| CSF              | Cancer slope factor for oral (CSFo), dermal (adjusted to an absorbed dose, CSFa), or inhalation (CSFi)         |
|                  | exposure (kg-day/mg [inverse mg/kg/day]) (Tables A-8 and A-9).                                                 |
| DA               | Dermal absorption factor (L/cm <sup>2</sup> /day), calculated using Equation [0], [1], or [2], as appropriate. |
| ED               | Exposure duration (years) (Table A-10).                                                                        |
|                  |                                                                                                                |

| Table A-17 | Health-Based Concentration Goal Equations for Groundwater Based on Redevelopment Construction Worker       |
|------------|------------------------------------------------------------------------------------------------------------|
|            | Exposure, Former General Motors North American Operations Facility (otherwise known as Buick City), Flint, |
|            | Michigan                                                                                                   |

| EF                       | Exposure frequency (days/year) (Table A-10).                                                                                                                                             |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ETgw                     | Exposure time for groundwater contact (hours/day) (Table A-10).                                                                                                                          |
| FA                       | Fraction of absorbed water (unitless) (Table A-12).                                                                                                                                      |
| Н                        | Henry's law constant (atm-m <sup>3</sup> /mol) (Table A-11).                                                                                                                             |
| Hb                       | Height of mixing zone (2 m).                                                                                                                                                             |
| HBG                      | Health-based concentration goal for groundwater (mg/L).                                                                                                                                  |
| H <sub>o</sub>           | Dimensionless Henry's law constant (unitless); calculated as Ho = H/RT.                                                                                                                  |
| IRgw                     | Incidental ingestion rate of groundwater (L/day) (Table A-10).                                                                                                                           |
| k <sub>g</sub>           | Gas-phase mass transfer coefficient (m/sec) » (8.3 x 10-3 m/sec) x [(18 g/mol)/MW]1/2.                                                                                                   |
| k <sub>l</sub>           | Liquid-phase mass transfer coefficient (m/sec) » (5.6 × 10-5 m/sec) × [(44 g/mol)/MW]1/2.                                                                                                |
| K <sub>p</sub>           | Permeability coefficient (cm/hour) (Table A-12).                                                                                                                                         |
| MW                       | Molecular weight (g/mol) (Table A-11).                                                                                                                                                   |
| RfD                      | Reference dose for oral (RfDo), dermal (adjusted to an absorbed dose, RfDa), or inhalation (RfDi)                                                                                        |
|                          | exposure (mg/kg/day) (Tables A-6 and A-7).                                                                                                                                               |
| RT                       | Product of the universal gas constant (R = $8.206 \times 10-5$ atm-m3/mol/K) and the relevant Kelvin                                                                                     |
|                          | temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol.                                                                                                                                     |
| SA                       | Source area (1 m2).                                                                                                                                                                      |
| SSAgw                    | Exposed skin surface area for groundwater contact (cm <sup>2</sup> ) (Table A-10).                                                                                                       |
| t*                       | Time required to reach steady state (hour) (Table A-12).                                                                                                                                 |
| TCR                      | Target cancer risk (unitless).                                                                                                                                                           |
| THQ                      | Target hazard quotient for non-cancer effects (unitless).                                                                                                                                |
| Um                       | Mean wind speed (m/sec).                                                                                                                                                                 |
| VFsw                     | Volatilization factor from surface water (L/m <sup>3</sup> ).                                                                                                                            |
| Wb                       | Width of mixing zone (1 m).                                                                                                                                                              |
| TCR<br>THQ<br>Um<br>VFsw | Target cancer risk (unitless).<br>Target hazard quotient for non-cancer effects (unitless).<br>Mean wind speed (m/sec).<br>Volatilization factor from surface water (L/m <sup>3</sup> ). |

Health-Based Concentration Goal Calculations for Exposure to Groundwater for a Hypothetical Construction Worker Receptor

Former General Motors North American Operations Facility (otherwise known as Buick City)

Flint, Mchigan

|                                |              |                     | CANC                             | ER EFFECTS                       |                  |                      | NON-CAN                           | NCER EFFEC                        | TS                |           |
|--------------------------------|--------------|---------------------|----------------------------------|----------------------------------|------------------|----------------------|-----------------------------------|-----------------------------------|-------------------|-----------|
|                                | DA           | Route-              | Specific HBG                     | i (mg/L)                         | HBG <sub>c</sub> | Route-               | Specific HBG                      | 6 (mg/L)                          | HBG <sub>NC</sub> | Minimum   |
| Constituent                    | [a]          | Oral                | Dermal                           | Inhalation                       | (mg/L)           | Oral                 | Dermal                            | Inhalation                        | (mg/L)            | HBG [b]   |
|                                | (L/cm²/day)  | (HBG₀) <sub>C</sub> | (HBG <sub>d</sub> ) <sub>C</sub> | (HBG <sub>i</sub> ) <sub>C</sub> | TCR = 1E-05      | (HBG₀) <sub>NC</sub> | (HBG <sub>d</sub> ) <sub>NC</sub> | (HBG <sub>i</sub> ) <sub>NC</sub> | THQ = 1           | (mg/L)    |
|                                |              |                     |                                  |                                  |                  |                      |                                   |                                   |                   |           |
| Inorganics                     |              |                     |                                  |                                  |                  |                      |                                   |                                   |                   |           |
| Arsenic                        | 2.00E-06 [0] | 4.8E+01             | 3.6E+01                          | —                                | 2.1E+01          | 3.1E+01              | 2.3E+01                           | —                                 | 1.3E+01           | 1.3E+01 N |
| Barium                         | 2.00E-06 [0] | NA                  | NA                               | _                                | NA               | 2.0E+04              | 1.1E+03                           | _                                 | 1.0E+03           | 1.0E+03 N |
| Beryllium                      | 2.00E-06 [0] | NA                  | NA                               | _                                | NA               | 5.1E+02              | 2.7E+00                           | _                                 | 2.7E+00           | 2.7E+00 N |
| Cadmium                        | 2.00E-06 [0] | NA                  | NA                               | —                                | NA               | 1.0E+02              | 1.9E+00                           | —                                 | 1.9E+00           | 1.9E+00 N |
| Chromium (total)               | 4.00E-06 [0] | 1.4E+02             | 7.0E-01                          | _                                | 7.0E-01          | 2.0E+03              | 1.0E+01                           | _                                 | 1.0E+01           | 7.0E-01 C |
| Cobalt                         | 8.00E-07 [0] | NA                  | NA                               | _                                | NA               | 3.1E+01              | 5.8E+01                           | _                                 | 2.0E+01           | 2.0E+01 N |
| Lead [c]                       | 2.00E-07 [0] | NA                  | NA                               | _                                | NA               | NA                   | NA                                | _                                 | NA                | NA        |
| Manganese                      | 2.00E-06 [0] | NA                  | NA                               | _                                | NA               | 1.4E+04              | 4.3E+02                           | _                                 | 4.2E+02           | 4.2E+02 N |
| Selenium                       | 2.00E-06 [0] | NA                  | NA                               | _                                | NA               | 5.1E+02              | 3.9E+02                           | _                                 | 2.2E+02           | 2.2E+02 N |
| Thallium                       | 2.00E-06 [0] | NA                  | NA                               | _                                | NA               | 6.8E+00              | 5.2E+00                           | _                                 | 3.0E+00           | 3.0E+00 N |
| Vanadium                       | 2.00E-06 [0] | NA                  | NA                               | _                                | NA               | 7.2E+01              | 1.4E+00                           | _                                 | 1.4E+00           | 1.4E+00 N |
| Volatile Organic Compounds (VO | Ċs)          |                     |                                  |                                  |                  |                      |                                   |                                   |                   |           |
| Benzene                        | 3.86E-05 [2] | 1.3E+03             | 5.1E+01                          | 1.6E+01                          | 1.2E+01          | 1.0E+03              | 4.0E+01                           | 1.4E+01                           | 1.0E+01           | 1.0E+01 N |
| 1,1-Dichloroethane             | 1.86E-05 [2] | 1.3E+04             | 1.0E+03                          | 7.6E+01                          | 7.0E+01          | 2.0E+05              | 1.7E+04                           | NA                                | 1.5E+04           | 7.0E+01 C |
| 1,2-Dichloroethane             | 1.16E-05 [2] | 7.9E+02             | 1.0E+02                          | 4.7E+00                          | 4.4E+00          | 2.0E+03              | 2.7E+02                           | 4.2E+02                           | 1.5E+02           | 4.4E+00 C |
| cis-1,2-Dichloroethene         | 2.12E-05 [2] | NA                  | NA                               | NA                               | NA               | 1.0E+04              | 7.3E+02                           | NA                                | 6.8E+02           | 6.8E+02 N |
| 1,2-Dichloropropane            | 2.30E-05 [2] | 2.0E+03             | 1.3E+02                          | 1.2E+01                          | 1.1E+01          | 7.2E+03              | 4.7E+02                           | 2.3E+00                           | 2.2E+00           | 2.2E+00 N |
| 1,3-Dichlorobenzene            | 2.52E-04 [2] | NA                  | NA                               | NA                               | NA               | 9.2E+04              | 5.5E+02                           | 3.5E+02                           | 2.1E+02           | 2.1E+02 N |
| Ethylbenzene                   | 1.50E-04 [2] | 6.5E+03             | 6.6E+01                          | 4.9E+01                          | 2.8E+01          | 5.1E+03              | 5.2E+01                           | 1.6E+03                           | 4.9E+01           | 2.8E+01 C |
| Methyl cyclohexane             | 3.50E-04 [0] | NA                  | NA                               | NA                               | NA               | 8.8E+04              | 3.8E+02                           | NA                                | 3.8E+02           | 3.8E+02 N |
| Methyl Tert Butyl Ether        | 9.05E-06 [2] | 4.0E+04             | 6.7E+03                          | 4.7E+02                          | 4.3E+02          | NA                   | NA                                | 5.2E+02                           | 5.2E+02           | 4.3E+02 C |
| Methylene chloride             | 9.24E-06 [2] | 9.5E+03             | 1.6E+03                          | 2.6E+02                          | 2.2E+02          | 6.1E+03              | 1.0E+03                           | 1.7E+02                           | 1.4E+02           | 1.4E+02 N |
| Tetrachloroethene              | 1.23E-04 [1] | 1.3E+02             | 1.6E+00                          | 2.1E+01                          | 1.5E+00          | 1.0E+04              | 1.3E+02                           | 4.7E+01                           | 3.4E+01           | 1.5E+00 C |
| Toluene                        | 8.54E-05 [2] | NA                  | NA                               | NA                               | NA               | 8.2E+04              | 1.5E+03                           | 8.7E+02                           | 5.4E+02           | 5.4E+02 N |
| Trichloroethene                | 3.90E-05 [2] | 1.2E+04             | 4.7E+02                          | 6.1E+01                          | 5.4E+01          | NA                   | NA                                | NA                                | NA                | 5.4E+01 C |
| Vinyl chloride                 | 1.38E-05 [2] | 9.9E+01             | 1.1E+01                          | 2.8E+01                          | 7.2E+00          | 3.1E+02              | 3.4E+01                           | 1.7E+01                           | 1.1E+01           | 7.2E+00 C |
| m&p-Xylene                     | 1.64E-04 [2] | NA                  | NA                               | NA                               | NA               | 4.1E+04              | 3.8E+02                           | 7.0E+01                           | 5.9E+01           | 5.9E+01 N |
| o-Xylene                       | 1.64E-04 [2] | NA                  | NA                               | NA                               | NA               | 4.1E+04              | 3.8E+02                           | 7.0E+01                           | 5.9E+01           | 5.9E+01 N |
| Semi Volatile Organic Compound | s (SVOCs)    |                     |                                  |                                  |                  |                      |                                   |                                   |                   |           |
| Benzo(a)anthracene             | 2.62E-03 [1] | 9.8E+01             | 5.7E-02                          | _                                | 5.7E-02          | NA                   | NA                                | _                                 | NA                | 5.7E-02 C |
| Benzo(a)pyrene                 | 4.49E-03 [1] | 9.8E+00             | 3.3E-03                          | _                                | 3.3E-03          | NA                   | NA                                | _                                 | NA                | 3.3E-03 C |
| Benzo(k)fluoranthene           | 6.19E-03 [1] | 9.8E+02             | 2.4E-01                          | _                                | 2.4E-01          | NA                   | NA                                | _                                 | NA                | 2.4E-01 C |
| bis(2-Chloroethyl)ether        | 6.08E-06 [2] | 6.5E+01             | 1.6E+01                          | 3.7E-01                          | 3.6E-01          | NA                   | NA                                | NA                                | NA                | 3.6E-01 C |
| bis(2-Ethylhexyl)phthalate     | 3.19E-04 [1] | 5.1E+03             | 2.4E+01                          | _                                | 2.4E+01          | 2.0E+04              | 9.7E+01                           | _                                 | 9.7E+01           | 2.4E+01 C |

### Table A-18 Health-Based Concentration Goal Calculations for Exposure to Groundwater for a Hypothetical Construction Worker Receptor Former General Motors North American Operations Facility (otherwise known as Buick City)

Flint, Mchigan

|                              |              |                           | CANC                             | ER EFFECTS                       |                  |                                   | NON-CA                                                 | NCER EFFEC | TS                |           |
|------------------------------|--------------|---------------------------|----------------------------------|----------------------------------|------------------|-----------------------------------|--------------------------------------------------------|------------|-------------------|-----------|
|                              | DA           | Route-Specific HBG (mg/L) |                                  |                                  | HBG <sub>c</sub> | Route-Specific HBG (mg/L)         |                                                        |            | HBG <sub>NC</sub> | Minimum   |
| Constituent                  | [a]          | Oral                      | Dermal                           | Inhalation                       | (mg/L)           | Oral                              | Dermal                                                 | Inhalation | (mg/L)            | HBG [b]   |
|                              | (L/cm²/day)  | (HBG₀) <sub>C</sub>       | (HBG <sub>d</sub> ) <sub>C</sub> | (HBG <sub>i</sub> ) <sub>C</sub> | TCR = 1E-05      | (HBG <sub>o</sub> ) <sub>NC</sub> | (HBG₀) <sub>NC</sub> (HBG <sub>d</sub> ) <sub>NC</sub> |            | THQ = 1           | (mg/L)    |
| Dibenz(a,h)anthracene        | 6.93E-03 [1] | 9.8E+00                   | 2.1E-03                          | _                                | 2.1E-03          | NA                                | NA                                                     | _          | NA                | 2.1E-03 C |
| 2-Methylnaphthalene          | 4.51E-04 [1] | NA                        | NA                               | NA                               | NA               | 4.1E+02                           | 1.4E+00                                                | NA         | 1.4E+00           | 1.4E+00 N |
| 3&4-Methylphenol             | 2.22E-05 [2] | NA                        | NA                               | —                                | NA               | 5.1E+02                           | 3.5E+01                                                | —          | 3.3E+01           | 3.3E+01 N |
| Naphthalene                  | 1.68E-04 [2] | NA                        | NA                               | 3.6E+00                          | 3.6E+00          | 2.0E+04                           | 1.8E+02                                                | 5.2E-01    | 5.2E-01           | 5.2E-01 N |
| Nitrobenzene                 | 1.71E-05 [2] | NA                        | NA                               | 3.0E+00                          | 3.0E+00          | 5.1E+02                           | 4.5E+01                                                | 3.5E+00    | 3.2E+00           | 3.0E+00 C |
| 2,2'-oxybis(1-Chloropropane) | 3.05E-05 [1] | 1.0E+03                   | 5.1E+01                          | 1.2E+01                          | 9.7E+00          | 4.1E+03                           | 2.0E+02                                                | NA         | 1.9E+02           | 9.7E+00 C |
| Pentachlorophenol            | 2.50E-03 [1] | 6.0E+02                   | 3.6E-01                          | —                                | 3.6E-01          | 3.1E+03                           | 1.9E+00                                                | —          | 1.9E+00           | 3.6E-01 C |
| Phenanthrene                 | 5.63E-04 [1] | NA                        | NA                               | NA                               | NA               | 3.1E+05                           | 8.2E+02                                                | NA         | 8.2E+02           | 8.2E+02 N |

[a] The dermal absorption factor was calculated using Equation [0], [1], or [2], as indicated, from Table A-8.

[b] Minimum of the HBG<sub>C</sub> (identified by "C") and HBG<sub>NC</sub> (identified by "N").

[c] HBGs for lead can not be calculated using these methods.

Not applicable.

HBG Health-based concentration goal for groundwater.

mg/L Milligrams per liter.

NA Not available; insufficient data.

#### Equations:

(HBGo)c = (TCR × 70 × 25,550) / (0.005 × 50 × 1 × CSFo) (HBGd)c = (TCR × 70 × 25,550) / (3,300 × DA × 50 × 1 × CSFa) (HBGi)c [VOCs] = (TCR × 25,550) / (0.5 × 0.42 × 2.00 × 50 × 1 × IUR) TCR Target cancer risk.

THQ Target hazard quotient for noncancer effects.

(HBGo)nc = (THQ × 70 × 350) / (0.005 × 50 × 1 × [1/RfDo]) (HBGd)nc = (THQ × 70 × 350) / (3,300 × DA × 50 × 1 × [1/RfDa]) (HBGi)nc [VOCs] = (THQ × 350) / (0.5 × 0.042 × 2.00 × 50 × 1 × [1/RfC])

### Table A-19 Summary of Calculated Health Based Goals

Former General Motors North American Operations Facility (otherwise known as Buick City)

Flint, Mchigan

|                                                  | Minimum Soil HBG (mg/kg) | Minimum Groundwater HBG (mg/L) |
|--------------------------------------------------|--------------------------|--------------------------------|
| Constituent                                      | Construction             | Construction                   |
|                                                  | Worker                   | Worker                         |
| Inorganics                                       |                          |                                |
| Arsenic                                          | 8.7E+01                  | 1.3E+01                        |
| Barium                                           | 0.7 2+01                 | 1.0E+03                        |
|                                                  | —                        |                                |
| Beryllium                                        | —                        | 2.7E+00                        |
| Cadmium                                          |                          | 1.9E+00                        |
| Chromium (total)                                 | 4.3E+02                  | 7.0E-01                        |
| Cobalt                                           | —                        | 2.0E+01                        |
| Lead [a]                                         | —                        | —                              |
| Manganese                                        | —                        | 4.2E+02                        |
| Selenium                                         | _                        | 2.2E+02                        |
| Thallium                                         | —                        | 3.0E+00                        |
| Vanadium                                         | 2.2E+02                  | 1.4E+00                        |
| Volatile Organic Compounds (VOCs)                |                          |                                |
| Benzene                                          | 5.3E+01                  | 1.0E+01                        |
| 1,1-Dichloroethane                               | 3.0E+02                  | 7.0E+01                        |
| 1,2-Dichloroethane                               | _                        | 4.4E+00                        |
| cis-1,2-Dichloroethene                           | _                        | 6.8E+02                        |
| 1,2-Dichloropropane                              | _                        | 2.2E+00                        |
| 1,3-Dichlorobenzene                              | _                        | 2.1E+02                        |
| ,                                                | 2 55 102                 |                                |
| Ethylbenzene                                     | 2.5E+02                  | 2.8E+01                        |
| Methyl cyclohexane                               | 2.7E+05                  | 3.8E+02                        |
| Methyl Tert Butyl Ether                          | —                        | 4.3E+02                        |
| Methylene chloride                               | —                        | 1.4E+02                        |
| Tetrachloroethene                                | —                        | 1.5E+00                        |
| Toluene                                          | —                        | 5.4E+02                        |
| 1,1,1-Trichloroethane                            | 2.5E+03                  | —                              |
| Trichloroethene                                  | —                        | 5.4E+01                        |
| Vinyl chloride                                   | _                        | 7.2E+00                        |
| m&p-Xylene                                       | _                        | 5.9E+01                        |
| o-Xylene                                         | _                        | 5.9E+01                        |
| Semi Volatile Organic Compounds (SVOCs)          |                          |                                |
| Acenaphthylene                                   | 1.5E+05                  | _                              |
| Benzo(a)anthracene                               | 2.4E+02                  | 5.7E-02                        |
| Benzo(a)pyrene                                   | 2.4E+01                  | 3.3E-03                        |
| Benzo(b)fluoranthene                             | 2.4E+01<br>2.4E+02       |                                |
|                                                  |                          | _                              |
| Benzo(g,h,i)perylene                             | 7.4E+03                  |                                |
| Benzo(k)fluoranthene                             | 2.4E+03                  | 2.4E-01                        |
| bis(2-Chloroethyl)ether                          | —                        | 3.6E-01                        |
| bis(2-Ethylhexyl)phthalate                       |                          | 2.4E+01                        |
| Carbazole                                        | 9.0E+03                  | -                              |
| Dibenz(a,h)anthracene                            | 2.4E+01                  | 2.1E-03                        |
| Dimethyl phthalate                               | 2.6E+06                  | -                              |
| Di-n-octyl phthalate                             | 1.0E+05                  | -                              |
| Indeno(1,2,3-cd)pyrene                           | 2.4E+02                  | —                              |
| 2-Methylnaphthalene                              | _                        | 1.4E+00                        |
| 3&4-Methylphenol                                 | 1.3E+03                  | 3.3E+01                        |
| Naphthalene                                      | 2.5E+01                  | 5.2E-01                        |
| Nitrobenzene                                     | _                        | 3.0E+00                        |
| 2-Nitrophenol                                    | 1.5E+06                  |                                |
| N-Nitrosodi-n-propylamine                        | 2.6E+01                  | _                              |
|                                                  | 2.02701                  |                                |
| 2,2'-oxybis(1-Chloropropane)                     | —                        | 9.7E+00                        |
| Pentachlorophenol                                |                          | 3.6E-01                        |
|                                                  | 1.4E+UD                  | 0.2E+U2                        |
| Phenanthrene<br>Polychlorinated Biphenyls (PCBs) | 7.4E+05                  | 8.2E+02                        |

## Table A-19 Summary of Calculated Health Based Goals Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Mchigan

| Constituent             | Minimum Soil HBG (mg/kg)<br>Construction<br>Worker | Minimum Groundwater HBG (mg/L)<br>Construction<br>Worker |
|-------------------------|----------------------------------------------------|----------------------------------------------------------|
| Aroclor-1242 (PCB-1242) | 8.5E+01                                            | _                                                        |
| Aroclor-1248 (PCB-1248) | 8.5E+01                                            | —                                                        |
| Aroclor-1254 (PCB-1254) | 1.2E+01                                            | —                                                        |
| Aroclor-1260 (PCB-1260) | 8.5E+01                                            | —                                                        |

[a] HBGs for lead can not be calculated using these methods.

Not applicable for this media.

| HBG   | Health-based concentration goal. |
|-------|----------------------------------|
| ma/ka | Milliaromo por kiloarom          |

mg/kg Milligrams per kilogram.

#### Table A-20 Input Parameters for the Adult Lead Model Former General Motors North American Operations (otherwise known as Buick City) Flint, Michigan

|                                  |                                                                        |                     | Value - GSDi and<br>PbBo from Analysis of<br>NHANES III (Phases |                                                            |
|----------------------------------|------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------|------------------------------------------------------------|
| Variable                         | Description of Variable                                                | Units               | 1&2)                                                            | Comments                                                   |
| Soil Model Input Par             | ameters                                                                |                     |                                                                 |                                                            |
| PbS                              | Soil lead concentration                                                | ug/g or ppm         | AOI-Specific                                                    | Mean concentration                                         |
| R <sub>fetal/maternal</sub>      | Fetal/maternal PbB ratio                                               |                     | 0.9                                                             | default                                                    |
| BKSF                             | Biokinetic Slope Factor                                                | ug/dL per<br>ug/day | 0.4                                                             | default                                                    |
| GSD <sub>i</sub>                 | Geometric standard deviation PbB                                       |                     | 2.1                                                             | default                                                    |
| PbB <sub>0</sub>                 | Baseline PbB                                                           | ug/dL               | 1.50                                                            | default                                                    |
| IR <sub>s</sub>                  | Soil ingestion rate (including soil-derived indoor dust)               | g/day               | 0.330                                                           | default for construction worker (USEPA 1996, 2002a, 2002b) |
| IR <sub>S+D</sub>                | Total ingestion rate of outdoor soil and indoor dust                   | g/day               |                                                                 |                                                            |
| Ws                               | Weighting factor; fraction of $IR_{S+D}$ ingested as outdoor soil      |                     |                                                                 |                                                            |
| K <sub>SD</sub>                  | Mass fraction of soil in dust                                          |                     |                                                                 |                                                            |
| AF <sub>S, D</sub>               | Absorption fraction (same for soil and dust)                           |                     | 0.12                                                            | default                                                    |
| EF <sub>S, D</sub>               | Exposure frequency (same for soil and dust)                            | days/yr             | 250                                                             | Professional judgment                                      |
| AT <sub>S, D</sub>               | Averaging time (same for soil and dust)                                | days/yr             | 365                                                             | default                                                    |
| PbB <sub>adult</sub>             | PbB of adult worker, geometric mean                                    | ug/dL               | calculated                                                      | used as baseline blood lead level in grondwater model      |
| PbB <sub>fetal, 0.95</sub>       | 95th percentile PbB among fetuses of adult workers                     | ug/dL               | calculated                                                      |                                                            |
| PbB <sub>t</sub>                 | Target PbB level of concern (e.g., 10 ug/dL)                           | ug/dL               | calculated                                                      |                                                            |
| $P(PbB_{fetal} > PbB_t)$         | Probability that fetal $PbB > PbB_t$ , assuming lognormal distribution | %                   | calculated                                                      |                                                            |
| Groundwater Model                | Input Parameters                                                       | 1                   |                                                                 |                                                            |
| PbB <sub>recptor,central</sub>   | PbB of adult worker, geometric mean                                    | ug/dL               | calculated                                                      |                                                            |
| PbB <sub>receptor,baseline</sub> | Typical blood lead concentration in adults                             | ug/dL               | AOI-specific PbB <sub>adult</sub>                               | calculated using soil model                                |
| BKSF                             | Biokinetic Slope Factor                                                | ug/dL per<br>ug/day | 0.4                                                             | default                                                    |
| IRw                              | Water Intake Rate                                                      | L/day               | 0.005                                                           | Professional judgment                                      |
| AFw                              | Absorption fraction from water                                         |                     | 0.2                                                             | default                                                    |
| EFw                              | Exposure frequency for water                                           | days/yr             | 50                                                              | Professional judgment                                      |
| ATw                              | Averaging time for water                                               | days                | 90                                                              | time to reach quasi steady state                           |

# Table A-21 Predicted Blood Lead Levels due to Ingestion of Soil and Resulting Health-Based Goals for Lead in Groundwater Former General Motors North American Operations Facility

| r       | 11                       | int, Michigan           |                      |
|---------|--------------------------|-------------------------|----------------------|
|         |                          |                         |                      |
|         | Predicted Adult Blood    | Calculated Health-Based | Maximum Groundwater  |
|         | Lead Level Due to        | Goal for Lead in        | Cencentration in AOI |
| AOI     | Exposure to Soil (ug/dL) | Groundwater (mg/L)      | (mg/k)               |
| 36-1    | 1.6                      | 7.6                     | 0.022                |
| 81-2    | 3.2                      | 0.41                    | 0.092                |
| 81-3    | 1.9                      | 6.2                     | 0.047                |
| 83/84-3 | 36.2                     | 0                       | 0.017                |

Flint, Michigan

Notes: ug/dL - micrograms per deciliter

|                             |       |              |               |             | AOI 05-1         |                  |                  |                  |                  |                  |                  |                  |                    |                  |                    |                  |
|-----------------------------|-------|--------------|---------------|-------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------------------|------------------|--------------------|------------------|
| AOI Number   Location ID:   |       |              |               | Exceeds     | 05-1   RFI-05-13 | 05-1   RFI-05-13 | 05-1   RFI-05-13 | 05-1   RFI-05-14 | 05-1   RFI-05-14 | 05-1   RFI-05-14 | 05-1   RFI-05-21 | 05-1   RFI-05-21 | 05-1   RFI-05-22   | 05-1   RFI-05-22 | 05-1   RFI-05-23   | 05-1   RFI-05-23 |
| Sample Depth(ft BGS):       |       | Construction | Maximum       | Constructio | 0 - 2            | 8 - 10           | 10 - 12          | 0 - 2            | 8 - 10           | 10 - 12          | 0 - 2            | 6 - 8            | 0.5 - 2.5          | 4 - 6            | 1.3 - 3            | 4 - 6            |
| Date Collected:             |       | Worker Soil  | Detected      | n Worker    | 01/26/01         | 01/22/01         | 01/22/01         | 01/26/01         | 01/22/01         | 01/22/01         | 06/26/01         | 06/26/01         | 11/26/01           | 11/26/01         | 11/26/01           | 11/26/01         |
| Sample Name:                | Units |              | Concentration |             | RFI-05-13(00-02) | RFI-05-13(08-10) | RFI-05-13(10-12) | RFI-05-14(00-02) |                  | RFI-05-14(10-12) | RFI-05-21(00-02) | RFI-05-21(06-08) | RFI-05-22(0.5-2.5) | RFI-05-22(04-06) | RFI-05-23(1.3-3.0) | RFI-05-23(04-06) |
| Inorganics                  |       |              |               |             |                  |                  |                  |                  |                  |                  |                  |                  |                    |                  |                    |                  |
| Arsenic                     | mg/kg | 8.7E+01      | 190           | YES         | 4.7              | 4.9              | 7.4              | 4.7              | 3.4              | 6.9              | 4.2              | 4.6              | NA                 | 4.6              | NA                 | 12               |
| Chromium (total) [a]        | mg/kg |              | 2400          | YES         | 7                | 12               | 8.8              | 9.1              | 9.2              | 8.9              | 15               | 13               | NA                 | 43               | NA                 | 76               |
| Lead [b]                    | mg/kg | 8.0E+02      | 69000         | YES         | 8.5              | 11               | 7.3              | 6.8              | 4.7              | 6.2              | 3100             | 78               | 14                 | 310              | 92                 | 21               |
| Vanadium                    | mg/kg | 2.2E+02      | 390           | YES         | NA               | NA               | NA               | NA               | NA               | NA               | 12               | 18               | NA                 | 12               | NA                 | 31               |
| Volatile Organic Compound   |       |              |               |             |                  |                  |                  |                  |                  |                  |                  |                  |                    |                  |                    |                  |
| Benzene                     | mg/kg | 5.3E+01      | 240           | YES         | <0.041           | <0.042           | <0.042           | <0.039           | <0.041           | <0.041           | < 0.039          | < 0.043          | NA                 | <0.041           | NA                 | < 0.036          |
| 1,1-Dichloroethane          | mg/kg |              | 7000          | YES         | <0.041           | <0.042           | <0.042           | <0.039           | <0.041           | <0.041           | < 0.039          | < 0.043          | NA                 | <0.041           | NA                 | < 0.036          |
| Ethylbenzene                | mg/kg | 2.5E+02      | 680           | YES         | <0.041           | < 0.042          | < 0.042          | <0.039           | <0.041           | <0.041           | < 0.039          | < 0.043          | NA                 | <0.041           | NA                 | < 0.036          |
| Methyl cyclohexane          | mg/kg | 2.7E+05      | 11            | no          | NA               | NA               | NA               | NA               | NA               | NA               | 0.08             | 0.04             | NA                 | <0.17            | NA                 | 0.032            |
| 1,1,1-Trichloroethane       | mg/kg | 2.5E+03      | 47000         | YES         | <0.041           | < 0.042          | < 0.042          | <0.039           | <0.041           | <0.041           | < 0.039          | < 0.043          | NA                 | <0.041           | NA                 | < 0.036          |
| Semi Volatile Organic Comp  | ounds | (SVOCs)      |               |             |                  |                  |                  |                  |                  |                  |                  |                  |                    |                  |                    |                  |
| Acenaphthylene              | mg/kg |              | 2.1           | no          | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | <0.20            | <0.94            | 0.094            | NA                 | 0.044            | NA                 | <0.18            |
| Benzo(a)anthracene          | mg/kg |              | 81            | no          | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | <0.20            | 1.3              | 1.3              | NA                 | 2.5              | NA                 | 0.58             |
| Benzo(a)pyrene              | mg/kg | 2.4E+01      | 66            | YES         | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | <0.20            | 1.7              | 1.3              | NA                 | 2.1              | NA                 | 0.4              |
| Benzo(b)fluoranthene        | mg/kg | 2.4E+02      | 63            | no          | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | <0.20            | 1.8              | 1.3              | NA                 | 2.6              | NA                 | 0.35             |
| Benzo(g,h,i)perylene        | mg/kg | 7.4E+03      | 28            | no          | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | <0.20            | 0.86             | 0.73             | NA                 | 1                | NA                 | 0.72             |
| Benzo(k)fluoranthene        | mg/kg | 2.4E+03      | 59            | no          | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | <0.20            | 1.4              | 1.2              | NA                 | 3                | NA                 | 0.27             |
| Carbazole                   | mg/kg | 9.0E+03      | 40            | no          | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | <0.20            | <0.94            | 0.18             | NA                 | 1.4              | NA                 | 0.13             |
| Dibenz(a,h)anthracene       | mg/kg |              | 17            | no          | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | <0.20            | <0.94            | <0.21            | NA                 | <0.19            | NA                 | <0.18            |
| Dimethyl phthalate          | mg/kg | 2.6E+06      | 0.3           | no          | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | <0.20            | <0.94            | <0.21            | NA                 | <0.19            | NA                 | <0.18            |
| Di-n-octyl phthalate        | mg/kg | 1.0E+05      | 0.25          | no          | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | <0.20            | <0.94            | <0.21            | NA                 | <0.19            | NA                 | <0.18            |
| Indeno(1,2,3-cd)pyrene      | mg/kg | 2.4E+02      | 29            | no          | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | <0.20            | 0.88             | 0.66             | NA                 | 0.92             | NA                 | 0.57             |
| 3&4-Methylphenol            | mg/kg | 1.3E+03      | 1             | no          | <0.35            | < 0.36           | <0.39            | < 0.35           | <0.36            | <0.39            | <1.9             | <0.43            | NA                 | <0.39            | NA                 | <0.36            |
| Naphthalene                 | mg/kg | 2.5E+01      | 44            | YES         | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | 0.26             | <0.94            | <0.21            | NA                 | 0.17             | NA                 | 0.31             |
| 2-Nitrophenol               | mg/kg | 1.5E+06      | ND            | no          | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | <0.20            | <0.94            | <0.21            | NA                 | <0.19            | NA                 | <0.18            |
| N-Nitrosodi-n-propylamine   | mg/kg |              | 0.45          | no          | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | <0.20            | <0.94            | <0.21            | NA                 | <0.19            | NA                 | <0.18            |
| Phenanthrene                | mg/kg | 7.4E+05      | 190           | no          | <0.18            | <0.19            | <0.20            | <0.18            | <0.19            | 0.69             | 0.32             | 1                | NA                 | 3.4              | NA                 | 1.2              |
| Polychlorinated Biphenyls ( |       | 0.55.04      |               |             | 0.005            | 0.000            | 0.000            | 0.005            | 0.000            | 0.040            | 0.000            | 0.044            |                    | 0.040            |                    | 0.007            |
| Aroclor-1242 (PCB-1242)     | mg/kg |              | 1.1           | no          | < 0.035          | < 0.036          | < 0.039          | < 0.035          | < 0.036          | < 0.040          | < 0.039          | < 0.044          | NA                 | < 0.040          | NA                 | < 0.037          |
| Aroclor-1248 (PCB-1248)     | mg/kg |              | 3.5           | no          | < 0.035          | < 0.036          | < 0.039          | < 0.035          | < 0.036          | < 0.040          | < 0.039          | < 0.044          | NA                 | < 0.040          | NA                 | < 0.037          |
| Aroclor-1254 (PCB-1254)     | mg/kg | 1.2E+01      | 4.1           | no          | < 0.035          | < 0.036          | < 0.039          | < 0.035          | < 0.036          | < 0.040          | < 0.039          | < 0.044          | NA                 | < 0.040          | NA                 | < 0.037          |
| Aroclor-1260 (PCB-1260)     | mg/kg | 8.5E+01      | 0.88          | no          | <0.035           | <0.036           | <0.039           | <0.035           | <0.036           | <0.040           | 0.25             | <0.044           | NA                 | <0.040           | NA                 | <0.037           |

AOI Number | Location ID: Sample Depth(ft BGS): Date Collected: Sample Name:

#### Table A-22

AOIs with Soil Exceedances of the Construction Worker Health-Based Goals Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

|                             | AOI 05-1 cont.   |                  |                  |
|-----------------------------|------------------|------------------|------------------|
|                             | 05-1   RFI-05-24 | 05-1   RFI-05-24 | 05-1   RFI-05-25 |
|                             | 1 - 3            | 3 - 5            | 0 - 2            |
|                             | 11/26/01         | 11/26/01         | 11/30/01         |
|                             | RFI-05-24(01-03) | RFI-05-24(03-05) | RFI-05-25(00-02) |
| Inorganics                  |                  |                  |                  |
| Arsenic                     | NA               | NA               | 4.2              |
| Chromium (total) [a]        | NA               | NA               | 13               |
| Lead [b]                    | 42               | 34               | 50               |
| Vanadium                    | NA               | NA               | 14               |
| Volatile Organic Compound   | •                |                  |                  |
| Benzene                     | NA               | NA               | < 0.039          |
| 1,1-Dichloroethane          | NA               | NA               | < 0.039          |
| Ethylbenzene                | NA               | NA               | < 0.039          |
| Methyl cyclohexane          | NA               | NA               | <0.17            |
| 1,1,1-Trichloroethane       | NA               | NA               | <0.039           |
| Semi Volatile Organic Comp  |                  |                  |                  |
| Acenaphthylene              | NA               | NA               | <0.19            |
| Benzo(a)anthracene          | NA               | NA               | <0.95            |
| Benzo(a)pyrene              | NA               | NA               | <0.95            |
| Benzo(b)fluoranthene        | NA               | NA               | <0.95            |
| Benzo(g,h,i)perylene        | NA               | NA               | <0.95            |
| Benzo(k)fluoranthene        | NA               | NA               | <0.95            |
| Carbazole                   | NA               | NA               | <0.19            |
| Dibenz(a,h)anthracene       | NA               | NA               | <0.95            |
| Dimethyl phthalate          | NA               | NA               | <0.19            |
| Di-n-octyl phthalate        | NA               | NA               | <0.95            |
| Indeno(1,2,3-cd)pyrene      | NA               | NA               | <0.95            |
| 3&4-Methylphenol            | NA               | NA               | <1.9             |
| Naphthalene                 | NA               | NA               | 0.19             |
| 2-Nitrophenol               | NA               | NA               | <0.19            |
| N-Nitrosodi-n-propylamine   | NA               | NA               | <0.19            |
| Phenanthrene                | NA               | NA               | 0.52             |
| Polychlorinated Biphenyls ( | ŧ                |                  |                  |
| Aroclor-1242 (PCB-1242)     | NA               | NA               | 0.46             |
| Aroclor-1248 (PCB-1248)     | NA               | NA               | <0.039           |
| Aroclor-1254 (PCB-1254)     | NA               | NA               | 0.22             |
| Aroclor-1260 (PCB-1260)     | NA               | NA               | <0.039           |

Page 2 of 30

|                                                    | AOI 05-6           |                    |                    |                     |                      |                    |                     |                      |                  |                    |                    |                     |                     |
|----------------------------------------------------|--------------------|--------------------|--------------------|---------------------|----------------------|--------------------|---------------------|----------------------|------------------|--------------------|--------------------|---------------------|---------------------|
|                                                    | 05-6   RFI-05-09   | 05-6   RFI-05-09   | 05-6   RFI-05-16   | 05-6   RFI-05-16    | 05-6   RFI-05-16     | 05-6   RFI-05-17   | 05-6   RFI-05-17    | 05-6   RFI-05-17     | 05-6   RFI-05-17 | 05-6   RFI-05-18   | 05-6   RFI-05-18   | 05-6   RFI-05-18    | 05-6   RFI-05-19S   |
| Sample Depth(ft BGS):                              | 0.2 - 2.2          | 6.2 - 8.2          | 0.8 - 2.8          | 8.8 - 10.8          | 10.8 - 12.8          | 0.9 - 2.9          | 8.9 - 10.9          | 10.9 - 12.9          | 10.9 - 12.9      | 0.9 - 2.9          | 6.9 - 8.9          | 8.9 - 10.9          | 0.8 - 2.8           |
| Date Collected:                                    | 06/27/01           | 06/27/01           | 09/08/01           | 09/08/01            | 09/08/01             | 09/08/01           | 09/08/01            | 09/08/01             | 09/08/01         | 09/08/01           | 09/08/01           | 09/08/01            | 06/26/01            |
|                                                    |                    |                    |                    |                     | RFI-05-16(10.8-12.8) |                    |                     |                      |                  |                    |                    |                     |                     |
|                                                    | KFI-05-09(0.2-2.2) | KFI-05-09(0.2-0.2) | KFI-05-10(0.0-2.0) | KFI-03-10(0.0-10.0) | KFI-03-10(10.0-12.0) | KFI-05-17(0.9-2.9) | KFI-05-17(0.9-10.9) | KFI-05-17(10.9-12.9) | KFI-05-D0F-50    | KFI-05-16(0.9-2.9) | KFI-05-10(0.9-0.9) | KFI-05-10(0.9-10.9) | KFI-05-195(0.0-2.0) |
| Inorganics                                         | 6.4                | 4 7                | 4.0                | 4.0                 | 7.0                  | 4.0                | <b>F</b> 4          | 4.0                  | 2.0              | 2.0                | 0.5                | 5.0                 | 4 7                 |
|                                                    | 6.1<br>56          | 4.7                | 4.2                | 4.9                 | 7.9<br>5.8           | 4.8                | 5.1<br>7            | 4.8                  | 3.8<br>4.1       | 3.8<br>4.7         | 9.5<br>19          | 5.8                 | 1.7                 |
| Chromium (total) [a]                               |                    | 8.1                | 6.4                | 9.3                 |                      | 8.2                | ,                   | 4.4                  |                  |                    |                    | 7.8                 | 4.6                 |
| Lead [b]                                           | 28                 | 29                 | 6                  | 7.1                 | 7.4                  | 12                 | 6                   | 6.6                  | 4.8              | 6.3                | 3500               | 51                  | 8.2                 |
| Vanadium                                           | 12                 | 14                 | 11                 | 13                  | 10                   | 13                 | 12                  | 7.2                  | 7.3              | 7.9                | 23                 | 13                  | 6                   |
| Volatile Organic Compounds                         | <0.042             | <0.041             | <0.044             | <0.042              | <0.040               | <0.036             | <0.038              | < 0.036              | < 0.037          | <0.036             | <0.039             | <0.041              | <0.038              |
| Benzene<br>1.1-Dichloroethane                      | <0.042<br><0.042   |                    |                    |                     |                      |                    |                     |                      |                  |                    |                    |                     |                     |
| Ethylbenzene                                       | <0.042<br><0.042   | <0.041<br><0.041   | <0.044<br><0.044   | <0.042<br><0.042    | <0.040<br><0.040     | <0.036<br><0.036   | <0.038<br><0.038    | <0.036<br><0.036     | <0.037<br><0.037 | <0.036<br><0.036   | <0.039<br><0.039   | <0.041<br><0.041    | <0.038<br><0.038    |
| -                                                  | <0.042<br>0.068    | <0.041             | <0.044<br><0.19    | <0.042<br><0.18     | <0.040               |                    |                     | <0.036               | <0.16            |                    | <0.039<br>0.041    |                     | <0.038              |
| Methyl cyclohexane                                 |                    |                    |                    |                     | -                    | <0.16              | <0.16               |                      |                  | <0.15              |                    | 0.033               |                     |
| .,.,.                                              | <0.042             | <0.041             | <0.044             | <0.042              | <0.040               | <0.036             | <0.038              | <0.036               | <0.037           | <0.036             | <0.039             | <0.041              | <0.038              |
| Semi Volatile Organic Comp                         | .0.00              | 0.2                | .0.04              | <0.20               | <0.20                | .0.40              | 0.40                | <0.18                | <0.18            | <0.18              | <0.19              | 0.40                | <0.18               |
| Acenaphthylene<br>Benzo(a)anthracene               | <0.20<br>0.37      | 0.2<br>1.6         | <0.21<br><0.21     | <0.20<br><0.20      | <0.20                | <0.18<br>0.087     | <0.18<br><0.18      | <0.18                | <0.18            | 0.038              | <0.19<br>1.3       | <0.19<br>0.089      | <0.18               |
| Benzo(a)pyrene                                     | 0.37               | 1.8                | <0.21              | <0.20               | <0.20                | 0.087              | <0.18               | <0.18                | <0.18            | 0.038              | 0.95               | <0.19               | <0.18               |
| Benzo(b)fluoranthene                               | 0.33               | 1.8                | <0.21              | <0.20               | <0.20                | 0.12               | <0.18               | <0.18                | <0.18            | 0.04               | 1.1                | <0.19               | <0.18               |
| Benzo(g,h,i)pervlene                               | 0.35               | 1.8                | <0.21              | <0.20               | <0.20                | 0.093              | <0.18               | <0.18                | <0.18            | <0.18              | 0.53               | <0.19               | <0.18               |
| Benzo(g,n,i)perviene<br>Benzo(k)fluoranthene       | 0.12               | 1.5                | <0.21              | <0.20               | <0.20                |                    | <0.18               | <0.18                | <0.18            | <0.18<br>0.048     | 0.53               | <0.19               | <0.18               |
| Carbazole                                          | 0.36               | 0.26               | <0.21              | <0.20               | <0.20                | 0.1<br><0.18       | <0.18               | <0.18                | <0.18            | <0.18              | <0.19              | <0.19               | <0.18               |
|                                                    |                    |                    |                    |                     |                      |                    |                     | <0.18                |                  |                    | <0.19<br><0.19     |                     |                     |
| Dibenz(a,h)anthracene<br>Dimethyl phthalate        | <0.20<br><0.20     | <0.99<br><0.99     | <0.21<br><0.21     | <0.20<br><0.20      | <0.20<br><0.20       | <0.18<br><0.18     | <0.18<br><0.18      | <0.18                | <0.18<br><0.18   | <0.18<br><0.18     | <0.19              | <0.19<br><0.19      | <0.18<br><0.18      |
| Di-n-octyl phthalate                               | <0.20              | <0.99<br><0.99     | <0.21              | <0.20               | <0.20                | <0.18              | <0.18               | <0.18                | <0.18            | <0.18              | <0.19              | <0.19               | <0.18               |
| Indeno(1,2,3-cd)pyrene                             | <0.20<br>0.11      | <0.99              | <0.21              | <0.20               | <0.20                | 0.073              | <0.18               | <0.18                | <0.18            | <0.18              | <0.19<br>0.48      | <0.19               | <0.18               |
| 3&4-Methylphenol                                   | 0.084              | <2.0               | <0.21              | <0.20               | <0.20                | <0.36              | <0.18               | <0.18                | <0.18            | <0.18              | <0.38              | <0.19               | <0.18               |
| Naphthalene                                        | 0.084              | <0.99              | <0.43              | <0.40               | <0.39                | <0.36              | <0.37               | <0.36                | <0.30            | <0.35              | 0.13               | <0.39               | <0.18               |
| 2-Nitrophenol                                      | <0.20              | <0.99<br><0.99     | <0.21              | <0.20               | <0.20                | <0.18              | <0.18               | <0.18                | <0.18            | <0.18              | <0.13              | <0.19               | <0.18               |
| N-Nitrosodi-n-propylamine                          | <0.20              | <0.99<br><0.99     | <0.21              | <0.20               | <0.20                | <0.18              | <0.18               | <0.18                | <0.18            | <0.18              | <0.19              | <0.19               | <0.18               |
| Phenanthrene                                       | 1.2                | <0.99<br>2.9       | <0.21              | <0.20               | <0.20                | 0.057              | <0.18               | <0.18                | <0.18            | 0.05               | 3.2                | <0.19               | <0.18               |
| Polychlorinated Biphenyls (                        | 1.2                | 2.3                | SU.21              | <0.20               | <0.20                | 0.037              | \$0.10              | \$0.10               | <0.10            | 0.05               | 5.2                | SU. 19              | \$0.10              |
| Aroclor-1242 (PCB-1242)                            | <0.041             | <0.041             | <0.044             | <0.041              | <0.040               | <0.037             | <0.038              | <0.037               | < 0.037          | < 0.036            | < 0.039            | <0.040              | <0.038              |
| Aroclor-1242 (FCB-1242)<br>Aroclor-1248 (PCB-1248) | <0.041             | <0.041             | <0.044             | <0.041              | <0.040               | <0.037             | <0.038              | <0.037               | <0.037           | <0.030             | 0.22               | <0.040              | <0.038              |
| Aroclor-1254 (PCB-1254)                            | 0.065              | <0.041             | <0.044             | <0.041              | <0.040               | <0.037             | <0.038              | <0.037               | <0.037           | <0.030             | 0.14               | <0.040              | <0.038              |
| Aroclor-1260 (PCB-1260)                            | <0.003             | <0.041             | <0.044             | <0.041              | <0.040               | <0.037             | <0.038              | <0.037               | <0.037           | <0.030             | <0.039             | <0.040              | <0.038              |

#### AOIs with Soil Exceedances of the Construction Worker Health-Based Goals Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

|                              | AOI 05-6 cont.      |                           |                    |                  |                  |                  |                   |                  |                  |
|------------------------------|---------------------|---------------------------|--------------------|------------------|------------------|------------------|-------------------|------------------|------------------|
| AOI Number   Location ID:    | 05-6   RFI-05-19S   | 05-6   RFI-05-20          | 05-6   RFI-05-20   | 05-6   RFI-05-26 | 05-6   RFI-05-27 | 05-6   RFI-05-29 | 05-6   RFI-05-30  | 05-6   RFI-05-30 | 05-6   RFI-05-31 |
| Sample Depth(ft BGS):        | 6.8 - 8.8           | 0.7 - 2.7                 | 6.7 - 8.6          | 7 - 9            | 7 - 9            | 7 - 9            | 0 - 2             | 6 - 8            | 7 - 9            |
| Date Collected:              | 06/26/01            | 6/26/01 06/22/01 06/22/01 |                    | 04/12/02         | 12/10/01         | 12/10/01         | 12/10/01 01/10/02 |                  | 03/11/03         |
| Sample Name:                 | RFI-05-19S(6.8-8.8) | RFI-05-20(0.7-2.7)        | RFI-05-20(6.7-8.6) | RFI-05-26(07-09) |                  | RFI-05-29(07-09) | RFI-05-30(00-02)  | RFI-05-30(06-08) | RFI-05-31(07-09) |
| Inorganics                   |                     |                           |                    |                  |                  |                  |                   |                  |                  |
| Arsenic                      | 3.7                 | 5.7                       | 4.1                | NA               | NA               | NA               | 8.4               | 3.4              | NA               |
| Chromium (total) [a]         | 6.2                 | 19                        | 9.2                | NA               | NA               | NA               | 14                | 4.4              | NA               |
| Lead [b]                     | 4.5                 | 54                        | 14                 | 540              | 5.5              | 46               | 32                | 3.9              | 83               |
| Vanadium                     | 8.7                 | 18                        | 14                 | NA               | NA               | NA               | 18                | 7.9              | NA               |
| Volatile Organic Compound    |                     |                           |                    |                  |                  |                  |                   |                  |                  |
| Benzene                      | < 0.038             | <0.040                    | <0.041             | NA               | NA               | NA               | <0.039            | <0.038           | NA               |
| 1,1-Dichloroethane           | <0.038              | <0.040                    | <0.041             | NA               | NA               | NA               | <0.039            | <0.038           | NA               |
| Ethylbenzene                 | <0.038              | <0.040                    | <0.041             | NA               | NA               | NA               | <0.039            | <0.038           | NA               |
| Methyl cyclohexane           | <0.16               | <0.17                     | <0.18              | NA               | NA               | NA               | <0.17             | <0.16            | NA               |
| 1,1,1-Trichloroethane        | < 0.038             | < 0.040                   | <0.041             | NA               | NA               | NA               | < 0.039           | <0.038           | NA               |
| Semi Volatile Organic Comp   |                     |                           |                    |                  |                  |                  |                   |                  |                  |
| Acenaphthylene               | <0.18               | <0.20                     | <0.20              | NA               | NA               | NA               | <0.19             | <0.18            | NA               |
| Benzo(a)anthracene           | <0.18               | 0.038                     | 0.052              | NA               | NA               | NA               | 0.078             | <0.18            | NA               |
| Benzo(a)pyrene               | <0.18               | 0.038                     | 0.046              | NA               | NA               | NA               | 0.14              | <0.18            | NA               |
| Benzo(b)fluoranthene         | <0.18               | <0.20                     | 0.049              | NA               | NA               | NA               | 0.22              | <0.18            | NA               |
| Benzo(g,h,i)perylene         | <0.18               | <0.20                     | <0.20              | NA               | NA               | NA               | 0.21              | <0.18            | NA               |
| Benzo(k)fluoranthene         | <0.18               | <0.20                     | 0.052              | NA               | NA               | NA               | 0.12              | <0.18            | NA               |
| Carbazole                    | <0.18               | <0.20                     | <0.20              | NA               | NA               | NA               | <0.19             | <0.18            | NA               |
| Dibenz(a,h)anthracene        | <0.18               | <0.20                     | <0.20              | NA               | NA               | NA               | <0.19             | <0.18            | NA               |
| Dimethyl phthalate           | <0.18               | <0.20                     | <0.20              | NA               | NA               | NA               | <0.19             | <0.18            | NA               |
| Di-n-octyl phthalate         | <0.18               | <0.20                     | <0.20              | NA               | NA               | NA               | <0.19             | <0.18            | NA               |
| Indeno(1,2,3-cd)pyrene       | <0.18               | <0.20                     | <0.20              | NA               | NA               | NA               | 0.12              | <0.18            | NA               |
| 3&4-Methylphenol             | <0.37               | <0.39                     | <0.40              | NA               | NA               | NA               | <0.38             | <0.37            | NA               |
| Naphthalene                  | <0.18               | <0.20                     | <0.20              | NA               | NA               | NA               | <0.19             | <0.18            | NA               |
| 2-Nitrophenol                | <0.18               | <0.20                     | <0.20              | NA               | NA               | NA               | <0.19             | <0.18            | NA               |
| N-Nitrosodi-n-propylamine    | <0.18               | <0.20                     | <0.20              | NA               | NA               | NA               | <0.19             | <0.18            | NA               |
| Phenanthrene                 | <0.18               | <0.20                     | <0.20              | NA               | NA               | NA               | 0.058             | <0.18            | NA               |
| Polychlorinated Biphenyls (I | ŧ                   |                           |                    |                  |                  |                  |                   |                  |                  |
| Aroclor-1242 (PCB-1242)      | <0.038              | <0.040                    | <0.041             | NA               | NA               | NA               | <0.040            | <0.038           | NA               |
| Aroclor-1248 (PCB-1248)      | <0.038              | <0.040                    | <0.041             | NA               | NA               | NA               | <0.040            | <0.038           | NA               |
| Aroclor-1254 (PCB-1254)      | <0.038              | <0.040                    | <0.041             | NA               | NA               | NA               | <0.040            | <0.038           | NA               |
| Aroclor-1260 (PCB-1260)      | <0.038              | <0.040                    | <0.041             | NA               | NA               | NA               | 0.028             | <0.038           | NA               |

Page 4 of 30

|                             | AOI 10-1           |                  |                  |                  |                  |                    |                    |                  |                  |                    |                    |                  |                  |                  |
|-----------------------------|--------------------|------------------|------------------|------------------|------------------|--------------------|--------------------|------------------|------------------|--------------------|--------------------|------------------|------------------|------------------|
| AOI Number   Location ID:   | 10-1   RFI-10-01   | 10-1   RFI-10-01 | 10-1   RFI-10-01 | 10-1   RFI-10-01 | 10-1   RFI-10-01 | 10-1   RFI-10-16   | 10-1   RFI-10-16   | 10-1   RFI-10-17 | 10-1   RFI-10-17 | 10-1   RFI-10-18   | 10-1   RFI-10-18   | 10-1   RFI-10-19 | 10-1   RFI-10-19 | 10-1   RFI-10-27 |
| Sample Depth(ft BGS):       | 0.7 - 2.7          | 1 - 3            | 1 - 3            | 5 - 7            | 9 - 11           | 1.9 - 3.9          | 3.9 - 5.9          | 1 - 3            | 3 - 5            | 1.3 - 3.3          | 3.3 - 5.3          | 2 - 4            | 4 - 6            | 1 - 3            |
| Date Collected:             | 07/20/01           | 07/26/01         | 07/26/01         | 07/26/01         | 07/20/01         | 12/11/01           | 12/11/01           | 11/30/01         | 11/30/01         | 11/30/01           | 11/30/01           | 11/30/01         | 11/30/01         | 01/15/02         |
|                             | RFI-10-01(0.7-2.5) |                  |                  |                  |                  |                    |                    |                  |                  | RFI-10-18(1.3-3.3) |                    |                  |                  |                  |
|                             | KFI-10-01(0.7-2.3) | KFI-10-01(01-03) | KFI-10-Dup-41    | KFI-10-01(03-07) | KFI-10-01(09-11) | KFI-10-10(1.9-3.9) | KFI-10-10(3.9-3.9) | KFI-10-17(01-03) | KFI-10-17(03-03) | KFI-10-10(1.3-3.3) | KFI-10-10(3.3-3.3) | KFI-10-19(02-04) | KFI-10-19(04-00) | KFI-10-27(01-03) |
| Inorganics<br>Arsenic       | 4.2                | 6                | 5.4              | 8.1              | 40               | NA                 | NA                 | NA               | NA               | 3.6                | 3.5                | NA               | NA               | 3.7              |
| Chromium (total) [a]        | 22                 | 35               | 61               | 59               | 750              | NA                 | NA                 | NA               | NA               | 47                 | 25                 | NA               | NA               | 46               |
| Lead [b]                    | 43                 | 180              | 2200             | 380              | 730              | 310                | 18                 | 220              | 290              | 61                 | 120                | 41               | 19               | 220              |
| Vanadium                    | 8.6                | 16               | 15               | 14               | 44               | NA                 | NA                 | NA               | NA               | 18                 | 120                | NA               | NA               | 5.3              |
| Volatile Organic Compound   |                    | 10               | 15               | 14               | 44               | INA.               |                    |                  |                  | 10                 | 12                 |                  |                  | 0.0              |
| Benzene                     | 0.083              | <0.039           | <0.038           | <0.039           | <0.13            | NA                 | NA                 | NA               | NA               | <0.040             | <0.040             | NA               | NA               | <0.038           |
| 1.1-Dichloroethane          | 0.38               | 0.057            | 0.06             | 0.089            | 0.6              | NA                 | NA                 | NA               | NA               | <0.040             | <0.040             | NA               | NA               | <0.038           |
| Ethylbenzene                | 0.18               | < 0.039          | <0.038           | < 0.039          | <0.13            | NA                 | NA                 | NA               | NA               | <0.040             | <0.040             | NA               | NA               | <0.038           |
| Methyl cyclohexane          | 1.4                | <0.17            | 0.028            | < 0.17           | <0.63            | NA                 | NA                 | NA               | NA               | 0.033              | <0.17              | NA               | NA               | <0.16            |
| 1.1.1-Trichloroethane       | 0.12               | < 0.039          | < 0.038          | < 0.039          | <0.13            | NA                 | NA                 | NA               | NA               | <0.040             | <0.040             | NA               | NA               | <0.038           |
| Semi Volatile Organic Comp  |                    |                  | 101000           |                  |                  |                    |                    |                  |                  |                    |                    |                  |                  |                  |
| Acenaphthylene              | <0.18              | <0.93            | <1.8             | <0.19            | <49              | NA                 | NA                 | NA               | NA               | <0.19              | <0.19              | NA               | NA               | <0.19            |
| Benzo(a)anthracene          | 0.089              | 0.83             | <1.8             | <0.19            | <49              | NA                 | NA                 | NA               | NA               | 1.5                | <0.96              | NA               | NA               | <0.19            |
| Benzo(a)pyrene              | 0.12               | <0.93            | <1.8             | <0.19            | <49              | NA                 | NA                 | NA               | NA               | <1.9               | <0.96              | NA               | NA               | <0.19            |
| Benzo(b)fluoranthene        | 0.12               | 1.7              | <1.8             | <0.19            | <49              | NA                 | NA                 | NA               | NA               | 1.1                | <0.96              | NA               | NA               | <0.19            |
| Benzo(g,h,i)perylene        | <0.18              | < 0.93           | <1.8             | <0.19            | <49              | NA                 | NA                 | NA               | NA               | <1.9               | <0.96              | NA               | NA               | <0.19            |
| Benzo(k)fluoranthene        | 0.12               | 0.92             | <1.8             | <0.19            | <49              | NA                 | NA                 | NA               | NA               | <1.9               | <0.96              | NA               | NA               | <0.19            |
| Carbazole                   | <0.18              | <0.93            | <1.8             | <0.19            | <49              | NA                 | NA                 | NA               | NA               | <0.19              | <0.19              | NA               | NA               | <0.19            |
| Dibenz(a,h)anthracene       | <0.18              | <0.93            | <1.8             | <0.19            | <49              | NA                 | NA                 | NA               | NA               | 0.19               | <0.96              | NA               | NA               | <0.19            |
| Dimethyl phthalate          | <0.18              | <0.93            | <1.8             | <0.19            | <49              | NA                 | NA                 | NA               | NA               | <0.19              | <0.19              | NA               | NA               | <0.19            |
| Di-n-octyl phthalate        | <0.18              | <0.93            | <1.8             | <0.19            | <49              | NA                 | NA                 | NA               | NA               | <1.9               | <0.96              | NA               | NA               | <0.19            |
| Indeno(1,2,3-cd)pyrene      | <0.18              | <0.93            | <1.8             | <0.19            | <49              | NA                 | NA                 | NA               | NA               | <1.9               | <0.96              | NA               | NA               | <0.19            |
| 3&4-Methylphenol            | <0.36              | <1.9             | <3.7             | <0.38            | <99              | NA                 | NA                 | NA               | NA               | <3.8               | <1.9               | NA               | NA               | <0.37            |
| Naphthalene                 | 0.063              | <0.93            | <1.8             | 0.22             | <49              | NA                 | NA                 | NA               | NA               | 0.14               | 0.15               | NA               | NA               | <0.19            |
| 2-Nitrophenol               | <0.18              | <0.93            | <1.8             | <0.19            | <49              | NA                 | NA                 | NA               | NA               | <0.19              | <0.19              | NA               | NA               | <0.19            |
| N-Nitrosodi-n-propylamine   | <0.18              | <0.93            | <1.8             | <0.19            | <49              | NA                 | NA                 | NA               | NA               | <0.19              | <0.19              | NA               | NA               | <0.19            |
| Phenanthrene                | 0.14               | 1.3              | 1.1              | <0.19            | <49              | NA                 | NA                 | NA               | NA               | 1.8                | 1.2                | NA               | NA               | <0.19            |
| Polychlorinated Biphenyls ( |                    |                  |                  |                  |                  |                    |                    |                  |                  |                    |                    |                  |                  |                  |
| Aroclor-1242 (PCB-1242)     | <0.037             | <0.038           | <0.038           | <0.040           | <0.99            | NA                 | NA                 | NA               | NA               | <0.039             | <0.039             | NA               | NA               | <0.039           |
| Aroclor-1248 (PCB-1248)     | <0.037             | <0.038           | <0.038           | <0.040           | <0.99            | NA                 | NA                 | NA               | NA               | <0.039             | <0.039             | NA               | NA               | <0.039           |
| Aroclor-1254 (PCB-1254)     | <0.037             | 0.26             | 0.14             | <0.040           | <0.99            | NA                 | NA                 | NA               | NA               | 0.18               | 0.086              | NA               | NA               | <0.039           |
| Aroclor-1260 (PCB-1260)     | <0.037             | 0.042            | 0.025            | <0.040           | <0.99            | NA                 | NA                 | NA               | NA               | <0.039             | 0.021              | NA               | NA               | <0.039           |

AOIs with Soil Exceedances of the Construction Worker Health-Based Goals Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

|                              | AOI 10-1 cont.   |                  |
|------------------------------|------------------|------------------|
| AOI Number   Location ID:    | 10-1   RFI-10-27 | 10-1   RFI-10-27 |
| Sample Depth(ft BGS):        |                  | 9 - 11           |
| Date Collected:              | 01/15/02         | 01/15/02         |
| Sample Name:                 | RFI-10-27(07-09) | RFI-10-27(09-11) |
| Inorganics                   | `                |                  |
| Arsenic                      | 8.4              | 3.8              |
| Chromium (total) [a]         | 22               | 5                |
| Lead [b]                     | 11               | 5.4              |
| Vanadium                     | 30               | 11               |
| Volatile Organic Compounds   |                  |                  |
| Benzene                      | <0.042           | <0.040           |
| 1,1-Dichloroethane           | <0.042           | <0.040           |
| Ethylbenzene                 | <0.042           | <0.040           |
| Methyl cyclohexane           | <0.18            | <0.17            |
| 1,1,1-Trichloroethane        | 0.053            | <0.040           |
| Semi Volatile Organic Comp   | 1                |                  |
| Acenaphthylene               | <0.20            | <0.19            |
| Benzo(a)anthracene           | <0.20            | <0.19            |
| Benzo(a)pyrene               | <0.20            | <0.19            |
| Benzo(b)fluoranthene         | <0.20            | <0.19            |
| Benzo(g,h,i)perylene         | <0.20            | <0.19            |
| Benzo(k)fluoranthene         | <0.20            | <0.19            |
| Carbazole                    | <0.20            | <0.19            |
| Dibenz(a,h)anthracene        | <0.20            | <0.19            |
| Dimethyl phthalate           | <0.20            | <0.19            |
| Di-n-octyl phthalate         | <0.20            | <0.19            |
| Indeno(1,2,3-cd)pyrene       | <0.20            | <0.19            |
| 3&4-Methylphenol             | <0.41            | <0.38            |
| Naphthalene                  | <0.20            | <0.19            |
| 2-Nitrophenol                | <0.20            | <0.19            |
| N-Nitrosodi-n-propylamine    | <0.20            | <0.19            |
| Phenanthrene                 | <0.20            | <0.19            |
| Polychlorinated Biphenyls (I | :                |                  |
| Aroclor-1242 (PCB-1242)      | <0.042           | <0.039           |
| Aroclor-1248 (PCB-1248)      | <0.042           | <0.039           |
| Aroclor-1254 (PCB-1254)      | <0.042           | <0.039           |
| Aroclor-1260 (PCB-1260)      | <0.042           | <0.039           |

Page 6 of 30

|                              | AOI 36-1   |                  |                  |                  |                      |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|------------------------------|------------|------------------|------------------|------------------|----------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| AOI Number   Location ID:    |            | 36-1   RFI-36-01 | 36-1   RFI-36-01 | 36-1   RFI-36-01 | 36-1   RFI-36-01     | 36-1   RFI-36-02 | 36-1   RFI-36-03 | 36-1   RFI-36-03 | 36-1   RFI-36-03 | 36-1   RFI-36-03 |
| Sample Depth(ft BGS):        |            | 0.5 - 2.5        | 8.5 - 10.5       | 8.5 - 10.5       | 12.5 - 14.5          | 1-3              | 7-9              | 9 - 11           | 9 - 11           | 13 - 15          | 0.8 - 2          | 8 - 10           | 14 - 16          | 14 - 16          |
| Date Collected:              | 03/27/01   | 08/21/01         | 08/21/01         | 08/21/01         | 08/21/01             | 09/17/01         | 09/17/01         | 09/17/01         | 09/17/01         | 09/17/01         | 12/20/00         | 12/20/00         | 12/20/00         | 12/20/00         |
| Sample Name:                 | RFI-DUP-01 |                  |                  |                  | RFI-36-01(12.5-14.5) |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Inorganics                   |            |                  |                  |                  | 1.110001(12:014:0)   |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Arsenic                      | 6          | 5.5              | 3.2              | 5.1              | 2.5                  | 3.6              | 4.2              | 3.1              | NA               | 4                | 4.5              | 7.6              | 3.8              | 3.4              |
| Chromium (total) [a]         | 11         | 12               | 18               | 15               | 5.2                  | 5                | 7.6              | 4.5              | NA               | 4.2              | 11               | 6.4              | 4.4              | 13               |
| Lead [b]                     | 11         | 62               | 8.2              | 8.7              | 3                    | 5                | 6.3              | 4.1              | NA               | 5.1              | 12               | 5.7              | 4.3              | 4.7              |
| Vanadium                     | 15         | 16               | 20               | 23               | 9.3                  | 8.6              | 10               | 7.8              | NA               | 7.2              | NA               | NA               | NA               | NA               |
| Volatile Organic Compound    |            |                  |                  |                  |                      |                  |                  |                  |                  |                  |                  |                  |                  | 1                |
| Benzene                      | <0.037     | <0.040           | <0.039           | <0.041           | < 0.037              | < 0.037          | <0.044           | < 0.037          | < 0.036          | < 0.037          | < 0.036          | <0.041           | <0.041           | <0.042           |
| 1,1-Dichloroethane           | <0.037     | < 0.040          | < 0.039          | <0.041           | < 0.037              | < 0.037          | < 0.044          | < 0.037          | < 0.036          | < 0.037          | < 0.036          | <0.041           | <0.041           | <0.042           |
| Ethylbenzene                 | <0.037     | <0.040           | < 0.039          | <0.041           | <0.037               | <0.037           | <0.044           | <0.037           | < 0.036          | <0.037           | < 0.036          | <0.041           | <0.041           | <0.042           |
| Methyl cyclohexane           | <0.16      | 0.033            | <0.17            | <0.17            | <0.16                | <0.16            | <0.19            | <0.16            | <0.15            | <0.16            | NA               | NA               | NA               | NA               |
| 1,1,1-Trichloroethane        | 0.077      | < 0.040          | < 0.039          | <0.041           | <0.037               | <0.037           | <0.044           | < 0.037          | < 0.036          | <0.037           | <0.036           | <0.041           | <0.041           | <0.042           |
| Semi Volatile Organic Comp   | 0          |                  |                  |                  |                      |                  |                  |                  |                  |                  |                  |                  |                  | 1                |
| Acenaphthylene               | <0.18      | <0.19            | <0.19            | <0.20            | <0.18                | <0.19            | <0.22            | <0.18            | NA               | <0.18            | <0.19            | <0.18            | <0.21            | <0.21            |
| Benzo(a)anthracene           | <0.18      | <0.19            | <0.19            | <0.20            | <0.18                | <0.19            | <0.22            | <0.18            | NA               | <0.18            | <0.19            | <0.18            | <0.21            | <0.21            |
| Benzo(a)pyrene               | <0.18      | <0.19            | <0.19            | <0.20            | <0.18                | <0.19            | <0.22            | <0.18            | NA               | <0.18            | <0.19            | <0.18            | <0.21            | <0.21            |
| Benzo(b)fluoranthene         | <0.18      | <0.19            | <0.19            | <0.20            | <0.18                | <0.19            | <0.22            | <0.18            | NA               | <0.18            | <0.19            | <0.18            | <0.21            | <0.21            |
| Benzo(g,h,i)perylene         | <0.18      | <0.19            | <0.19            | <0.20            | <0.18                | <0.19            | <0.22            | <0.18            | NA               | <0.18            | <0.19            | <0.18            | <0.21            | <0.21            |
| Benzo(k)fluoranthene         | <0.18      | <0.19            | <0.19            | <0.20            | <0.18                | <0.19            | <0.22            | <0.18            | NA               | <0.18            | <0.19            | <0.18            | <0.21            | <0.21            |
| Carbazole                    | <0.18      | <0.19            | <0.19            | <0.20            | <0.18                | <0.19            | <0.22            | <0.18            | NA               | <0.18            | <0.19            | <0.18            | <0.21            | <0.21            |
| Dibenz(a,h)anthracene        | <0.18      | <0.19            | <0.19            | <0.20            | <0.18                | <0.19            | <0.22            | <0.18            | NA               | <0.18            | <0.19            | <0.18            | <0.21            | <0.21            |
| Dimethyl phthalate           | <0.18      | <0.19            | <0.19            | <0.20            | <0.18                | <0.19            | <0.22            | <0.18            | NA               | <0.18            | <0.19            | <0.18            | <0.21            | <0.21            |
| Di-n-octyl phthalate         | 0.25       | <0.19            | <0.19            | <0.20            | <0.18                | <0.19            | <0.22            | <0.18            | NA               | <0.18            | 0.21             | <0.18            | <0.21            | <0.21            |
| Indeno(1,2,3-cd)pyrene       | <0.18      | <0.19            | <0.19            | <0.20            | <0.18                | <0.19            | <0.22            | <0.18            | NA               | <0.18            | <0.19            | <0.18            | <0.21            | <0.21            |
| 3&4-Methylphenol             | <0.37      | <0.39            | <0.38            | <0.40            | <0.36                | <0.37            | <0.43            | <0.36            | NA               | <0.36            | <0.37            | <0.35            | <0.40            | <0.41            |
| Naphthalene                  | <0.18      | <0.19            | <0.19            | <0.20            | <0.18                | <0.19            | <0.22            | <0.18            | NA               | <0.18            | <0.19            | <0.18            | <0.21            | <0.21            |
| 2-Nitrophenol                | <0.18      | <0.19            | <0.19            | <0.20            | <0.18                | <0.19            | <0.22            | <0.18            | NA               | <0.18            | <0.19            | <0.18            | <0.21            | <0.21            |
| N-Nitrosodi-n-propylamine    | <0.18      | <0.19            | <0.19            | <0.20            | 0.45                 | <0.19            | <0.22            | <0.18            | NA               | <0.18            | <0.19            | <0.18            | <0.21            | <0.21            |
| Phenanthrene                 | <0.18      | <0.19            | <0.19            | <0.20            | <0.18                | <0.19            | <0.22            | <0.18            | NA               | <0.18            | <0.19            | <0.18            | <0.21            | <0.21            |
| Polychlorinated Biphenyls (I |            |                  |                  |                  |                      |                  |                  |                  |                  |                  |                  |                  |                  | 1 L              |
| Aroclor-1242 (PCB-1242)      | <0.038     | <0.040           | <0.039           | <0.041           | <0.037               | <0.038           | <0.044           | <0.037           | NA               | <0.037           | NA               | NA               | NA               | NA               |
| Aroclor-1248 (PCB-1248)      | <0.038     | <0.040           | <0.039           | < 0.041          | <0.037               | <0.038           | < 0.044          | < 0.037          | NA               | < 0.037          | NA               | NA               | NA               | NA               |
| Aroclor-1254 (PCB-1254)      | <0.038     | <0.040           | < 0.039          | < 0.041          | < 0.037              | < 0.038          | < 0.044          | < 0.037          | NA               | < 0.037          | NA               | NA               | NA               | NA               |
| Aroclor-1260 (PCB-1260)      | <0.038     | <0.040           | <0.039           | <0.041           | <0.037               | <0.038           | <0.044           | <0.037           | NA               | <0.037           | NA               | NA               | NA               | NA               |

|                              | AOI 36-1 cont.    |                  |                  |             |                   |                  |                  |                   |                  |                  |                   |                  |                  |                   |                  |
|------------------------------|-------------------|------------------|------------------|-------------|-------------------|------------------|------------------|-------------------|------------------|------------------|-------------------|------------------|------------------|-------------------|------------------|
| AOI Number   Location ID:    |                   |                  |                  |             | •                 | •                |                  | 36-1   RFI-36-06  | •                | •                |                   |                  | 36-1   RFI-36-07 | 36-1   RFI-36-15  |                  |
| Sample Depth(ft BGS):        | 0.6 - 2           | 8 - 10           | 18 - 20          | 18 - 20     | 0.8 - 2           | 8 - 10           | 16 - 18          | 0.7 - 2           | 6 - 8            | 16 - 17          | 0.8 - 2           | 8 - 10           | 12 - 14          | 0.8 - 2           | 8 - 10           |
| Date Collected:              | 12/19/00          | 12/19/00         | 12/19/00         | 12/19/00    | 12/18/00          | 12/18/00         | 12/18/00         | 12/19/00          | 12/19/00         | 12/19/00         | 12/20/00          | 12/20/00         | 12/20/00         | 12/20/00          | 12/20/00         |
| Sample Name:                 | RFI-36-04(0.6-02) | RFI-36-04(08-10) | RFI-36-04(18-20) | RFI-36-DUP1 | RFI-36-05(0.8-02) | RFI-36-05(08-10) | RFI-36-05(16-18) | RFI-36-06(0.7-02) | RFI-36-06(06-08) | RFI-36-06(16-17) | RFI-36-07(0.8-02) | RFI-36-07(08-10) | RFI-36-07(12-14) | RFI-36-15(0.8-02) | RFI-36-15(08-10) |
| Inorganics                   |                   |                  |                  |             |                   |                  |                  |                   |                  |                  |                   |                  |                  |                   |                  |
| Arsenic                      | 5.6               | 4.8              | 2.7              | 2.7         | 3.4               | 5.3              | 2.5              | 3                 | 8.2              | 1.6              | 4.8               | 3                | 3.8              | 4                 | 3.3              |
| Chromium (total) [a]         | 16                | 9.4              | 3.5              | 4.4         | 6.8               | 12               | 5.9              | 25                | 11               | 1.9              | 13                | 3.8              | 7                | 7.5               | 6.3              |
| Lead [b]                     | 14                | 12               | 3.6              | 4.2         | 6.1               | 12               | 4.9              | 9                 | 8.4              | 2.2              | 8.7               | 3.5              | 4.8              | 12                | 9.7              |
| Vanadium                     | NA                | NA               | NA               | NA          | NA                | NA               | NA               | NA                | NA               | NA               | NA                | NA               | NA               | NA                | NA               |
| Volatile Organic Compounds   |                   |                  |                  |             |                   |                  |                  |                   |                  |                  |                   |                  |                  |                   |                  |
| Benzene                      | <0.033            | <0.037           | <0.042           | <0.042      | <0.042            | <0.042           | <0.045           | <0.036            | <0.033           | <0.041           | <0.037            | <0.043           | 240              | <0.035            | < 0.036          |
| 1,1-Dichloroethane           | <0.033            | <0.037           | <0.042           | < 0.042     | <0.042            | <0.042           | <0.045           | 0.04              | <0.033           | <0.041           | <0.037            | <0.043           | <2.0             | <0.035            | < 0.036          |
| Ethylbenzene                 | <0.033            | <0.037           | <0.042           | <0.042      | <0.042            | <0.042           | <0.045           | <0.036            | <0.033           | <0.041           | <0.037            | <0.043           | 680              | <0.035            | <0.036           |
| Methyl cyclohexane           | NA                | NA               | NA               | NA          | NA                | NA               | NA               | NA                | NA               | NA               | NA                | NA               | NA               | NA                | NA               |
| 1,1,1-Trichloroethane        | < 0.033           | <0.037           | <0.042           | < 0.042     | <0.042            | <0.042           | <0.045           | < 0.036           | < 0.033          | <0.041           | <0.037            | <0.043           | <2.0             | < 0.035           | < 0.036          |
| Semi Volatile Organic Comp   |                   |                  |                  |             |                   |                  |                  |                   |                  |                  |                   |                  |                  |                   |                  |
| Acenaphthylene               | <0.19             | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | <0.18            | <38              | <3.6              | <0.18            |
| Benzo(a)anthracene           | 0.78              | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | <0.18            | <38              | <3.6              | <0.18            |
| Benzo(a)pyrene               | 1.1               | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | <0.18            | <38              | <3.6              | <0.18            |
| Benzo(b)fluoranthene         | 1.2               | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | <0.18            | <38              | <3.6              | <0.18            |
| Benzo(g,h,i)perylene         | 0.47              | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | <0.18            | <38              | <3.6              | <0.18            |
| Benzo(k)fluoranthene         | 0.85              | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | <0.18            | <38              | <3.6              | <0.18            |
| Carbazole                    | <0.19             | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | <0.18            | <38              | <3.6              | <0.18            |
| Dibenz(a,h)anthracene        | <0.19             | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | <0.18            | <38              | <3.6              | <0.18            |
| Dimethyl phthalate           | <0.19             | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | <0.18            | <38              | <3.6              | <0.18            |
| Di-n-octyl phthalate         | <0.19             | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | 0.24             | <38              | <3.6              | <0.18            |
| Indeno(1,2,3-cd)pyrene       | 0.58              | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | <0.18            | <38              | <3.6              | <0.18            |
| 3&4-Methylphenol             | <0.37             | <0.36            | <0.39            | <0.40       | <0.35             | <0.35            | <0.35            | <9.0              | <0.37            | <3.4             | <18               | <0.35            | <73              | <6.9              | <0.35            |
| Naphthalene                  | <0.19             | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | <0.18            | 44               | <3.6              | <0.18            |
| 2-Nitrophenol                | <0.19             | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | <0.18            | <38              | <3.6              | <0.18            |
| N-Nitrosodi-n-propylamine    | <0.19             | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | <0.18            | <38              | <3.6              | <0.18            |
| Phenanthrene                 | <0.19             | <0.19            | <0.20            | <0.21       | <0.18             | <0.18            | <0.18            | <4.6              | <0.19            | <1.8             | <9.3              | <0.18            | <38              | <3.6              | <0.18            |
| Polychlorinated Biphenyls (F |                   |                  |                  |             |                   |                  |                  |                   |                  |                  |                   |                  |                  |                   |                  |
| Aroclor-1242 (PCB-1242)      | NA                | NA               | NA               | NA          | NA                | NA               | NA               | NA                | NA               | NA               | NA                | NA               | NA               | NA                | NA               |
| Aroclor-1248 (PCB-1248)      | NA                | NA               | NA               | NA          | NA                | NA               | NA               | NA                | NA               | NA               | NA                | NA               | NA               | NA                | NA               |
| Aroclor-1254 (PCB-1254)      | NA                | NA               | NA               | NA          | NA                | NA               | NA               | NA                | NA               | NA               | NA                | NA               | NA               | NA                | NA               |
| Aroclor-1260 (PCB-1260)      | NA                | NA               | NA               | NA          | NA                | NA               | NA               | NA                | NA               | NA               | NA                | NA               | NA               | NA                | NA               |

|                             | AOI 36-1 cont.   | 1                 |                  |                  | 1                |                  |                  |                  | 1                | T                | 1                | 1                |                  |                  |                  |
|-----------------------------|------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| AOI Number   Location ID:   | 36-1   RFI-36-15 | 36-1   RFI-36-16  | 36-1   RFI-36-16 | 36-1   RFI-36-16 | 36-1   RFI-36-21 | 36-1   RFI-36-21 | 36-1   RFI-36-21 | 36-1   RFI-36-21 | 36-1   RFI-36-22 | 36-1   RFI-36-22 | 36-1   RFI-36-22 | 36-1   RFI-36-22 | 36-1   RFI-36-23 | 36-1   RFI-36-23 | 36-1   RFI-36-23 |
| Sample Depth(ft BGS):       | 14 - 16          | 0.9 - 2           | 8 - 10           | 18 - 20          | 6 - 8            | 8 - 10           | 10 - 12          | 12 - 14          | 0 - 2            | 8 - 10           | 10 - 12          | 10 - 12          | 0 - 2            | 8 - 10           | 10 - 12          |
| Date Collected:             | 12/20/00         | 12/19/00          | 12/19/00         | 12/19/00         | 03/28/01         | 03/28/01         | 03/28/01         | 03/28/01         | 03/27/01         | 03/27/01         | 03/27/01         | 03/27/01         | 03/27/01         | 03/27/01         | 03/27/01         |
| Sample Name:                | RFI-36-15(14-16) | RFI-36-16(0.9-02) | RFI-36-16(08-10) | RFI-36-16(18-20) | RFI-36-21(06-08) | RFI-36-21(08-10) | RFI-36-21(10-12) | RFI-36-21(12-14) | RFI-36-22(00-02) | RFI-36-22(08-10) | 36-22 (10-12)DUP | RFI-36-22(10-12) | RFI-36-23(00-02) | RFI-36-23(08-10) | RFI-36-23(10-12) |
| Inorganics                  |                  |                   |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Arsenic                     | 39               | 3.2               | 3.1              | 8.1              | 4.6              | 3.5              | 9.5              | 1.7              | 2.5              | 3.6              | 2.9              | 2.5              | 6.7              | 3.6              | 6.4              |
| Chromium (total) [a]        | 7.3              | 32                | 4.2              | 9.1              | 8                | 4.8              | 46               | 2.4              | 11               | 6.1              | 4.5              | 6.2              | 21               | 6.4              | 8.8              |
| Lead [b]                    | 4.3              | 19                | 3.4              | 5.9              | 6.5              | 4.6              | 52               | 2                | 7.8              | 4.9              | 3.6              | 3                | 21               | 5.3              | 8.2              |
| Vanadium                    | NA               | NA                | NA               | NA               | 9.6              | 7.2              | 13               | 3.6              | 5.1              | 7.9              | 5.9              | 6.3              | 21               | 6.9              | 11               |
| Volatile Organic Compounds  |                  |                   |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Benzene                     | <0.041           | <0.034            | < 0.039          | <0.041           | <0.041           | < 0.036          | 0.13             | < 0.036          | < 0.036          | <0.038           | <0.038           | <0.037           | <0.037           | <0.037           | <0.037           |
| 1,1-Dichloroethane          | 0.057            | 0.066             | < 0.039          | <0.041           | <0.041           | < 0.036          | 0.22             | < 0.036          | < 0.036          | <0.038           | <0.038           | 0.17             | < 0.037          | <0.037           | 0.061            |
| Ethylbenzene                | <0.041           | <0.034            | < 0.039          | <0.041           | <0.041           | < 0.036          | 0.37             | < 0.036          | < 0.036          | <0.038           | <0.038           | <0.037           | <0.037           | <0.037           | <0.037           |
| Methyl cyclohexane          | NA               | NA                | NA               | NA               | <0.17            | <0.15            | <0.16            | <0.15            | <0.16            | <0.16            | <0.16            | <0.16            | <0.16            | <0.16            | <0.16            |
| 1,1,1-Trichloroethane       | <0.041           | <0.034            | < 0.039          | <0.041           | <0.041           | < 0.036          | <0.038           | < 0.036          | < 0.036          | <0.038           | <0.038           | <0.037           | < 0.037          | <0.037           | <0.037           |
| Semi Volatile Organic Comp  | 1                |                   |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Acenaphthylene              | <4.1             | <1.8              | <0.18            | <1.0             | <0.19            | <0.18            | <0.19            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            |
| Benzo(a)anthracene          | <4.1             | <1.8              | <0.18            | <1.0             | <0.19            | <0.18            | 1.1              | <0.18            | 0.089            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            |
| Benzo(a)pyrene              | <4.1             | <1.8              | <0.18            | <1.0             | <0.19            | <0.18            | 0.9              | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            |
| Benzo(b)fluoranthene        | <4.1             | <1.8              | <0.18            | <1.0             | <0.19            | <0.18            | 1.2              | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            |
| Benzo(g,h,i)perylene        | <4.1             | <1.8              | <0.18            | <1.0             | <0.19            | <0.18            | 0.47             | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            |
| Benzo(k)fluoranthene        | <4.1             | <1.8              | <0.18            | <1.0             | <0.19            | <0.18            | 0.87             | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            |
| Carbazole                   | <4.1             | <1.8              | <0.18            | <1.0             | <0.19            | <0.18            | 0.35             | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            |
| Dibenz(a,h)anthracene       | <4.1             | <1.8              | <0.18            | <1.0             | <0.19            | <0.18            | <0.19            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            |
| Dimethyl phthalate          | <4.1             | <1.8              | <0.18            | <1.0             | <0.19            | <0.18            | <0.19            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            |
| Di-n-octyl phthalate        | <4.1             | <1.8              | <0.18            | <1.0             | <0.19            | <0.18            | <0.19            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            |
| Indeno(1,2,3-cd)pyrene      | <4.1             | <1.8              | <0.18            | <1.0             | <0.19            | <0.18            | 0.5              | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            |
| 3&4-Methylphenol            | <8.0             | <3.5              | < 0.35           | <2.0             | <0.38            | < 0.35           | <0.37            | < 0.35           | < 0.36           | <0.37            | <0.36            | <0.36            | <0.36            | < 0.36           | < 0.36           |
| Naphthalene                 | <4.1             | <1.8              | <0.18            | <1.0             | <0.19            | <0.18            | <0.19            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            |
| 2-Nitrophenol               | <4.1             | <1.8              | <0.18            | <1.0             | <0.19            | <0.18            | <0.19            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            |
| N-Nitrosodi-n-propylamine   | <4.1             | <1.8              | <0.18            | <1.0             | <0.19            | <0.18            | <0.19            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            | <0.18            |
| Phenanthrene                | 16               | <1.8              | <0.18            | 1.2              | <0.19            | <0.18            | 1.9              | <0.18            | 0.12             | <0.18            | <0.18            | <0.18            | <0.18            | 0.17             | <0.18            |
| Polychlorinated Biphenyls ( |                  |                   |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Aroclor-1242 (PCB-1242)     | NA               | NA                | NA               | NA               | <0.038           | <0.034           | <0.036           | <0.18            | < 0.035          | <0.036           | <0.035           | <0.036           | <0.036           | < 0.036          | <0.035           |
| Aroclor-1248 (PCB-1248)     | NA               | NA                | NA               | NA               | <0.038           | <0.034           | <0.036           | <0.18            | < 0.035          | < 0.036          | <0.035           | <0.036           | < 0.036          | < 0.036          | <0.035           |
| Aroclor-1254 (PCB-1254)     | NA               | NA                | NA               | NA               | <0.038           | <0.034           | <0.036           | <0.18            | < 0.035          | < 0.036          | <0.035           | <0.036           | < 0.036          | < 0.036          | <0.035           |
| Aroclor-1260 (PCB-1260)     | NA               | NA                | NA               | NA               | <0.038           | <0.034           | <0.036           | <0.18            | <0.035           | <0.036           | <0.035           | <0.036           | <0.036           | <0.036           | <0.035           |

|                              | AOI 36-1 cont.      |                  |                  |                  |                  |                  |                  |                  |                   |                   |                   |                  |                  |                  |
|------------------------------|---------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|------------------|------------------|------------------|
| AOI Number   Location ID:    | 36-1   RFI-36-24    | 36-1   RFI-36-24 | 36-1   RFI-36-24 | 36-1   RFI-36-24 | 36-1   RFI-36-24 | 36-1   RFI-36-25 | 36-1   RFI-36-25 | 36-1   RFI-36-25 | 36-1   RFI-36-25R | 36-1   RFI-36-25R | 36-1   RFI-36-25R | 36-1   RFI-36-26 | 36-1   RFI-36-26 | 36-1   RFI-36-26 |
| Sample Depth(ft BGS):        | 0 - 2               | 6 - 8            | 8 - 10           | 10 - 12          | 10 - 12          | 0 - 2            | 8 - 10           | 12 - 14          | 1 - 3             | 7 - 9             | 11 - 13           | 0 - 2            | 2 - 4            | 8 - 10           |
| Date Collected:              | 03/26/01            | 03/26/01         | 03/26/01         | 03/26/01         | 03/26/01         | 03/27/01         | 03/27/01         | 03/27/01         | 12/15/01          | 12/15/01          | 12/15/01          | 03/27/01         | 03/27/01         | 03/27/01         |
| Sample Name:                 | RFI-36-24(00-02)    | RFI-36-24(06-08) | RFI-36-24(08-10) | DUP-02           | RFI-36-24(10-12) | REI-36-25(00-02) | RFI-36-25(08-10) | RFI-36-25(12-14) | RFI-36-25R(01-03) | RFI-36-25R(07-09) | RFI-36-25R(11-13) |                  | RFI-36-26(02-04) |                  |
| Inorganics                   | 1.1.1.00 2 1(00 02) |                  |                  | 201 02           |                  |                  |                  |                  |                   |                   |                   |                  |                  |                  |
| Arsenic                      | 7.1                 | 4.6              | 6.3              | 4.8              | 3.3              | 7.8              | 3.5              | 3.8              | 3                 | 6.8               | 2.4               | 3.3              | 4.6              | 2.4              |
| Chromium (total) [a]         | 39                  | 22               | 5.4              | 4.2              | 14               | 28               | 3.2              | 5.1              | 13                | 21                | 4.7               | 13               | 28               | 3.4              |
| Lead [b]                     | 15                  | 11               | 5.6              | 4                | 7.8              | 11               | 4                | 4.9              | 10                | 12                | 3.9               | 8.5              | 11               | 3.2              |
| Vanadium                     | 11                  | 12               | 10               | 8.1              | 12               | 19               | 5.9              | 9.7              | 13                | 26                | 9.9               | 5.7              | 8.2              | 5.2              |
| Volatile Organic Compound    |                     |                  |                  |                  |                  |                  |                  |                  |                   |                   |                   |                  |                  |                  |
| Benzene                      | <0.036              | < 0.037          | <0.035           | <0.036           | <0.038           | < 0.039          | <0.037           | <0.042           | <0.040            | <0.044            | <0.038            | <0.038           | <0.036           | <0.038           |
| 1,1-Dichloroethane           | <0.036              | 0.062            | <0.035           | < 0.036          | <0.038           | < 0.039          | <0.037           | <0.042           | <0.040            | <0.044            | < 0.038           | 0.87             | 1.6              | <0.038           |
| Ethylbenzene                 | <0.036              | <0.037           | <0.035           | <0.036           | <0.038           | <0.039           | <0.037           | < 0.042          | <0.040            | < 0.044           | <0.038            | <0.038           | <0.036           | <0.038           |
| Methyl cyclohexane           | <0.16               | <0.16            | <0.15            | <0.16            | <0.16            | <0.17            | <0.16            | <0.18            | <0.17             | <0.19             | <0.16             | <0.16            | <0.15            | <0.16            |
| 1,1,1-Trichloroethane        | <0.036              | <0.037           | <0.035           | <0.036           | <0.038           | <0.039           | <0.037           | < 0.042          | <0.040            | < 0.044           | <0.038            | <0.038           | <0.036           | <0.038           |
| Semi Volatile Organic Comp   | 1                   |                  |                  |                  |                  |                  |                  |                  |                   |                   |                   |                  |                  |                  |
| Acenaphthylene               | <0.18               | <0.18            | <0.18            | <0.18            | <0.19            | <0.19            | <0.18            | <0.20            | <0.20             | <0.21             | <0.19             | <0.18            | <0.18            | <0.18            |
| Benzo(a)anthracene           | <0.18               | 0.11             | <0.18            | <0.18            | <0.19            | <0.19            | <0.18            | <0.20            | 0.041             | <0.21             | <0.19             | <0.18            | <0.18            | <0.18            |
| Benzo(a)pyrene               | <0.18               | <0.18            | <0.18            | <0.18            | <0.19            | <0.19            | 0.15             | <0.20            | 0.042             | <0.21             | <0.19             | <0.18            | <0.18            | <0.18            |
| Benzo(b)fluoranthene         | <0.18               | <0.18            | <0.18            | <0.18            | <0.19            | <0.19            | 0.12             | <0.20            | <0.20             | <0.21             | <0.19             | <0.18            | <0.18            | <0.18            |
| Benzo(g,h,i)perylene         | <0.18               | <0.18            | <0.18            | <0.18            | <0.19            | <0.19            | 0.11             | <0.20            | <0.20             | <0.21             | <0.19             | <0.18            | <0.18            | <0.18            |
| Benzo(k)fluoranthene         | <0.18               | <0.18            | <0.18            | <0.18            | <0.19            | <0.19            | 0.13             | <0.20            | <0.20             | <0.21             | <0.19             | <0.18            | <0.18            | <0.18            |
| Carbazole                    | <0.18               | <0.18            | <0.18            | <0.18            | <0.19            | <0.19            | <0.18            | <0.20            | <0.20             | <0.21             | <0.19             | <0.18            | <0.18            | <0.18            |
| Dibenz(a,h)anthracene        | <0.18               | <0.18            | <0.18            | <0.18            | <0.19            | <0.19            | <0.18            | <0.20            | <0.20             | <0.21             | <0.19             | <0.18            | <0.18            | <0.18            |
| Dimethyl phthalate           | <0.18               | <0.18            | <0.18            | <0.18            | <0.19            | <0.19            | <0.18            | <0.20            | <0.20             | <0.21             | <0.19             | <0.18            | <0.18            | <0.18            |
| Di-n-octyl phthalate         | <0.18               | <0.18            | <0.18            | <0.18            | <0.19            | <0.19            | 0.13             | <0.20            | <0.20             | <0.21             | <0.19             | <0.18            | <0.18            | <0.18            |
| Indeno(1,2,3-cd)pyrene       | <0.18               | <0.18            | <0.18            | <0.18            | <0.19            | <0.19            | <0.18            | <0.20            | <0.20             | <0.21             | <0.19             | <0.18            | <0.18            | <0.18            |
| 3&4-Methylphenol             | <0.36               | <0.36            | <0.35            | <0.35            | <0.38            | <0.38            | <0.36            | <0.40            | <0.39             | <0.43             | <0.37             | <0.36            | <0.36            | <0.36            |
| Naphthalene                  | <0.18               | <0.18            | <0.18            | <0.18            | <0.19            | <0.19            | <0.18            | <0.20            | 0.064             | <0.21             | <0.19             | <0.18            | <0.18            | <0.18            |
| 2-Nitrophenol                | <0.18               | <0.18            | <0.18            | <0.18            | <0.19            | <0.19            | <0.18            | <0.20            | <0.20             | <0.21             | <0.19             | <0.18            | <0.18            | <0.18            |
| N-Nitrosodi-n-propylamine    | <0.18               | <0.18            | <0.18            | <0.18            | <0.19            | <0.19            | <0.18            | <0.20            | <0.20             | <0.21             | <0.19             | <0.18            | <0.18            | <0.18            |
| Phenanthrene                 | 0.12                | 0.1              | 0.86             | <0.18            | 0.37             | <0.19            | <0.18            | <0.20            | 0.12              | <0.21             | <0.19             | 0.21             | 0.21             | <0.18            |
| Polychlorinated Biphenyls (I |                     |                  |                  |                  |                  | -                |                  |                  |                   |                   |                   |                  | -                |                  |
| Aroclor-1242 (PCB-1242)      | < 0.035             | < 0.037          | < 0.036          | < 0.035          | < 0.037          | R                | < 0.036          | <0.041           | <0.040            | <0.044            | < 0.038           | < 0.036          | R                | < 0.036          |
| Aroclor-1248 (PCB-1248)      | < 0.035             | < 0.037          | < 0.036          | < 0.035          | < 0.037          | R                | < 0.036          | < 0.041          | < 0.040           | < 0.044           | < 0.038           | < 0.036          | R                | < 0.036          |
| Aroclor-1254 (PCB-1254)      | 0.08                | < 0.037          | < 0.036          | 0.028            | < 0.037          | R                | < 0.036          | < 0.041          | < 0.040           | < 0.044           | < 0.038           | 0.06             | R                | < 0.036          |
| Aroclor-1260 (PCB-1260)      | <0.035              | <0.037           | <0.036           | <0.035           | <0.037           | R                | <0.036           | <0.041           | <0.040            | <0.044            | <0.038            | <0.036           | R                | <0.036           |

|                             | AOI 36-1 cont.   |                    |                    |                    |                    |                  |                  |                  |                   |                   |                  |                  |                  |                  |                  |
|-----------------------------|------------------|--------------------|--------------------|--------------------|--------------------|------------------|------------------|------------------|-------------------|-------------------|------------------|------------------|------------------|------------------|------------------|
| AOI Number   Location ID:   |                  | 36-1   RFI-36-27   | 36-1   RFI-36-27   | 36-1   RFI-36-27   | 36-1   RFI-36-27   | 36-1   RFI-36-28 | 36-1   RFI-36-28 | 36-1   RFI-36-28 | 36-1   RFI-36-28  | 36-1   RFI-36-28  | 36-1   RFI-36-29 | 36-1   RFI-36-29 | 36-1   RFI-36-29 | 36-1   RFI-36-29 | 36-1   RFI-36-30 |
| Sample Depth(ft BGS):       | 10 - 12          | 0 - 2              | 8 - 10             | 12 - 14            | 14 - 16            | 0 - 2            | 8 - 10           | 8 - 10           | 10 - 12           | 14 - 16           | 0 - 2            | 8 - 10           | 10 - 12          | 10 - 12          | 0 - 2            |
| Date Collected:             | 03/27/01         | 03/26/01           | 03/26/01           | 03/26/01           | 03/26/01           | 03/29/01         | 03/29/01         | 03/29/01         | 03/29/01          | 03/29/01          | 03/28/01         | 03/28/01         | 03/28/01         | 03/28/01         | 03/28/01         |
|                             |                  |                    |                    | RFI-36-27(12-14)   |                    |                  |                  |                  | RFI-36-28(10-12)  |                   |                  |                  |                  | RFI-DUP-03       | RFI-36-30(00-02) |
|                             | 111-30-20(10-12) | NI 1-30-27 (00-02) | KI 1-30-27 (00-10) | KI 1-30-27 (12-14) | KI 1-30-27 (14-10) | 111-30-20(00-02) | D01-00           | 111-30-20(00-10) | KI 1-30-20(10-12) | 1(11-30-20(14-10) | 111-30-29(00-02) | 111-30-29(00-10) | NT1-30-29(10-12) | KI I-DOI -03     | 111-30-30(00-02) |
| Inorganics<br>Arsenic       | 2.7              | 3.4                | 3.9                | 1.7                | 3.3                | 2.3              | 3.2              | 3.5              | 4.3               | 5.7               | 2.3              | 2.4              | 2.0              | 2.4              | 3.8              |
|                             | 2.7<br>5.8       | 3.4<br>8.7         | 5.7                | 3.5                | 3.3<br>4.8         | 2.3<br>7.9       | 3.2<br>15        | 3.5<br>10        | -                 | 5.7<br>6.5        | 2.3              | 2.4<br>3.3       | 2.9<br>6.7       |                  |                  |
| Chromium (total) [a]        |                  | -                  | 5.7                |                    | -                  | -                | -                |                  | 2.5               |                   | • •              |                  | -                | 5.5              | 23               |
| Lead [b]                    | 3.6              | 7.4<br>7.7         | 4.6<br>8.6         | 2.8<br>4.9         | 5.2                | 7.1              | 9.7              | 13<br>10         | 4.5               | 7.1               | 16<br>13         | 2.7<br>5.5       | 4.7<br>7.6       | 3.3<br>6.7       | 24<br>17         |
| Vanadium                    | 6.1              | 1.1                | 8.0                | 4.9                | 7.5                | 4.3              | 8.9              | 10               | 3.6               | 8.9               | 13               | 5.5              | 7.0              | 6.7              | 17               |
| Volatile Organic Compounds  | <0.036           | <0.038             | < 0.037            | <0.037             | <0.039             | <0.042           | <0.037           | <0.039           | <0.037            | <0.037            | <0.039           | <0.036           | 0.23             | 0.19             | 4.5              |
| Benzene                     |                  |                    |                    |                    |                    |                  |                  |                  |                   |                   |                  |                  |                  |                  | 1.5              |
| 1,1-Dichloroethane          | 0.41             | < 0.038            | < 0.037            | < 0.037            | < 0.039            | < 0.042          | < 0.037          | < 0.039          | < 0.037           | < 0.037           | < 0.039          | < 0.036          | < 0.036          | < 0.036          | < 0.037          |
| Ethylbenzene                | < 0.036          | < 0.038            | < 0.037            | < 0.037            | < 0.039            | <0.042           | <0.037           | < 0.039          | < 0.037           | < 0.037           | < 0.039          | < 0.036          | 0.047            | 0.042            | 0.54             |
| Methyl cyclohexane          | <0.16            | <0.16              | <0.16              | < 0.16             | <0.17              | <0.18            | <0.16            | <0.17            | <0.16             | < 0.16            | 0.12             | <0.15            | 0.073            | 0.069            | 0.048            |
| 1,1,1-Trichloroethane       | <0.036           | <0.038             | <0.037             | <0.037             | <0.039             | <0.042           | 0.092            | 0.15             | <0.037            | <0.037            | <0.039           | <0.036           | <0.036           | <0.036           | <0.037           |
| Semi Volatile Organic Comp  | 0.40             | 0.40               | 0.40               | 0.40               | 0.40               | 0.00             | 0.40             | 0.40             | 0.40              | 0.47              | 0.40             | 0.47             | 0.40             | 0.40             | 0.40             |
| Acenaphthylene              | <0.18            | <0.18              | <0.18              | <0.18              | <0.19              | <0.20            | <0.18            | <0.18            | <0.18             | <0.17             | <0.19            | <0.17            | <0.18            | <0.18            | <0.18            |
| Benzo(a)anthracene          | <0.18            | <0.18              | <0.18              | <0.18              | 0.2                | <0.20            | <0.18            | <0.18            | <0.18             | <0.17             | 0.23             | <0.17            | <0.18            | 0.4              | <0.18            |
| Benzo(a)pyrene              | <0.18            | <0.18              | <0.18              | <0.18              | <0.19              | <0.20            | <0.18            | <0.18            | <0.18             | <0.17             | <0.19            | <0.17            | <0.18            | <0.18            | <0.18            |
| Benzo(b)fluoranthene        | <0.18            | <0.18              | <0.18              | <0.18              | <0.19              | <0.20            | <0.18            | <0.18            | <0.18             | <0.17             | <0.19            | <0.17            | <0.18            | <0.18            | <0.18            |
| Benzo(g,h,i)perylene        | <0.18            | <0.18              | <0.18              | <0.18              | <0.19              | <0.20            | <0.18            | <0.18            | <0.18             | <0.17             | <0.19            | <0.17            | <0.18            | <0.18            | <0.18            |
| Benzo(k)fluoranthene        | <0.18            | <0.18              | <0.18              | <0.18              | <0.19              | <0.20            | <0.18            | <0.18            | <0.18             | <0.17             | <0.19            | <0.17            | <0.18            | <0.18            | <0.18            |
| Carbazole                   | <0.18            | <0.18              | <0.18              | <0.18              | <0.19              | <0.20            | <0.18            | <0.18            | <0.18             | <0.17             | <0.19            | <0.17            | <0.18            | <0.18            | <0.18            |
| Dibenz(a,h)anthracene       | <0.18            | <0.18              | <0.18              | <0.18              | <0.19              | <0.20            | <0.18            | <0.18            | <0.18             | <0.17             | <0.19            | <0.17            | <0.18            | <0.18            | <0.18            |
| Dimethyl phthalate          | <0.18            | <0.18              | <0.18              | <0.18              | <0.19              | <0.20            | <0.18            | <0.18            | <0.18             | <0.17             | <0.19            | <0.17            | <0.18            | <0.18            | <0.18            |
| Di-n-octyl phthalate        | <0.18            | <0.18              | <0.18              | <0.18              | <0.19              | <0.20            | <0.18            | <0.18            | <0.18             | <0.17             | <0.19            | <0.17            | <0.18            | <0.18            | <0.18            |
| Indeno(1,2,3-cd)pyrene      | <0.18            | <0.18              | <0.18              | <0.18              | <0.19              | <0.20            | <0.18            | <0.18            | <0.18             | <0.17             | <0.19            | <0.17            | <0.18            | <0.18            | <0.18            |
| 3&4-Methylphenol            | <0.35            | <0.36              | <0.37              | <0.35              | <0.37              | <0.39            | <0.36            | <0.36            | <0.35             | <0.35             | <0.38            | <0.35            | <0.35            | <0.35            | <0.36            |
| Naphthalene                 | <0.18            | <0.18              | <0.18              | <0.18              | 0.22               | <0.20            | <0.18            | <0.18            | <0.18             | <0.17             | <0.19            | <0.17            | <0.18            | <0.18            | <0.18            |
| 2-Nitrophenol               | <0.18            | <0.18              | <0.18              | <0.18              | <0.19              | <0.20            | <0.18            | <0.18            | <0.18             | <0.17             | <0.19            | <0.17            | <0.18            | <0.18            | <0.18            |
| N-Nitrosodi-n-propylamine   | <0.18            | <0.18              | <0.18              | <0.18              | <0.19              | <0.20            | <0.18            | <0.18            | <0.18             | <0.17             | <0.19            | <0.17            | <0.18            | <0.18            | <0.18            |
| Phenanthrene                | <0.18            | 0.073              | <0.18              | 4.6                | 10                 | <0.20            | <0.18            | 0.33             | <0.18             | <0.17             | 1.2              | <0.17            | <0.18            | 1.9              | 0.49             |
| Polychlorinated Biphenyls ( |                  |                    |                    |                    |                    |                  |                  |                  |                   |                   |                  |                  |                  |                  |                  |
| Aroclor-1242 (PCB-1242)     | <0.036           | <0.037             | <0.038             | <0.034             | <0.038             | <0.038           | <0.036           | <0.036           | <0.035            | <0.034            | <0.037           | <0.036           | <0.036           | < 0.036          | <0.038           |
| Aroclor-1248 (PCB-1248)     | < 0.036          | <0.037             | <0.038             | < 0.034            | <0.038             | <0.038           | < 0.036          | < 0.036          | < 0.035           | < 0.034           | <0.037           | <0.036           | <0.036           | <0.036           | <0.038           |
| Aroclor-1254 (PCB-1254)     | < 0.036          | <0.037             | <0.038             | < 0.034            | <0.038             | <0.038           | < 0.036          | < 0.036          | < 0.035           | < 0.034           | <0.037           | <0.036           | <0.036           | <0.036           | <0.038           |
| Aroclor-1260 (PCB-1260)     | <0.036           | <0.037             | <0.038             | <0.034             | <0.038             | <0.038           | <0.036           | <0.036           | <0.035            | <0.034            | <0.037           | <0.036           | <0.036           | <0.036           | <0.038           |

|                             | AOI 36-1 cont.    |                   |                   |                   |                  |                   |                   |                   |                  |                    |                   |                   |                   |                   |                   |
|-----------------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| AOI Number   Location ID:   |                   | 36-1   RFI-36-30  | 36-1   RFI-36-31  | 36-1   RFI-36-31  | 36-1   RFI-36-31 | 36-1   RFI-36-32  | 36-1   RFI-36-32  | 36-1   RFI-36-32  | 36-1   RFI-36-32 | 2 36-1   RFI-36-32 | 36-1   RFI-36-33  | 36-1   RFI-36-33  | 36-1   RFI-36-33  | 36-1   RFI-36-35  | 36-1   RFI-36-35  |
| Sample Depth(ft BGS):       | 8 - 10            | 10 - 12           | 0 - 2             | 8 - 10            | 10 - 12          | 0 - 2             | 8 - 10            | 12 - 14           | 16 - 18          | 16 - 18            | 0 - 2             | 8 - 10            | 16 - 18           | 0 - 2             | 8 - 10            |
| Date Collected:             | 03/28/01          | 03/28/01          | 03/28/01          | 03/28/01          | 03/28/01         | 03/28/01          | 03/28/01          | 03/28/01          | 03/28/01         | 03/28/01           | 03/29/01          | 03/29/01          | 03/29/01          | 03/27/01          | 03/27/01          |
|                             |                   |                   |                   | RFI-36-31(08-10)  |                  |                   |                   |                   | DUP-05           |                    |                   |                   | RFI-36-33(16-18)  |                   |                   |
| Inorganics                  | 1(11-30-30(00-10) | 1(11-30-30(10-12) | 1(11-30-31(00-02) | Ki 1-50-51(00-10) | 111-30-31(10-12) | 1(11-30-32(00-02) | 1(11-30-32(00-10) | 1(11-30-32(12-14) | 001-03           | 111-30-32(10-10)   | 1(11-30-33(00-02) | 1(11-30-33(00-10) | 1(11-30-33(10-10) | 1(11-30-33(00-02) | 1(11-30-33(00-10) |
| Arsenic                     | 2.5               | 3.6               | 2.2               | 3.8               | 2.6              | 3.3               | 7.4               | 4                 | 3                | 2.9                | 8.2               | 7.2               | 10                | 3.5               | 4.3               |
| Chromium (total) [a]        | 3.1               | 4.2               | 13                | 7.8               | 3.1              | 3.5<br>10         | 12                | 4<br>3.1          | 3.1              | 5.9                | 41                | 9.5               | 2.6               | 8.2               | 4.3               |
| Lead [b]                    | 3.4               | 3.8               | 5.8               | 5.7               | 2.9              | 15                | 10                | 4.3               | 3.1              | 3                  | 91                | 9.6               | 2.0               | 7.3               | 4.4               |
| Vanadium                    | 5.3               | 6.2               | 6.9               | 5.8               | 4.6              | 7                 | 10                | 4.8               | 3.1<br>A         | 3.6                | 20                | 3.0<br>15         | 3.9               | 9.2               | 6.9               |
| Volatile Organic Compounds  | 0.0               | 0.2               | 0.5               | 0.0               | 4.0              | '                 | 17                | 4.0               | -                | 5.0                | 20                | 10                | 0.0               | 5.2               | 0.0               |
| Benzene                     | 9.3               | 1.3               | <0.039            | 0.056             | <0.037           | <0.039            | <0.039            | <0.036            | <0.036           | < 0.036            | <0.038            | <0.040            | <0.036            | <0.039            | <0.038            |
| 1.1-Dichloroethane          | <0.037            | <0.035            | <0.039            | < 0.038           | <0.007           | <0.039            | <0.039            | <0.036            | < 0.036          | < 0.036            | <0.038            | <0.040            | <0.036            | <0.039            | <0.038            |
| Ethylbenzene                | 28                | 7.8               | <0.039            | 0.11              | 0.069            | < 0.039           | < 0.039           | <0.036            | < 0.036          | < 0.036            | <0.038            | <0.040            | <0.036            | <0.039            | <0.038            |
| Methyl cyclohexane          | 1                 | 0.27              | < 0.17            | <0.16             | <0.16            | <0.17             | <0.17             | <0.15             | <0.15            | <0.15              | <0.16             | <0.17             | <0.15             | <0.17             | <0.16             |
| 1.1.1-Trichloroethane       | <0.037            | < 0.035           | < 0.039           | < 0.038           | < 0.037          | < 0.039           | < 0.039           | < 0.036           | < 0.036          | < 0.036            | <0.038            | <0.040            | < 0.036           | < 0.039           | 0.07              |
| Semi Volatile Organic Comp  |                   |                   |                   |                   |                  |                   | 101000            |                   | 101000           | 101000             | 101000            |                   | 101000            |                   | 0101              |
| Acenaphthylene              | <0.18             | <0.18             | <0.19             | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | <0.17             | <0.19             | <0.18             |
| Benzo(a)anthracene          | <0.18             | <0.18             | 7                 | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | <0.17             | <0.19             | <0.18             |
| Benzo(a)pyrene              | <0.18             | <0.18             | 6.2               | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | <0.17             | <0.19             | <0.18             |
| Benzo(b)fluoranthene        | <0.18             | <0.18             | 6.2               | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | <0.17             | <0.19             | <0.18             |
| Benzo(g,h,i)perylene        | <0.18             | <0.18             | 6.9               | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | <0.17             | <0.19             | <0.18             |
| Benzo(k)fluoranthene        | <0.18             | <0.18             | 4                 | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | <0.17             | <0.19             | <0.18             |
| Carbazole                   | <0.18             | <0.18             | 2.5               | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | <0.17             | <0.19             | <0.18             |
| Dibenz(a,h)anthracene       | <0.18             | <0.18             | 1.1               | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | <0.17             | <0.19             | <0.18             |
| Dimethyl phthalate          | <0.18             | <0.18             | <0.19             | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | <0.17             | <0.19             | <0.18             |
| Di-n-octyl phthalate        | <0.18             | <0.18             | <0.19             | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | <0.17             | <0.19             | <0.18             |
| Indeno(1,2,3-cd)pyrene      | <0.18             | <0.18             | 6.8               | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | <0.17             | <0.19             | <0.18             |
| 3&4-Methylphenol            | <0.36             | <0.35             | 1                 | <0.38             | <0.36            | <0.37             | <0.38             | <0.35             | < 0.35           | < 0.35             | <0.38             | <0.38             | < 0.35            | <0.38             | <0.37             |
| Naphthalene                 | 0.53              | 0.3               | 0.18              | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | <0.17             | <0.19             | <0.18             |
| 2-Nitrophenol               | <0.18             | <0.18             | <0.19             | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | <0.17             | <0.19             | <0.18             |
| N-Nitrosodi-n-propylamine   | <0.18             | <0.18             | <0.19             | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | <0.17             | <0.19             | <0.18             |
| Phenanthrene                | 0.71              | <0.18             | 9.3               | <0.19             | <0.18            | <0.19             | <0.19             | <0.18             | <0.17            | <0.17              | <0.19             | <0.19             | 1.7               | <0.19             | <0.18             |
| Polychlorinated Biphenyls ( |                   |                   |                   |                   |                  |                   |                   |                   |                  |                    |                   |                   |                   |                   |                   |
| Aroclor-1242 (PCB-1242)     | <0.037            | <0.035            | <0.037            | <0.039            | <0.036           | <0.036            | <0.039            | <0.036            | <0.034           | < 0.036            | <0.037            | <0.038            | <0.034            | <0.037            | <0.038            |
| Aroclor-1248 (PCB-1248)     | <0.037            | <0.035            | <0.037            | <0.039            | <0.036           | <0.036            | <0.039            | <0.036            | <0.034           | < 0.036            | <0.037            | <0.038            | <0.034            | <0.037            | <0.038            |
| Aroclor-1254 (PCB-1254)     | <0.037            | <0.035            | <0.037            | <0.039            | <0.036           | 0.05              | <0.039            | <0.036            | <0.034           | <0.036             | <0.037            | <0.038            | <0.034            | <0.037            | <0.038            |
| Aroclor-1260 (PCB-1260)     | <0.037            | <0.035            | <0.037            | <0.039            | <0.036           | <0.036            | <0.039            | <0.036            | <0.034           | <0.036             | <0.037            | <0.038            | <0.034            | <0.037            | <0.038            |

|                             | AOI 36-1 cont. |                  |                  |                  |                  |                  |                  |                      |                  |                  |                  |                  |                   |
|-----------------------------|----------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------------|------------------|------------------|------------------|------------------|-------------------|
| AOI Number   Location ID:   |                | 36-1   RFI-36-38 | 36-1   RFI-36-38 | 36-1   RFI-36-38 | 36-1   RFI-36-38 | 36-1   RFI-36-39 | 36-1   RFI-36-39 | 36-1   RFI-36-39     | 36-1   RFI-36-40 | 36-1   RFI-36-40 | 36-1   RFI-36-40 | 36-1   RFI-36-46 | 36-1   RFI-36-46  |
| Sample Depth(ft BGS):       | 12 - 14        | 0.5 - 2.5        | 8.5 - 10.5       | 10.5 - 12.5      | 10.5 - 12.5      | 0.5 - 2.5        | 8.5 - 10.5       | 10.5 - 12.5          | 0.5 - 2.5        | 8.5 - 10.5       | 12.5 - 14.5      | 0 - 2            | 8 - 10            |
| Date Collected:             | 03/27/01       | 12/16/01         | 12/16/01         | 12/16/01         | 12/16/01         | 12/16/01         | 12/16/01         | 12/16/01             | 12/16/01         | 12/16/01         | 12/16/01         | 01/10/02         | 01/10/02          |
|                             |                |                  |                  |                  |                  |                  |                  | RFI-36-39(10.5-12.5) |                  |                  |                  |                  | • • • • • • • • • |
| Inorganics                  |                |                  |                  |                  |                  |                  |                  |                      |                  |                  |                  |                  |                   |
| Arsenic                     | 3.8            | NA                   | NA               | NA               | NA               | 8.6              | 3.8               |
| Chromium (total) [a]        | 3.2            | NA                   | NA               | NA               | NA               | 24               | 11                |
| Lead [b]                    | 4.1            | NA                   | NA               | NA               | NA               | 29               | 5.7               |
| Vanadium                    | 3.9            | NA                   | NA               | NA               | NA               | 19               | 14                |
| Volatile Organic Compound   |                |                  |                  |                  |                  |                  |                  |                      |                  |                  |                  |                  |                   |
| Benzene                     | <0.040         | <0.011           | <0.011           | <0.010           | < 0.012          | <0.011           | <0.011           | <0.010               | 0.056            | 4.7              | 6.3              | <0.041           | < 0.039           |
| 1,1-Dichloroethane          | <0.040         | NA                   | NA               | NA               | NA               | <0.041           | < 0.039           |
| Ethylbenzene                | <0.040         | <0.011           | <0.011           | <0.010           | < 0.012          | <0.011           | <0.011           | <0.010               | <0.011           | 2.6              | 52               | <0.041           | < 0.039           |
| Methyl cyclohexane          | <0.17          | NA                   | NA               | NA               | NA               | 0.2              | <0.17             |
| 1,1,1-Trichloroethane       | 0.14           | NA                   | NA               | NA               | NA               | <0.041           | < 0.039           |
| Semi Volatile Organic Comp  | (              |                  |                  |                  |                  |                  |                  |                      |                  |                  |                  |                  |                   |
| Acenaphthylene              | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| Benzo(a)anthracene          | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| Benzo(a)pyrene              | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| Benzo(b)fluoranthene        | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| Benzo(g,h,i)perylene        | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| Benzo(k)fluoranthene        | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| Carbazole                   | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| Dibenz(a,h)anthracene       | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| Dimethyl phthalate          | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| Di-n-octyl phthalate        | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| Indeno(1,2,3-cd)pyrene      | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| 3&4-Methylphenol            | <0.40          | NA                   | NA               | NA               | NA               | <4.0             | <0.37             |
| Naphthalene                 | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| 2-Nitrophenol               | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| N-Nitrosodi-n-propylamine   | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| Phenanthrene                | <0.20          | NA                   | NA               | NA               | NA               | <2.0             | <0.19             |
| Polychlorinated Biphenyls ( | :              |                  |                  |                  |                  |                  |                  |                      |                  |                  |                  |                  |                   |
| Aroclor-1242 (PCB-1242)     | <0.041         | NA                   | NA               | NA               | NA               | <0.041           | <0.038            |
| Aroclor-1248 (PCB-1248)     | <0.041         | NA                   | NA               | NA               | NA               | <0.041           | <0.038            |
| Aroclor-1254 (PCB-1254)     | <0.041         | NA                   | NA               | NA               | NA               | <0.041           | <0.038            |
| Aroclor-1260 (PCB-1260)     | <0.041         | NA                   | NA               | NA               | NA               | <0.041           | <0.038            |

#### AOIs with Soil Exceedances of the Construction Worker Health-Based Goals Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

| AOI 36-1 cont.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 36-1   RFI-36-46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36-1   RFI-36-49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36-1   RFI-36-49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36-1   RFI-36-49                                                                                                                                                                                              | 36-1   RFI-36-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36-1   RFI-36-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36-1   RFI-36-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| •                | 10 - 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 - 19                                                                                                                                                                                                       | 0 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12 - 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03/09/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IN 1-30-D01 -203 | 1(11-30-40(10-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1(11-30-43(01-03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ni 1-30-43(07-03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1(11-30-43(17-13)                                                                                                                                                                                             | NT-30-32(0-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1(11-30-32(0-10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ki 1-30-32(12-14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 25               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27                                                                                                                                                                                                            | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -                | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.2<br>3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.007                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | <0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.037                                                                                                                                                                                                        | <0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <0.19            | <0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <4.5                                                                                                                                                                                                          | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <0.19            | <0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <4.5                                                                                                                                                                                                          | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <0.19            | <0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <4.5                                                                                                                                                                                                          | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <0.37            | <0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <9.0                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <0.19            | <0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <4.5                                                                                                                                                                                                          | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <0.19            | <0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <4.5                                                                                                                                                                                                          | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <0.19            | <0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <4.5                                                                                                                                                                                                          | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <0.19            | <0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                             | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <0.038           | <0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.037                                                                                                                                                                                                        | <0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <0.038           | <0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.037                                                                                                                                                                                                        | <0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| < 0.038          | < 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.039                                                                                                                                                                                                         | < 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <0.038           | <0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.037                                                                                                                                                                                                        | <0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •                | 36-1   RFI-36-46<br>8 - 10<br>01/10/02<br>RFI-36-DUP-209<br>2.5<br>7.8<br>6.2<br>16<br><0.039<br><0.039<br><0.039<br><0.039<br><0.039<br><0.039<br><0.17<br><0.039<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.19<br><0.37<br><0.19<br><0.19<br><0.19<br><0.37<br><0.19<br><0.19<br><0.37<br><0.19<br><0.38<br><0.038<br><0.038<br><0.038 | 36-1   RFI-36-46  $36-1   RFI-36-46 $ $8 - 10$ $10 - 12$ $01/10/02$ $01/10/02$ $RFI-36-DUP-209 $ $RFI-36-46(10-12)$ $2.5$ $3.1$ $7.8$ $6.3$ $6.2$ $5.2$ $16$ $11$ $<0.039 $ $<0.038 $ $<0.039 $ $<0.038 $ $<0.039 $ $<0.038 $ $<0.039 $ $<0.038 $ $<0.039 $ $<0.038 $ $<0.039 $ $<0.038 $ $<0.039 $ $<0.038 $ $<0.039 $ $<0.038 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ $<0.19 $ <t< td=""><td>36-1         RFI-36-46         36-1         RFI-36-46         36-1         RFI-36-49           <math>8 - 10</math> <math>10 - 12</math> <math>1 - 3</math> <math>01/10/02</math> <math>04/05/03</math>           RFI-36-DUP-209         RFI-36-46(10-12)         RFI-36-49(01-03)           2.5         <math>3.1</math> <math>2.3</math>           7.8         <math>6.3</math> <math>8.8</math> <math>6.2</math> <math>5.2</math> <math>5.8</math> <math>16</math> <math>11</math> <math>8.3</math> <math>&lt;0.039</math> <math>&lt;0.038</math> <math>&lt;0.037</math> <math>&lt;0.19</math> <math>&lt;0.19</math> <math>&lt;4.4</math> <math>&lt;0.19</math> <math>&lt;0.19</math> <math>&lt;4.4</math></td><td>36-1RFI-36-4636-1RFI-36-4636-1RFI-36-498 - 1010 - 121 - 37 - 901/10/0201/10/0204/05/0304/05/03RFI-36-DUP-209RFI-36-46(10-12)RFI-36-49(01-03)RFI-36-49(07-09)2.53.12.34.57.86.38.8156.25.25.81116118.324&lt;0.039</td>&lt;0.038</t<> | 36-1         RFI-36-46         36-1         RFI-36-46         36-1         RFI-36-49 $8 - 10$ $10 - 12$ $1 - 3$ $01/10/02$ $04/05/03$ RFI-36-DUP-209         RFI-36-46(10-12)         RFI-36-49(01-03)           2.5 $3.1$ $2.3$ 7.8 $6.3$ $8.8$ $6.2$ $5.2$ $5.8$ $16$ $11$ $8.3$ $<0.039$ $<0.038$ $<0.037$ $<0.039$ $<0.038$ $<0.037$ $<0.039$ $<0.038$ $<0.037$ $<0.039$ $<0.038$ $<0.037$ $<0.039$ $<0.038$ $<0.037$ $<0.039$ $<0.038$ $<0.037$ $<0.039$ $<0.038$ $<0.037$ $<0.19$ $<0.19$ $<4.4$ $<0.19$ $<0.19$ $<4.4$ $<0.19$ $<0.19$ $<4.4$ $<0.19$ $<0.19$ $<4.4$ $<0.19$ $<0.19$ $<4.4$ $<0.19$ $<0.19$ $<4.4$ | 36-1RFI-36-4636-1RFI-36-4636-1RFI-36-498 - 1010 - 121 - 37 - 901/10/0201/10/0204/05/0304/05/03RFI-36-DUP-209RFI-36-46(10-12)RFI-36-49(01-03)RFI-36-49(07-09)2.53.12.34.57.86.38.8156.25.25.81116118.324<0.039 | 36-1         RFI-36-46         36-1         RFI-36-46         1 - 3         7 - 9         17 - 19           01/10/02         01/10/02         04/05/03         04/05/03         04/05/03         04/05/03           RFI-36-DUP-209         RFI-36-46(10-12)         RFI-36-49(01-03)         RFI-36-49(07-09)         RFI-36-49(17-19)           2.5         3.1         2.3         4.5         2.7           7.8         6.3         8.8         15         4           6.2         5.2         5.8         11         3.4           16         11         8.3         24         8.3           <0.039 | 36-1         RFI-36-46         36-1         RFI-36-49         0-2         03/09/05           8FI-36-DUP-209         RFI-36-46(10-12)         RFI-36-49(01-03)         RFI-36-49(07-09)         RFI-36-49(17-19)         RFI-36-52(0-2)           2.5         3.1         2.3         4.5         2.7         0.81           7.8         6.3         8.8         15         4         5.2           6.2         5.2         5.8         11         3.4         7           16         11         8.3         24         8.3         6.1           <0.039 | 36-1         RFI-36-46         36-1         RFI-36-49         36-1         REI         36-1         36-1         36-1         36-1         36-1 |

Page 14 of 30

|                              | AOI 36-2         |                  |                  |                    |                    |                  |                  |                   |                  |                  |                  |                  |                  |                    |
|------------------------------|------------------|------------------|------------------|--------------------|--------------------|------------------|------------------|-------------------|------------------|------------------|------------------|------------------|------------------|--------------------|
| AOI Number   Location ID:    | 36-2   RFI-36-19 | 36-2   RFI-36-19 | 36-2   RFI-36-19 | 36-2   RFI-36-34   | 36-2   RFI-36-34   | 36-2   RFI-36-36 | 36-2   RFI-36-36 | 36-2   RFI-36-36R | 36-2   RFI-36-37 | 36-2   RFI-36-37 | 36-2   RFI-36-37 | 36-2   RFI-36-37 | 36-2   RFI-36-41 | 36-2   RFI-36-42   |
| Sample Depth(ft BGS):        | 0 - 2            | 8 - 10           | 10 - 12          | 0.9 - 2.9          | 6.9 - 8.9          | 1 - 3            | 5 - 7            | 1 - 3             | 0 - 2            | 6 - 8            | 8 - 10           | 14 - 16          | 1 - 3            | 0.1 - 1.5          |
| Date Collected:              | 08/28/01         | 08/28/01         | 08/28/01         | 06/28/01           | 06/28/01           | 06/29/01         | 06/29/01         | 11/29/01          | 09/04/01         | 09/04/01         | 09/04/01         | 09/04/01         | 11/29/01         | 11/29/01           |
| Sample Name:                 | RFI-36-19(00-02) | RFI-36-19(08-10) | RFI-36-19(10-12) | RFI-36-34(0.9-2.9) | RFI-36-34(6.9-8.9) | RFI-36-36(01-03) | RFI-36-36(05-07) | RFI-36-36R(01-03) | RFI-36-37(00-02) | RFI-36-37(06-08) | RFI-36-37(08-10) | RFI-36-37(14-16) | RFI-36-41(01-03) | RFI-36-42(0.1-1.5) |
| Inorganics                   |                  |                  |                  | ,                  |                    |                  |                  |                   |                  |                  |                  |                  |                  | ,                  |
| Arsenic                      | NA               | NA               | NA               | 5.2                | 3.4                | 5.8              | 3.8              | NA                | NA               | NA               | NA               | NA               | NA               | NA                 |
| Chromium (total) [a]         | NA               | NA               | NA               | 13                 | 5.2                | 450              | 54               | 220               | NA               | NA               | NA               | NA               | 110              | 8.7                |
| Lead [b]                     | NA               | NA               | NA               | 7.1                | 3.9                | 40               | 14               | NA                | NA               | NA               | NA               | NA               | NA               | NA                 |
| Vanadium                     | NA               | NA               | NA               | 18                 | 11                 | 120              | 22               | NA                | NA               | NA               | NA               | NA               | NA               | NA                 |
| Volatile Organic Compounds   |                  |                  |                  |                    |                    |                  |                  |                   |                  |                  |                  |                  |                  |                    |
| Benzene                      | <0.037           | <0.037           | <0.036           | <0.039             | <0.040             | <0.038           | <0.040           | NA                | <0.037           | <0.036           | < 0.036          | <0.038           | NA               | NA                 |
| 1,1-Dichloroethane           | <0.037           | <0.037           | < 0.036          | <0.039             | <0.040             | <0.038           | <0.040           | NA                | <0.037           | < 0.036          | < 0.036          | <0.038           | NA               | NA                 |
| Ethylbenzene                 | <0.037           | <0.037           | <0.036           | <0.039             | <0.040             | <0.038           | <0.040           | NA                | <0.037           | <0.036           | <0.036           | <0.038           | NA               | NA                 |
| Methyl cyclohexane           | <0.16            | <0.16            | <0.15            | <0.17              | <0.17              | <0.16            | <0.17            | NA                | 0.08             | <0.16            | <0.15            | <0.16            | NA               | NA                 |
| 1,1,1-Trichloroethane        | <0.037           | <0.037           | <0.036           | <0.039             | <0.040             | <0.038           | <0.040           | NA                | <0.037           | <0.036           | <0.036           | <0.038           | NA               | NA                 |
| Semi Volatile Organic Comp   |                  |                  |                  |                    |                    |                  |                  |                   |                  |                  |                  |                  |                  |                    |
| Acenaphthylene               | NA               | NA               | NA               | <0.19              | <0.19              | <0.92            | <0.98            | NA                | <0.18            | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| Benzo(a)anthracene           | NA               | NA               | NA               | <0.19              | <0.19              | <0.92            | <0.98            | NA                | 0.093            | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| Benzo(a)pyrene               | NA               | NA               | NA               | <0.19              | <0.19              | <0.92            | <0.98            | NA                | 0.09             | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| Benzo(b)fluoranthene         | NA               | NA               | NA               | <0.19              | <0.19              | <0.92            | <0.98            | NA                | 0.093            | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| Benzo(g,h,i)perylene         | NA               | NA               | NA               | <0.19              | <0.19              | <0.92            | <0.98            | NA                | 0.055            | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| Benzo(k)fluoranthene         | NA               | NA               | NA               | <0.19              | <0.19              | <0.92            | <0.98            | NA                | 0.088            | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| Carbazole                    | NA               | NA               | NA               | <0.19              | <0.19              | <0.92            | <0.98            | NA                | <0.18            | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| Dibenz(a,h)anthracene        | NA               | NA               | NA               | <0.19              | <0.19              | <0.92            | <0.98            | NA                | <0.18            | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| Dimethyl phthalate           | NA               | NA               | NA               | <0.19              | <0.19              | <0.92            | <0.98            | NA                | <0.18            | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| Di-n-octyl phthalate         | NA               | NA               | NA               | <0.19              | <0.19              | <0.92            | <0.98            | NA                | <0.18            | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| Indeno(1,2,3-cd)pyrene       | NA               | NA               | NA               | <0.19              | <0.19              | <0.92            | <0.98            | NA                | 0.051            | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| 3&4-Methylphenol             | NA               | NA               | NA               | <0.38              | <0.38              | <1.8             | <2.0             | NA                | <0.36            | <0.35            | <0.35            | <0.37            | NA               | NA                 |
| Naphthalene                  | NA               | NA               | NA               | <0.19              | <0.19              | <0.92            | <0.98            | NA                | <0.18            | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| 2-Nitrophenol                | NA               | NA               | NA               | <0.19              | <0.19              | <0.92            | <0.98            | NA                | <0.18            | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| N-Nitrosodi-n-propylamine    | NA               | NA               | NA               | <0.19              | <0.19              | < 0.92           | <0.98            | NA                | <0.18            | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| Phenanthrene                 | . NA             | NA               | NA               | <0.19              | <0.19              | <0.92            | <0.98            | NA                | 0.058            | <0.18            | <0.17            | <0.19            | NA               | NA                 |
| Polychlorinated Biphenyls (I |                  | N10              | <b>N</b> 10      | 0.000              | 0.000              | 0.000            | 0.040            |                   |                  | N10              | 0.000            | N 1 A            | N 1 A            | N10                |
| Aroclor-1242 (PCB-1242)      | NA               | NA               | NA               | < 0.039            | < 0.039            | < 0.038          | <0.040           | NA                | NA               | NA               | < 0.036          | NA               | NA               | NA                 |
| Aroclor-1248 (PCB-1248)      | NA               | NA               | NA               | < 0.039            | < 0.039            | < 0.038          | < 0.040          | NA                | NA               | NA               | < 0.036          | NA               | NA               | NA                 |
| Aroclor-1254 (PCB-1254)      | NA               | NA               | NA               | < 0.039            | < 0.039            | < 0.038          | <0.040           | NA                | NA               | NA               | < 0.036          | NA               | NA               | NA                 |
| Aroclor-1260 (PCB-1260)      | NA               | NA               | NA               | <0.039             | <0.039             | <0.038           | <0.040           | NA                | NA               | NA               | <0.036           | NA               | NA               | NA                 |

|                              | AOI 81-1           |                   |                  |                  |                    |                    |                  |                    |                  |                  |                  |                  |
|------------------------------|--------------------|-------------------|------------------|------------------|--------------------|--------------------|------------------|--------------------|------------------|------------------|------------------|------------------|
| AOI Number   Location ID:    | 81-1   RFI-81-01   | 81-1   RFI-81-02  | 81-1   RFI-81-02 | 81-1   RFI-81-02 | 81-1   RFI-81-23   | 81-1   RFI-81-25   | 81-1   RFI-81-25 | 81-1   REI-81-35   | 81-1   RFI-81-35 | 81-1   RFI-81-35 | 81-1   RFI-81-36 | 81-1   RFI-81-37 |
| Sample Depth(ft BGS):        | 2.5 - 4.5          | 4 - 6             | 8 - 10           | 12 - 14          | 0.9 - 1.7          | 0.8 - 2.8          | 8 - 10           | 0.8 - 2.8          | 8 - 10           | 12 - 14          | 8 - 10           | 8 - 10           |
|                              |                    | 4 - 0<br>09/09/01 |                  |                  |                    |                    |                  | 01/22/02           |                  |                  |                  |                  |
| Date Collected:              | 09/09/01           |                   | 09/09/01         | 09/09/01         | 09/07/01           | 12/03/01           | 12/03/01         |                    | 01/22/02         | 01/22/02         | 03/12/03         | 03/12/03         |
| Sample Name:                 | RFI-81-01(2.5-4.5) | RFI-81-02(04-06)  | RFI-81-02(08-10) | RFI-81-02(12-14) | RFI-81-23(0.9-1.7) | RFI-81-25(0.8-2.8) | RFI-81-25(8-10)  | RFI-81-35(0.8-2.8) | RFI-81-35(08-10) | RFI-81-35(12-14) | RFI-81-36(08-10) | RFI-81-37(08-10) |
| Inorganics                   |                    |                   |                  |                  |                    |                    |                  |                    |                  |                  |                  |                  |
| Arsenic                      | 14                 | 10                | 19               | 5.8              | 3.7                | NA                 | NA               | 3.6                | 7.3              | 8                | NA               | NA               |
| Chromium (total) [a]         | 230                | 42                | 190              | 8.9              | 7.4                | NA                 | NA               | 8.3                | 15               | 18               | NA               | NA               |
| Lead [b]                     | 5500               | 1600              | 69000            | 140              | 25                 | 550                | 110              | 120                | 1000             | 13               | 12000            | 5000             |
| Vanadium                     | 38                 | 18                | 35               | 13               | 12                 | NA                 | NA               | 11                 | 19               | 21               | NA               | NA               |
| Volatile Organic Compound    | I                  |                   |                  |                  |                    |                    |                  |                    |                  |                  |                  |                  |
| Benzene                      | < 0.039            | <0.040            | 0.13             | <0.040           | 0.062              | NA                 | NA               | < 0.036            | <0.037           | < 0.059          | NA               | NA               |
| 1,1-Dichloroethane           | < 0.039            | <0.040            | <0.042           | <0.040           | <0.040             | NA                 | NA               | < 0.036            | < 0.037          | < 0.059          | NA               | NA               |
| Ethylbenzene                 | < 0.039            | <0.040            | <0.042           | <0.040           | 0.066              | NA                 | NA               | < 0.036            | < 0.037          | < 0.059          | NA               | NA               |
| Methyl cyclohexane           | 0.06               | 0.11              | <0.18            | <0.17            | <0.17              | NA                 | NA               | 0.081              | 0.25             | <0.25            | NA               | NA               |
| 1,1,1-Trichloroethane        | <0.039             | <0.040            | <0.042           | <0.040           | <0.040             | NA                 | NA               | <0.036             | < 0.037          | < 0.059          | NA               | NA               |
| Semi Volatile Organic Comp   | 1                  |                   |                  |                  |                    |                    |                  |                    |                  |                  |                  |                  |
| Acenaphthylene               | <0.19              | <0.20             | <0.20            | <0.19            | <0.19              | NA                 | NA               | <0.18              | <0.18            | <0.29            | NA               | NA               |
| Benzo(a)anthracene           | 0.13               | 0.26              | 3.6              | <0.19            | 0.069              | NA                 | NA               | 0.046              | <0.18            | 0.28             | NA               | NA               |
| Benzo(a)pyrene               | 0.12               | 0.24              | 3.9              | <0.19            | 0.057              | NA                 | NA               | 0.048              | <0.18            | 0.16             | NA               | NA               |
| Benzo(b)fluoranthene         | 0.23               | 0.3               | 2.7              | <0.19            | 0.073              | NA                 | NA               | 0.058              | <0.18            | 0.14             | NA               | NA               |
| Benzo(g,h,i)perylene         | 0.099              | 0.29              | 4.1              | <0.19            | <0.19              | NA                 | NA               | <0.18              | <0.18            | 0.086            | NA               | NA               |
| Benzo(k)fluoranthene         | 0.16               | 0.24              | 2.7              | <0.19            | 0.07               | NA                 | NA               | 0.054              | <0.18            | 0.093            | NA               | NA               |
| Carbazole                    | <0.19              | <0.20             | 0.095            | <0.19            | <0.19              | NA                 | NA               | <0.18              | <0.18            | <0.29            | NA               | NA               |
| Dibenz(a,h)anthracene        | <0.19              | <0.20             | <0.20            | <0.19            | <0.19              | NA                 | NA               | <0.18              | <0.18            | <0.29            | NA               | NA               |
| Dimethyl phthalate           | <0.19              | <0.20             | <0.20            | <0.19            | <0.19              | NA                 | NA               | <0.18              | <0.18            | <0.29            | NA               | NA               |
| Di-n-octyl phthalate         | <0.19              | <0.20             | <0.20            | <0.19            | <0.19              | NA                 | NA               | <0.18              | <0.18            | <0.29            | NA               | NA               |
| Indeno(1,2,3-cd)pyrene       | 0.088              | 0.21              | 3                | <0.19            | <0.19              | NA                 | NA               | 0.033              | <0.18            | 0.056            | NA               | NA               |
| 3&4-Methylphenol             | <0.37              | <0.40             | <0.41            | < 0.39           | < 0.39             | NA                 | NA               | < 0.36             | < 0.37           | <0.58            | NA               | NA               |
| Naphthalene                  | 0.07               | 0.11              | 0.59             | <0.19            | 0.16               | NA                 | NA               | <0.18              | 0.064            | <0.29            | NA               | NA               |
| 2-Nitrophenol                | <0.19              | <0.20             | <0.20            | <0.19            | <0.19              | NA                 | NA               | <0.18              | <0.18            | <0.29            | NA               | NA               |
| N-Nitrosodi-n-propylamine    | <0.19              | <0.20             | <0.20            | <0.19            | <0.19              | NA                 | NA               | <0.18              | <0.18            | <0.29            | NA               | NA               |
| Phenanthrene                 | 0.23               | 0.38              | 1.4              | 0.049            | 0.58               | NA                 | NA               | <0.18              | 0.082            | 0.11             | NA               | NA               |
| Polychlorinated Biphenyls (I |                    |                   |                  |                  |                    |                    |                  |                    |                  |                  |                  |                  |
| Aroclor-1242 (PCB-1242)      | < 0.038            | <0.041            | <0.042           | <0.040           | <0.040             | NA                 | NA               | <0.037             | < 0.038          | < 0.059          | NA               | NA               |
| Aroclor-1248 (PCB-1248)      | < 0.038            | <0.041            | < 0.042          | <0.040           | < 0.040            | NA                 | NA               | < 0.037            | < 0.038          | < 0.059          | NA               | NA               |
| Aroclor-1254 (PCB-1254)      | <0.038             | <0.041            | <0.042           | <0.040           | < 0.040            | NA                 | NA               | <0.037             | < 0.038          | < 0.059          | NA               | NA               |
| Aroclor-1260 (PCB-1260)      | <0.038             | <0.041            | <0.042           | <0.040           | <0.040             | NA                 | NA               | <0.037             | < 0.038          | < 0.059          | NA               | NA               |

|                                                    | AOI 81-2         |                  |                  |                  |                  |                  |                  |                  |                  |                  |                   |                  |                  |                  |                  |
|----------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|------------------|------------------|
| AOI Number   Location ID:                          | 81-2   RFI-81-03 | 81-2   RFI-81-03 | 81-2   RFI-81-03 | 81-2   RFI-81-04 | 81-2   RFI-81-05 | 81-2   RFI-81-05 | 81-2   RFI-81-05 | 81-2   RFI-81-13 | 81-2   RFI-81-13 | 81-2   RFI-81-13 | 81-2   RFI-81-13R | 81-2   RFI-81-14 | 81-2   RFI-81-15 | 81-2   RFI-81-16 | 81-2   RFI-81-17 |
| Sample Depth(ft BGS):                              | 0 - 2            | 8 - 10           | 10 - 12          | 8 - 10           | 3 - 5            | 3 - 5            | 9 - 11           | 0 - 2            | 6 - 8            | 10 - 12          | 0 - 2             | 0 - 2            | 0 - 2            | 0 - 2            | 0 - 2            |
| Date Collected:                                    | 06/21/01         | 06/21/01         | 06/21/01         | 01/25/01         | 08/04/01         | 08/04/01         | 08/04/01         | 08/27/01         | 08/27/01         | 08/27/01         | 10/16/02          | 06/18/01         | 06/18/01         | 06/18/01         | 06/18/01         |
| Sample Name:                                       | RFI-81-03(00-02) | RFI-81-03(08-10) | RFI-81-03(10-12) | RFI-81-04(8-10)  | RFI-81-05(03-05) | RFI-81-Dup-50    | RFI-81-05(09-11) | RFI-81-13(00-02) | RFI-81-13(06-08) | RFI-81-13(10-12) | RFI-81-13R(00-02) | RFI-81-14(00-02) | RFI-81-15(00-02) | RFI-81-16(00-02) | RFI-81-17(00-02) |
| Inorganics                                         |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                   |                  |                  |                  |                  |
| Arsenic                                            | 13               | 3                | 5.2              | 7.9              | 2.1              | 1.5              | 1.6              | 56               | <4.0             | <5.5             | NA                | 3.5              | 4.7              | 7                | 6.7              |
| Chromium (total) [a]                               | 45               | 10               | 20               | 15               | 4.2              | 5.4              | 5.1              | 270              | 9.3              | 12               | 16                | 11               | 11               | 17               | 5.2              |
| Lead [b]                                           | 160              | 6                | 23               | 13               | 5.4              | 6.6              | 6.9              | 27               | 42               | 36               | NA                | 19               | 22               | 17               | 13               |
| Vanadium                                           | 17               | 13               | 17               | NA               | 4.3              | 4.7              | 4.9              | 30               | 8.9              | 12               | NA                | 17               | 18               | 25               | 7.7              |
| Volatile Organic Compound                          | •                |                  |                  |                  |                  |                  |                  |                  |                  |                  |                   |                  |                  |                  |                  |
| Benzene                                            | 0.47             | <0.038           | < 0.039          | < 0.039          | 0.11             | 0.12             | 0.056            | <0.040           | <0.038           | NA               | NA                | <0.038           | <0.040           | < 0.039          | <0.038           |
| 1,1-Dichloroethane                                 | <0.038           | <0.038           | < 0.039          | < 0.039          | <0.037           | <0.035           | <0.040           | <0.040           | <0.038           | NA               | NA                | <0.038           | <0.040           | <0.039           | <0.038           |
| Ethylbenzene                                       | 0.57             | <0.038           | <0.039           | <0.039           | 0.13             | 0.13             | 0.082            | <0.040           | <0.038           | NA               | NA                | <0.038           | <0.040           | <0.039           | <0.038           |
| Methyl cyclohexane                                 | 3.5              | 0.069            | 0.089            | NA               | 0.96             | 0.97             | 0.62             | 0.13             | 0.05             | NA               | NA                | <0.16            | <0.17            | <0.17            | 0.043            |
| 1,1,1-Trichloroethane                              | <0.038           | <0.038           | <0.039           | <0.039           | <0.037           | <0.035           | <0.040           | <0.040           | <0.038           | NA               | NA                | <0.038           | <0.040           | <0.039           | <0.038           |
| Semi Volatile Organic Comp                         |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                   |                  |                  |                  |                  |
| Acenaphthylene                                     | <0.18            | <0.18            | <0.19            | <0.18            | <0.17            | <0.17            | <0.19            | <0.20            | <0.19            | <0.19            | NA                | <0.19            | <0.20            | <0.19            | <0.18            |
| Benzo(a)anthracene                                 | 3.3              | 0.38             | 0.13             | 0.34             | 0.057            | 0.063            | 0.051            | 0.094            | 0.084            | 0.08             | NA                | 0.042            | <0.20            | <0.19            | <0.18            |
| Benzo(a)pyrene                                     | 3.4              | 0.43             | 0.13             | 0.31             | <0.17            | <0.17            | <0.19            | 0.12             | 0.061            | 0.082            | NA                | 0.038            | <0.20            | <0.19            | <0.18            |
| Benzo(b)fluoranthene                               | 3.2              | 0.59             | 0.24             | 0.33             | 0.068            | 0.05             | <0.19            | 0.12             | 0.1              | 0.07             | NA                | <0.19            | <0.20            | <0.19            | <0.18            |
| Benzo(g,h,i)perylene                               | 1.6              | 0.36             | 0.12             | <0.18            | <0.17            | <0.17            | <0.19            | 0.098            | <0.19            | 0.11             | NA                | <0.19            | <0.20            | <0.19            | <0.18            |
| Benzo(k)fluoranthene                               | 3.3              | 0.38             | 0.12             | 0.3              | 0.036            | <0.17            | <0.19            | 0.1              | 0.066            | 0.071            | NA                | <0.19            | <0.20            | <0.19            | <0.18            |
| Carbazole                                          | 0.94             | 0.044            | <0.19            | <0.18            | <0.17            | <0.17            | <0.19            | <0.20            | <0.19            | <0.19            | NA                | <0.19            | <0.20            | <0.19            | <0.18            |
| Dibenz(a,h)anthracene                              | 0.77             | <0.18            | <0.19            | <0.18            | <0.17            | <0.17            | <0.19            | <0.20            | <0.19            | <0.19            | NA                | <0.19            | <0.20            | <0.19            | <0.18            |
| Dimethyl phthalate                                 | <0.18            | <0.18            | <0.19            | <0.18            | <0.17            | <0.17            | <0.19            | <0.20            | <0.19            | <0.19            | NA                | <0.19            | <0.20            | <0.19            | <0.18            |
| Di-n-octyl phthalate                               | <0.18            | <0.18            | <0.19            | <0.18            | <0.17            | <0.17            | <0.19            | < 0.20           | <0.19            | <0.19            | NA                | <0.19            | < 0.20           | <0.19            | <0.18            |
| Indeno(1,2,3-cd)pyrene                             | 1.6              | 0.28             | 0.089            | <0.18            | <0.17            | <0.17            | <0.19            | 0.075            | <0.19            | 0.18             | NA                | <0.19            | <0.20            | <0.19            | <0.18            |
| 3&4-Methylphenol                                   | <0.36            | < 0.37           | < 0.38           | <0.36            | < 0.35           | < 0.35           | < 0.38           | <0.40            | <0.38            | <0.38<br>0.055   | NA                | <0.38            | < 0.39           | <0.38            | < 0.36           |
| Naphthalene                                        | <0.18            | 0.045            | <0.19            | <0.18            | 0.5<br><0.17     | 0.7<br><0.17     | 0.42             | 0.15             | <0.19<br><0.19   | <0.19            | NA<br>NA          | <0.19            | <0.20            | <0.19<br><0.19   | <0.18<br><0.18   |
| 2-Nitrophenol                                      |                  | <0.18            | <0.19            | <0.18            | -                | -                | <0.19            | <0.20            |                  |                  |                   | <0.19            | <0.20            |                  |                  |
| N-Nitrosodi-n-propylamine<br>Phenanthrene          | <0.18            | <0.18<br>0.41    | <0.19<br>0.15    | <0.18<br>0.48    | <0.17<br>0.55    | <0.17<br>0.63    | <0.19            | <0.20            | <0.19<br>0.1     | <0.19<br>0.14    | NA                | <0.19<br>0.049   | <0.20<br><0.20   | <0.19<br><0.19   | <0.18            |
| Phenanthrene<br>Polychlorinated Biphenyls (        | 3.8              | 0.41             | 0.15             | 0.40             | 0.55             | 0.03             | 0.39             | 0.26             | 0.1              | 0.14             | NA                | 0.049            | <0.20            | <0.19            | <0.18            |
| Aroclor-1242 (PCB-1242)                            | <0.038           | <0.038           | < 0.039          | NA               | <0.036           | <0.036           | <0.039           | <0.041           | <0.039           | <0.039           | NA                | <0.039           | <0.040           | <0.039           | <0.037           |
| Aroclor-1242 (PCB-1242)<br>Aroclor-1248 (PCB-1248) | <0.038           | < 0.038          | < 0.039          | NA               | <0.036           | <0.036           | <0.039           | 0.026            | 0.026            | 0.046            | NA                | <0.039           | <0.040           | < 0.039          | <0.037           |
| Aroclor-1248 (PCB-1248)<br>Aroclor-1254 (PCB-1254) | 0.14             | 0.061            | 0.24             | NA               | < 0.036          | <0.036           | <0.039           | 0.026            | 0.026            | 0.048            | NA                | < 0.039          | <0.040           | < 0.039          | 0.36             |
| Aroclor-1254 (PCB-1254)<br>Aroclor-1260 (PCB-1260) | 0.041            | <0.038           | 0.041            | NA               | 0.028            | <0.036           | <0.039           | <0.041           | <0.030           | <0.030           | NA                | < 0.039          | <0.040           | < 0.039          | 0.073            |
| , 100107 1200 (1 OD 1200)                          | 0.041            | 10.000           | 0.041            | 1 1 1 1          | 0.020            | -0.000           | 10.000           | 10.041           | 10.000           | \$0.000          | 101               | 10.000           | 10.040           | 10.000           | 0.070            |

|                             | AOI 81-2 cont.   |                  |                  |                  |                  |                  |                    |                    |                  |                  |                  |                     |                     |                  |
|-----------------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------------------|--------------------|------------------|------------------|------------------|---------------------|---------------------|------------------|
| AOI Number   Location ID:   |                  | 81-2   RFI-81-19 | 81-2   REI-81-20 | 81-2   RFI-81-20 | 81-2   RFI-81-20 | 81-2   RFI-81-22 | 81-2   RFI-81-30   | 81-2   RFI-81-30   | 81-2   RFI-81-32 | 81-2   RFI-81-32 | 81-2   RFI-81-38 | 81-2   RFI-81-39R   | 81-2   RFI-81-39R   | 81-2   RFI-81-40 |
| Sample Depth(ft BGS):       | 0 - 2            | 0 - 2            | 1 - 3            | 3 - 5            | 7 - 9            | 0 - 2            | 1.2 - 3.2          | 3.2 - 5.2          | 1 - 3            | 3 - 5            | 1 - 3            | 1.7 - 3.7           | 7.7 - 9.7           | 0 - 2            |
| Date Collected:             | 06/18/01         | 09/17/01         | 08/04/01         | 08/04/01         | 08/04/01         | 06/21/01         | 12/13/01           | 12/13/01           | 12/13/01         | 12/13/01         | 03/12/03         | 04/05/03            | 04/05/03            | 03/12/03         |
|                             |                  |                  |                  |                  |                  |                  |                    |                    |                  |                  |                  |                     |                     |                  |
|                             | RFI-81-18(00-02) | RFI-81-19(00-02) | RFI-81-20(01-03) | RFI-81-20(03-05) | RFI-81-20(07-09) | RFI-81-22(00-02) | RFI-81-30(1.2-3.2) | RFI-81-30(3.2-5.2) | RFI-81-32(01-03) | RFI-81-32(03-05) | RFI-81-38(01-03) | RFI-81-39R(1.7-3.7) | RFI-81-39R(7.7-9.7) | RFI-81-40(00-02) |
| Inorganics                  |                  |                  |                  |                  |                  |                  |                    |                    |                  |                  |                  |                     |                     |                  |
| Arsenic                     | 7.2              | 12               | 9.2              | 2.8              | 3.6              | 24               | NA                 | NA                 | NA               | NA               | 2.1              | 6.2                 | 1.7                 | 8.1              |
| Chromium (total) [a]        | 21               | 9.8              | 160              | 63               | 19               | 110              | NA                 | NA                 | NA               | NA               | 3.7              | 24                  | 5.3                 | NA               |
| Lead [b]                    | 63               | 37               | 3100             | 94               | 30               | 82               | 92                 | 140                | 13               | 210              | 5.8              | 49                  | 5.8                 | NA               |
| Vanadium                    | 13               | 10               | 43               | 18               | 12               | 16               | NA                 | NA                 | NA               | NA               | 2.2              | 19                  | 7.2                 | NA               |
| Volatile Organic Compounds  |                  |                  |                  |                  |                  |                  |                    |                    |                  |                  |                  |                     |                     |                  |
| Benzene                     | 0.062            | 0.26             | <0.037           | 0.03             | <0.044           | 0.56             | NA                 | NA                 | NA               | NA               | <0.041           | <0.037              | <0.035              | NA               |
| 1,1-Dichloroethane          | <0.038           | <0.039           | <0.037           | <0.036           | <0.044           | <0.038           | NA                 | NA                 | NA               | NA               | 7000             | <0.037              | <0.035              | NA               |
| Ethylbenzene                | 0.057            | 0.34             | <0.037           | <0.036           | <0.044           | 1.3              | NA                 | NA                 | NA               | NA               | 0.056            | 0.83                | 0.73                | NA               |
| Methyl cyclohexane          | 0.29             | 3.8              | 0.13             | 0.094            | 0.037            | 11               | NA                 | NA                 | NA               | NA               | <0.18            | 0.16                | 0.24                | NA               |
| 1,1,1-Trichloroethane       | <0.038           | <0.039           | <0.037           | <0.036           | <0.044           | <0.038           | NA                 | NA                 | NA               | NA               | 47000            | <0.037              | <0.035              | NA               |
| Semi Volatile Organic Comp  |                  |                  |                  |                  |                  |                  |                    |                    |                  |                  |                  |                     |                     |                  |
| Acenaphthylene              | 0.043            | <0.19            | <0.18            | <0.18            | <0.22            | <0.95            | NA                 | NA                 | NA               | NA               | <5.2             | <0.91               | <0.88               | NA               |
| Benzo(a)anthracene          | 0.1              | <0.19            | 0.96             | 0.26             | 0.2              | <0.95            | NA                 | NA                 | NA               | NA               | <5.2             | <0.91               | <0.88               | NA               |
| Benzo(a)pyrene              | 0.13             | <0.19            | 0.81             | 0.28             | 0.12             | <0.95            | NA                 | NA                 | NA               | NA               | <5.2             | <0.91               | <0.88               | NA               |
| Benzo(b)fluoranthene        | 0.13             | <0.19            | 0.8              | 0.28             | 0.2              | <0.95            | NA                 | NA                 | NA               | NA               | <5.2             | <0.91               | <0.88               | NA               |
| Benzo(g,h,i)perylene        | 0.15             | <0.19            | 0.4              | 0.18             | <0.22            | <0.95            | NA                 | NA                 | NA               | NA               | <5.2             | <0.91               | <0.88               | NA               |
| Benzo(k)fluoranthene        | 0.11             | <0.19            | 1.1              | 0.32             | 0.13             | < 0.95           | NA                 | NA                 | NA               | NA               | <5.2             | <0.91               | <0.88               | NA               |
| Carbazole                   | <0.19            | <0.19            | 0.21             | <0.18            | 0.053            | < 0.95           | NA                 | NA                 | NA               | NA               | <5.2             | <0.91               | <0.88               | NA               |
| Dibenz(a,h)anthracene       | 0.051            | <0.19            | <0.18            | <0.18            | <0.22            | < 0.95           | NA                 | NA                 | NA               | NA               | <5.2             | <0.91               | <0.88               | NA               |
| Dimethyl phthalate          | <0.19            | <0.19            | <0.18            | <0.18            | <0.22            | < 0.95           | NA                 | NA                 | NA               | NA               | <5.2             | <0.91               | <0.88               | NA               |
| Di-n-octyl phthalate        | <0.19            | <0.19            | <0.18            | <0.18            | <0.22            | <0.95            | NA                 | NA                 | NA               | NA               | <5.2             | <0.91               | <0.88               | NA               |
| Indeno(1,2,3-cd)pyrene      | 0.12             | <0.19            | 0.39             | 0.16             | <0.22            | <0.95            | NA                 | NA                 | NA               | NA               | <5.2             | <0.91               | <0.88               | NA               |
| 3&4-Methylphenol            | <0.37            | <0.38            | <0.36            | <0.36            | <0.43            | <1.9             | NA                 | NA                 | NA               | NA               | R                | <1.8                | <1.8                | NA               |
| Naphthalene                 | <0.19            | <0.19            | 0.084            | <0.18            | 0.076            | <0.95            | NA                 | NA                 | NA               | NA               | 5.9              | 5.4                 | 7.8                 | NA               |
| 2-Nitrophenol               | <0.19            | <0.19            | <0.18            | <0.18            | <0.22            | < 0.95           | NA                 | NA                 | NA               | NA               | R                | <0.91               | <0.88               | NA               |
| N-Nitrosodi-n-propylamine   | <0.19            | <0.19            | <0.18            | <0.18            | <0.22            | < 0.95           | NA                 | NA                 | NA               | NA               | <5.2             | <0.91               | <0.88               | NA               |
| Phenanthrene                | 0.22             | <0.19            | 1.8              | 0.25             | 0.49             | 0.52             | NA                 | NA                 | NA               | NA               | <5.2             | 1.9                 | 0.54                | NA               |
| Polychlorinated Biphenyls ( | :                |                  |                  |                  |                  |                  |                    |                    |                  |                  |                  |                     |                     |                  |
| Aroclor-1242 (PCB-1242)     | < 0.038          | < 0.039          | < 0.037          | <0.037           | <0.045           | < 0.39           | NA                 | NA                 | NA               | NA               | < 0.043          | < 0.037             | < 0.036             | NA               |
| Aroclor-1248 (PCB-1248)     | < 0.038          | < 0.039          | < 0.037          | < 0.037          | <0.045           | < 0.39           | NA                 | NA                 | NA               | NA               | < 0.043          | <0.037              | < 0.036             | NA               |
| Aroclor-1254 (PCB-1254)     | 0.74             | 0.2              | < 0.037          | < 0.037          | < 0.045          | 4.1              | NA                 | NA                 | NA               | NA               | < 0.043          | < 0.037             | < 0.036             | NA               |
| Aroclor-1260 (PCB-1260)     | 0.21             | 0.054            | <0.037           | <0.037           | <0.045           | 0.88             | NA                 | NA                 | NA               | NA               | <0.043           | <0.037              | < 0.036             | NA               |

#### AOIs with Soil Exceedances of the Construction Worker Health-Based Goals Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

|                              | AOI 81-2 cont.   |                    |                      |                   |
|------------------------------|------------------|--------------------|----------------------|-------------------|
| AOI Number   Location ID:    |                  | 81-2   RFI-81-42   | 81-2   RFI-81-50     | 81-2   RFI-81-50  |
| Sample Depth(ft BGS):        | 0 - 2            | 0.7 - 2            | 4 - 6                | 4 - 6             |
| Date Collected:              | 0-2              | 04/05/03           | 4 - 6<br>03/09/05    | 4 - 6<br>03/09/05 |
|                              |                  |                    |                      |                   |
|                              | RFI-81-41(00-02) | RFI-81-42(0.7-2.0) | Duplicate 2 (030905) | RFI-81-50(4-6)    |
| Inorganics                   |                  |                    |                      |                   |
| Arsenic                      | 5.1              | 3.6                | 0.83                 | 0.8               |
| Chromium (total) [a]         | NA               | 26                 | 3.4                  | 4.1               |
| Lead [b]                     | NA               | 200                | 5.4                  | 5.5               |
| Vanadium                     | NA               | 14                 | 5.1                  | 6.3               |
| Volatile Organic Compound    |                  |                    |                      |                   |
| Benzene                      | NA               | <0.038             | <0.060               | <0.060            |
| 1,1-Dichloroethane           | NA               | <0.038             | <0.060               | <0.060            |
| Ethylbenzene                 | NA               | 0.09               | <0.060               | <0.060            |
| Methyl cyclohexane           | NA               | 0.056              | <0.060               | <0.060            |
| 1,1,1-Trichloroethane        | NA               | <0.038             | <0.060               | < 0.060           |
| Semi Volatile Organic Comp   |                  |                    |                      |                   |
| Acenaphthylene               | NA               | <0.96              | <0.30                | <0.30             |
| Benzo(a)anthracene           | NA               | 1.9                | <0.30                | <0.30             |
| Benzo(a)pyrene               | NA               | 2                  | <0.30                | <0.30             |
| Benzo(b)fluoranthene         | NA               | 2.1                | <0.30                | <0.30             |
| Benzo(g,h,i)perylene         | NA               | 2                  | <0.30                | <0.30             |
| Benzo(k)fluoranthene         | NA               | 2.1                | <0.30                | <0.30             |
| Carbazole                    | NA               | 0.44               | <0.30                | <0.30             |
| Dibenz(a,h)anthracene        | NA               | 0.72               | <0.30                | <0.30             |
| Dimethyl phthalate           | NA               | <0.96              | <0.30                | <0.30             |
| Di-n-octyl phthalate         | NA               | <0.96              | <0.30                | <0.30             |
| Indeno(1,2,3-cd)pyrene       | NA               | 1.4                | <0.30                | <0.30             |
| 3&4-Methylphenol             | NA               | R                  | NA                   | NA                |
| Naphthalene                  | NA               | 1.2                | <0.30                | < 0.30            |
| 2-Nitrophenol                | NA               | R                  | <0.30                | <0.30             |
| N-Nitrosodi-n-propylamine    | NA               | <0.96              | <0.30                | < 0.30            |
| Phenanthrene                 | NA               | 2.8                | <0.30                | < 0.30            |
| Polychlorinated Biphenyls (I | ŧ                |                    |                      |                   |
| Aroclor-1242 (PCB-1242)      | NA               | 1.1                | <0.33                | < 0.33            |
| Aroclor-1248 (PCB-1248)      | NA               | <0.039             | <0.33                | < 0.33            |
| Aroclor-1254 (PCB-1254)      | NA               | 0.81               | < 0.33               | < 0.33            |
| Aroclor-1260 (PCB-1260)      | NA               | <0.039             | <0.33                | <0.33             |

Page 19 of 30

|                              | AOI 83/84-2            |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
|------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| AOI Number   Location ID:    | 83/84-2   RFI-83/84-04 | 83/84-2   RFI-83/84-04 | 83/84-2   RFI-83/84-04 | 83/84-2   RFI-83/84-06 | 83/84-2   RFI-83/84-06 | 83/84-2   RFI-83/84-06 | 83/84-2   RFI-83/84-12 | 83/84-2   RFI-83/84-12 | 83/84-2   RFI-83/84-13 | 83/84-2   RFI-83/84-13 | 83/84-2   RFI-83/84-14 |
| Sample Depth(ft BGS):        | 0 - 2                  | 8 - 10                 | 12 - 14                | 1 - 3                  | 7 - 9                  | 9 - 11                 | 0.7 - 2.7              | 2.7 - 4.7              | 1.1 - 3.1              | 3.1 - 5.1              | 0.8 - 1                |
| Date Collected:              | 01/29/01               | 01/29/01               | 01/29/01               | 09/12/01               | 09/12/01               | 09/12/01               | 12/07/01               | 12/07/01               | 12/07/01               | 12/07/01               | 12/10/01               |
| Sample Name:                 | RFI-83/84-04(00-02)    | RFI-83/84-04(08-10)    | RFI-83/84-04(12-14)    | RFI-83/84-06(01-03)    | RFI-83/84-06(07-09)    | RFI-83/84-06(09-11)    | RFI-83/84-12(0.7-2.7)  | RFI-83/84-12(2.7-4.7)  | RFI-83/84-13(1.1-3.1)  | RFI-83/84-13(3.1-5.1)  | RFI-83/84-14(0.8-1.0)  |
| Inorganics                   |                        |                        |                        |                        |                        |                        |                        |                        | · · · · · ·            |                        |                        |
| Arsenic                      | 11                     | 3.9                    | 4                      | 3.3                    | 15                     | 5.1                    | 7.5                    | 32                     | NA                     | NA                     | NA                     |
| Chromium (total) [a]         | 38                     | 16                     | 15                     | 5.2                    | 29                     | 28                     | 37                     | 73                     | NA                     | NA                     | NA                     |
| Lead [b]                     | 1600                   | 15                     | 11                     | 8.6                    | 2300                   | 25                     | 150                    | 2900                   | 78                     | 640                    | 3600                   |
| Vanadium                     | NA                     | NA                     | NA                     | 7.6                    | 22                     | 14                     | 18                     | 33                     | NA                     | NA                     | NA                     |
| Volatile Organic Compound    |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
| Benzene                      | <0.041                 | <0.041                 | <0.029                 | <0.036                 | 0.41                   | 0.031                  | <0.040                 | <0.042                 | NA                     | NA                     | NA                     |
| 1,1-Dichloroethane           | <0.041                 | <0.041                 | <0.029                 | <0.036                 | <0.040                 | <0.040                 | <0.040                 | <0.042                 | NA                     | NA                     | NA                     |
| Ethylbenzene                 | <0.041                 | <0.041                 | <0.029                 | <0.036                 | 0.61                   | 0.1                    | 0.077                  | <0.042                 | NA                     | NA                     | NA                     |
| Methyl cyclohexane           | NA                     | NA                     | NA                     | <0.15                  | 1.7                    | 0.23                   | 0.083                  | <0.18                  | NA                     | NA                     | NA                     |
| 1,1,1-Trichloroethane        | <0.041                 | <0.041                 | <0.029                 | <0.036                 | <0.040                 | <0.040                 | <0.040                 | <0.042                 | NA                     | NA                     | NA                     |
| Semi Volatile Organic Comp   |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
| Acenaphthylene               | 0.2                    | <0.20                  | <0.20                  | <0.17                  | <0.19                  | <0.19                  | <0.98                  | <2.0                   | NA                     | NA                     | NA                     |
| Benzo(a)anthracene           | 1.3                    | <0.20                  | <0.20                  | 0.099                  | 0.44                   | <0.19                  | 0.66                   | 0.45                   | NA                     | NA                     | NA                     |
| Benzo(a)pyrene               | 1.4                    | <0.20                  | <0.20                  | <0.17                  | <0.19                  | <0.19                  | <0.98                  | <2.0                   | NA                     | NA                     | NA                     |
| Benzo(b)fluoranthene         | 1.5                    | <0.20                  | <0.20                  | 0.047                  | 0.12                   | <0.19                  | 0.44                   | <2.0                   | NA                     | NA                     | NA                     |
| Benzo(g,h,i)perylene         | 1.6                    | <0.20                  | <0.20                  | <0.17                  | 0.16                   | <0.19                  | <0.98                  | <2.0                   | NA                     | NA                     | NA                     |
| Benzo(k)fluoranthene         | 1.5                    | <0.20                  | <0.20                  | <0.17                  | 0.056                  | <0.19                  | 0.72                   | <2.0                   | NA                     | NA                     | NA                     |
| Carbazole                    | 0.23                   | <0.20                  | <0.20                  | <0.17                  | <0.19                  | <0.19                  | <0.98                  | <2.0                   | NA                     | NA                     | NA                     |
| Dibenz(a,h)anthracene        | 0.3                    | <0.20                  | <0.20                  | <0.17                  | <0.19                  | <0.19                  | <0.98                  | <2.0                   | NA                     | NA                     | NA                     |
| Dimethyl phthalate           | <0.19                  | <0.20                  | <0.20                  | <0.17                  | <0.19                  | <0.19                  | <0.98                  | <2.0                   | NA                     | NA                     | NA                     |
| Di-n-octyl phthalate         | <0.19                  | <0.20                  | <0.20                  | <0.17                  | <0.19                  | <0.19                  | <0.98                  | <2.0                   | NA                     | NA                     | NA                     |
| Indeno(1,2,3-cd)pyrene       | 1.3                    | <0.20                  | <0.20                  | <0.17                  | <0.19                  | <0.19                  | <0.98                  | <2.0                   | NA                     | NA                     | NA                     |
| 3&4-Methylphenol             | <0.37                  | <0.39                  | <0.38                  | R                      | <0.38                  | <0.39                  | <2.0                   | R                      | NA                     | NA                     | NA                     |
| Naphthalene                  | <0.19                  | <0.20                  | <0.20                  | <0.17                  | 0.38                   | 0.048                  | <0.98                  | <2.0                   | NA                     | NA                     | NA                     |
| 2-Nitrophenol                | <0.19                  | <0.20                  | <0.20                  | R                      | <0.19                  | <0.19                  | <0.98                  | R                      | NA                     | NA                     | NA                     |
| N-Nitrosodi-n-propylamine    | <0.19                  | <0.20                  | <0.20                  | <0.17                  | <0.19                  | <0.19                  | <0.98                  | <2.0                   | NA                     | NA                     | NA                     |
| Phenanthrene                 | 1.1                    | <0.20                  | <0.20                  | 0.16                   | 0.88                   | <0.19                  | 4.5                    | 2.9                    | NA                     | NA                     | NA                     |
| Polychlorinated Biphenyls (I |                        |                        |                        | 0.000                  | 0.000                  | 0.040                  | 0.040                  | 0.040                  | <b>N</b> 14            |                        |                        |
| Aroclor-1242 (PCB-1242)      | NA                     | NA                     | NA                     | < 0.036                | < 0.039                | < 0.040                | <0.040                 | < 0.042                | NA                     | NA                     | NA                     |
| Aroclor-1248 (PCB-1248)      | NA                     | NA                     | NA                     | < 0.036                | < 0.039                | < 0.040                | < 0.040                | < 0.042                | NA                     | NA                     | NA                     |
| Aroclor-1254 (PCB-1254)      | NA                     | NA                     | NA                     | < 0.036                | < 0.039                | < 0.040                | < 0.040                | <0.042                 | NA                     | NA                     | NA                     |
| Aroclor-1260 (PCB-1260)      | NA                     | NA                     | NA                     | <0.036                 | <0.039                 | <0.040                 | <0.040                 | 0.04                   | NA                     | NA                     | NA                     |

|                              | AOI 83/84-2 cont.      |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
|------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| AOI Number   Location ID:    | 83/84-2   RFI-83/84-15 | 83/84-2   RFI-83/84-21 | 83/84-2   RFI-83/84-21 | 83/84-2   RFI-83/84-22 | 83/84-2   RFI-83/84-22 | 83/84-2   RFI-83/84-22 | 83/84-2   RFI-83/84-23 | 83/84-2   RFI-83/84-23 | 83/84-2   RFI-83/84-23 | 83/84-2   RFI-83/84-24 | 83/84-2   RFI-83/84-24 |
| Sample Depth(ft BGS):        | 1.2 - 3                | 0.7 - 2.7              | 6.7 - 8.7              | 1.1 - 3.1              | 3.1 - 5.1              | 7.1 - 9.1              | 1 - 3                  | 1 - 3                  | 5 - 7                  | 0.8 - 2.8              | 0.8 - 2.8              |
| Date Collected:              | 12/10/01               | 12/07/01               | 12/07/01               | 12/07/01               | 12/07/01               | 12/07/01               | 12/07/01               | 12/07/01               | 12/07/01               | 12/07/01               | 12/07/01               |
| Sample Name:                 | RFI-83/84-15(1.2-3.0)  | RFI-83/84-21(0.7-2.7)  | RFI-83/84-21(6.7-8.7)  | RFI-83/84-22(1.1-3.1)  | RFI-83/84-22(3.1-5.1)  | RFI-83/84-22(7.1-9.1)  | RFI-83/84-23(01-03)    | RFI-83/84-DUP-206      | RFI-83/84-23(05-07)    | RFI-83/84-24(0.8-2.8)  | RFI-83/84-DUP-205      |
| Inorganics                   |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
| Arsenic                      | NA                     | 5.5                    | 47                     | 2.5                    | 7.2                    | 5.8                    | 2.8                    | 2.4                    | 28                     | 2.7                    | 2.8                    |
| Chromium (total) [a]         | NA                     | 36                     | 270                    | 20                     | 37                     | 11                     | 6.6                    | 5.5                    | 99                     | 6.1                    | 4.8                    |
| Lead [b]                     | 35                     | 220                    | 2900                   | 530                    | 300                    | 9.5                    | 10                     | 7.5                    | 6500                   | 5.3                    | 4.8                    |
| Vanadium                     | NA                     | 7.3                    | 66                     | 5.3                    | 12                     | 16                     | 7.6                    | 7.4                    | 51                     | 6.2                    | 6.4                    |
| Volatile Organic Compound    |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
| Benzene                      | NA                     | 0.36                   | 0.62                   | 0.22                   | 0.081                  | <0.040                 | <0.035                 | <0.035                 | 1.4                    | <0.037                 | <0.036                 |
| 1,1-Dichloroethane           | NA                     | <0.038                 | <0.044                 | <0.037                 | <0.039                 | <0.040                 | <0.035                 | <0.035                 | 0.077                  | <0.037                 | <0.036                 |
| Ethylbenzene                 | NA                     | 0.043                  | 0.12                   | 0.51                   | 0.27                   | 0.066                  | <0.035                 | <0.035                 | 0.31                   | <0.037                 | < 0.036                |
| Methyl cyclohexane           | NA                     | 0.091                  | 0.15                   | 2                      | 1                      | 1.1                    | <0.15                  | <0.15                  | 0.23                   | <0.16                  | <0.15                  |
| 1,1,1-Trichloroethane        | NA                     | <0.038                 | <0.044                 | <0.037                 | <0.039                 | <0.040                 | <0.035                 | <0.035                 | <0.038                 | <0.037                 | < 0.036                |
| Semi Volatile Organic Comp   | 1                      |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
| Acenaphthylene               | NA                     | <0.18                  | <2.1                   | <0.90                  | <9.4                   | <0.19                  | <0.17                  | <0.17                  | <0.94                  | <0.17                  | <0.17                  |
| Benzo(a)anthracene           | NA                     | 0.74                   | 13                     | 1.1                    | 81                     | 0.3                    | 0.14                   | 0.084                  | 1.3                    | <0.17                  | <0.17                  |
| Benzo(a)pyrene               | NA                     | 0.76                   | 13                     | 1.6                    | 66                     | <0.19                  | <0.17                  | <0.17                  | 0.61                   | <0.17                  | <0.17                  |
| Benzo(b)fluoranthene         | NA                     | 0.74                   | 11                     | 1.4                    | 63                     | <0.19                  | <0.17                  | <0.17                  | 0.68                   | <0.17                  | <0.17                  |
| Benzo(g,h,i)perylene         | NA                     | 0.64                   | 6                      | 1.2                    | 28                     | <0.19                  | <0.17                  | <0.17                  | <0.94                  | <0.17                  | <0.17                  |
| Benzo(k)fluoranthene         | NA                     | 0.75                   | 11                     | 0.84                   | 59                     | <0.19                  | <0.17                  | <0.17                  | 0.66                   | <0.17                  | <0.17                  |
| Carbazole                    | NA                     | 0.14                   | 2.7                    | <0.90                  | 40                     | <0.19                  | 0.04                   | <0.17                  | <0.94                  | <0.17                  | <0.17                  |
| Dibenz(a,h)anthracene        | NA                     | <0.18                  | 2.8                    | <0.90                  | 17                     | <0.19                  | <0.17                  | <0.17                  | <0.94                  | <0.17                  | <0.17                  |
| Dimethyl phthalate           | NA                     | <0.18                  | <2.1                   | <0.90                  | <9.4                   | <0.19                  | <0.17                  | <0.17                  | <0.94                  | <0.17                  | <0.17                  |
| Di-n-octyl phthalate         | NA                     | <0.18                  | <2.1                   | <0.90                  | <9.4                   | <0.19                  | <0.17                  | <0.17                  | <0.94                  | <0.17                  | <0.17                  |
| Indeno(1,2,3-cd)pyrene       | NA                     | 0.47                   | 13                     | 0.93                   | 29                     | <0.19                  | <0.17                  | <0.17                  | <0.94                  | <0.17                  | <0.17                  |
| 3&4-Methylphenol             | NA                     | <0.36                  | <4.2                   | <1.8                   | <19                    | <0.38                  | <0.35                  | <0.35                  | <1.9                   | <0.35                  | <0.35                  |
| Naphthalene                  | NA                     | 0.1                    | 1.8                    | 0.63                   | 4.8                    | 0.1                    | <0.17                  | <0.17                  | 0.36                   | 0.035                  | <0.17                  |
| 2-Nitrophenol                | NA                     | <0.18                  | <2.1                   | <0.90                  | <9.4                   | <0.19                  | <0.17                  | <0.17                  | <0.94                  | <0.17                  | <0.17                  |
| N-Nitrosodi-n-propylamine    | NA                     | <0.18                  | <2.1                   | <0.90                  | <9.4                   | <0.19                  | <0.17                  | <0.17                  | <0.94                  | <0.17                  | <0.17                  |
| Phenanthrene                 | NA                     | 0.98                   | 20                     | 2                      | 190                    | 0.81                   | 0.3                    | 0.21                   | 2.1                    | <0.17                  | <0.17                  |
| Polychlorinated Biphenyls (I |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
| Aroclor-1242 (PCB-1242)      | NA                     | <0.037                 | <0.044                 | <0.037                 | <0.039                 | <0.039                 | <0.036                 | <0.036                 | <0.039                 | <0.036                 | <0.036                 |
| Aroclor-1248 (PCB-1248)      | NA                     | <0.037                 | <0.044                 | <0.037                 | <0.039                 | <0.039                 | <0.036                 | <0.036                 | <0.039                 | <0.036                 | <0.036                 |
| Aroclor-1254 (PCB-1254)      | NA                     | <0.037                 | <0.044                 | 0.23                   | 0.098                  | <0.039                 | <0.036                 | <0.036                 | <0.039                 | <0.036                 | <0.036                 |
| Aroclor-1260 (PCB-1260)      | NA                     | <0.037                 | <0.044                 | 0.053                  | <0.039                 | <0.039                 | <0.036                 | <0.036                 | <0.039                 | <0.036                 | <0.036                 |

|                              | AOI 83/84-2 cont.      |                        |                        |                        |                         |                        |                        |                        |                        |                        |                        |
|------------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| AOI Number   Location ID:    | 83/84-2   RFI-83/84-24 | 83/84-2   RFI-83/84-24 | 83/84-2   RFI-83/84-25 | 83/84-2   RFI-83/84-25 | 83/84-2   RFI-83/84-25  | 83/84-2   RFI-83/84-27 | 83/84-2   RFI-83/84-27 | 83/84-2   RFI-83/84-27 | 83/84-2   RFI-83/84-27 | 83/84-2   RFI-83/84-28 | 83/84-2   RFI-83/84-28 |
| Sample Depth(ft BGS):        | 4.8 - 6.8              | 6.8 - 8.8              | 0.7 - 2.7              | 8.7 - 10.7             | 10.7 - 12.7             | 0.7 - 2.7              | 6.7 - 8.7              | 8.7 - 10.7             | 8.7 - 10.7             | 0.7 - 2.7              | 2.7 - 4.7              |
| Date Collected:              | 12/07/01               | 12/07/01               | 12/05/01               | 12/05/01               | 12/05/01                | 12/13/01               | 12/13/01               | 12/13/01               | 12/13/01               | 12/13/01               | 12/13/01               |
| Sample Name:                 | RFI-83/84-24(4.8-6.8)  | RFI-83/84-24(6.8-8.8)  | RFI-83/84-25(0.7-2.7)  | RFI-83/84-25(8.7-10.7) | RFI-83/84-25(10.7-12.7) | RFI-83/84-27(0.7-2.7)  | RFI-83/84-27(6.7-8.7)  | RFI-83/84-27(8.7-10.7) | RFI-83/84-DUP-208      | RFI-83/84-28(0.7-2.7)  | RFI-83/84-28(2.7-4.7)  |
| Inorganics                   | ( ) ) )                |                        |                        |                        |                         |                        |                        |                        |                        |                        | ,                      |
| Arsenic                      | 11                     | 10                     | 2                      | 2.3                    | 2.2                     | 2.5                    | 1.8                    | 2.4                    | 2                      | 6.1                    | 4.1                    |
| Chromium (total) [a]         | 180                    | 28                     | 22                     | 6.6                    | 5.8                     | 23                     | 18                     | 31                     | 25                     | 47                     | 11                     |
| Lead [b]                     | 3200                   | 600                    | 2.6                    | 5.5                    | 4.6                     | 7                      | 3.5                    | 4.7                    | 7.3                    | 66                     | 6.9                    |
| Vanadium                     | 38                     | 18                     | 4.8                    | 9.8                    | 7                       | 4.7                    | 4.8                    | 7.1                    | 7                      | 9.1                    | 17                     |
| Volatile Organic Compound    |                        |                        |                        |                        |                         |                        |                        |                        |                        |                        |                        |
| Benzene                      | 0.17                   | 0.08                   | <0.037                 | <0.038                 | <0.040                  | <0.037                 | <0.037                 | <0.037                 | <0.037                 | <0.040                 | <0.041                 |
| 1,1-Dichloroethane           | <0.038                 | <0.040                 | <0.037                 | <0.038                 | <0.040                  | <0.037                 | <0.037                 | <0.037                 | <0.037                 | <0.040                 | <0.041                 |
| Ethylbenzene                 | 0.59                   | 0.11                   | <0.037                 | <0.038                 | <0.040                  | <0.037                 | <0.037                 | <0.037                 | <0.037                 | <0.040                 | <0.041                 |
| Methyl cyclohexane           | 1.8                    | 1.2                    | <0.16                  | <0.16                  | <0.17                   | <0.16                  | 0.11                   | <0.16                  | 0.035                  | 0.11                   | <0.18                  |
| 1,1,1-Trichloroethane        | <0.038                 | <0.040                 | <0.037                 | <0.038                 | <0.040                  | <0.037                 | <0.037                 | <0.037                 | <0.037                 | <0.040                 | <0.041                 |
| Semi Volatile Organic Comp   |                        |                        |                        |                        |                         |                        |                        |                        |                        |                        |                        |
| Acenaphthylene               | <0.94                  | <0.98                  | <0.18                  | <0.18                  | <0.20                   | <0.18                  | <0.18                  | <0.18                  | <0.18                  | <0.98                  | <0.20                  |
| Benzo(a)anthracene           | 1.6                    | 1.5                    | 0.034                  | <0.18                  | 1.2                     | 0.038                  | 0.17                   | 0.066                  | 0.066                  | 5.4                    | <0.20                  |
| Benzo(a)pyrene               | <0.94                  | 0.41                   | <0.18                  | <0.18                  | 1.1                     | 0.036                  | 0.15                   | 0.063                  | 0.069                  | 5.6                    | <0.20                  |
| Benzo(b)fluoranthene         | <0.94                  | 0.7                    | <0.18                  | <0.18                  | 1.1                     | <0.18                  | 0.14                   | 0.061                  | 0.057                  | 6.2                    | <0.20                  |
| Benzo(g,h,i)perylene         | <0.94                  | 0.36                   | <0.18                  | <0.18                  | 0.57                    | <0.18                  | 0.091                  | 0.047                  | 0.04                   | 2.9                    | <0.20                  |
| Benzo(k)fluoranthene         | <0.94                  | 0.32                   | <0.18                  | <0.18                  | 0.95                    | <0.18                  | 0.15                   | 0.065                  | 0.061                  | 5.1                    | <0.20                  |
| Carbazole                    | <0.94                  | <0.98                  | <0.18                  | <0.18                  | 0.4                     | <0.18                  | 0.05                   | <0.18                  | <0.18                  | 1.6                    | <0.20                  |
| Dibenz(a,h)anthracene        | <0.94                  | <0.98                  | <0.18                  | <0.18                  | 0.26                    | <0.18                  | <0.18                  | <0.18                  | <0.18                  | <0.98                  | <0.20                  |
| Dimethyl phthalate           | <0.94                  | <0.98                  | <0.18                  | <0.18                  | <0.20                   | <0.18                  | <0.18                  | <0.18                  | <0.18                  | <0.98                  | <0.20                  |
| Di-n-octyl phthalate         | <0.94                  | <0.98                  | <0.18                  | <0.18                  | <0.20                   | <0.18                  | <0.18                  | <0.18                  | <0.18                  | <0.98                  | <0.20                  |
| Indeno(1,2,3-cd)pyrene       | <0.94                  | 0.37                   | <0.18                  | <0.18                  | 0.59                    | <0.18                  | 0.093                  | 0.041                  | 0.04                   | 2.7                    | <0.20                  |
| 3&4-Methylphenol             | <1.9                   | <2.0                   | <0.36                  | <0.37                  | <0.39                   | <0.36                  | <0.36                  | <0.36                  | <0.36                  | <2.0                   | <0.39                  |
| Naphthalene                  | 2.3                    | 1.3                    | <0.18                  | <0.18                  | 0.055                   | 0.047                  | 0.055                  | 0.047                  | 0.039                  | 0.99                   | <0.20                  |
| 2-Nitrophenol                | <0.94                  | <0.98                  | <0.18                  | <0.18                  | <0.20                   | <0.18                  | <0.18                  | <0.18                  | <0.18                  | <0.98                  | <0.20                  |
| N-Nitrosodi-n-propylamine    | <0.94                  | <0.98                  | <0.18                  | <0.18                  | <0.20                   | <0.18                  | <0.18                  | <0.18                  | <0.18                  | <0.98                  | <0.20                  |
| Phenanthrene                 | . 3                    | 6.1                    | 0.081                  | <0.18                  | 3.1                     | 0.069                  | 0.39                   | 0.12                   | 0.12                   | 9.4                    | <0.20                  |
| Polychlorinated Biphenyls (I |                        | 0.040                  | 0.007                  | 0.000                  | 0.044                   | 0.007                  | 0.007                  | 0.007                  | 0.007                  | 0.040                  | 0.040                  |
| Aroclor-1242 (PCB-1242)      | < 0.039                | < 0.040                | < 0.037                | < 0.038                | <0.041                  | < 0.037                | < 0.037                | < 0.037                | < 0.037                | <0.040                 | <0.040                 |
| Aroclor-1248 (PCB-1248)      | < 0.039                | < 0.040                | < 0.037                | < 0.038                | <0.041                  | < 0.037                | < 0.037                | < 0.037                | < 0.037                | <0.040                 | <0.040                 |
| Aroclor-1254 (PCB-1254)      | < 0.039                | 0.18                   | < 0.037                | < 0.038                | <0.041                  | < 0.037                | < 0.037                | < 0.037                | < 0.037                | 0.049                  | <0.040                 |
| Aroclor-1260 (PCB-1260)      | <0.039                 | <0.040                 | <0.037                 | <0.038                 | <0.041                  | <0.037                 | <0.037                 | <0.037                 | <0.037                 | 0.027                  | <0.040                 |

|                              | AOI 83/84-2 cont.      |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
|------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| AOI Number   Location ID:    | 83/84-2   RFI-83/84-29 | 83/84-2   RFI-83/84-29 | 83/84-2   RFI-83/84-30 | 83/84-2   RFI-83/84-30 | 83/84-2   RFI-83/84-31 | 83/84-2   RFI-83/84-31 | 83/84-2   RFI-83/84-32 | 83/84-2   RFI-83/84-33 | 83/84-2   RFI-83/84-33 | 83/84-2   RFI-83/84-33 | 83/84-2   RFI-83/84-38 |
| Sample Depth(ft BGS):        | 1 - 3                  | 9 - 11                 | 0.7 - 2.7              | 8.7 - 10.7             | 1 - 3                  | 7 - 9                  | 0.7 - 2.7              | 1.2 - 3.2              | 1.2 - 3.2              | 7.2 - 9.2              | 5 - 7                  |
| Date Collected:              | 01/17/02               | 01/17/02               | 09/04/02               | 09/04/02               | 09/04/02               | 09/04/02               | 09/04/02               | 09/04/02               | 09/04/02               | 09/04/02               | 03/12/03               |
| Sample Name:                 | RFI-83/84-29(01-03)    | RFI-83/84-29(09-11)    | RFI-83/84-30(0.7-2.7)  | RFI-83/84-30(8.7-10.7) | RFI-83/84-31(01-03)    | RFI-83/84-31(07-09)    | RFI-83/84-32(0.7-1.5)  | RFI-83/84-33(1.2-3.2)  | RFI-83/84-DUP-415      | RFI-83/84-33(7.2-9.2)  | RFI-83/84-38(05-07)    |
| Inorganics                   | · · · · ·              | · · · · ·              |                        | , ,                    |                        |                        |                        |                        |                        | , ,                    |                        |
| Arsenic                      | 11                     | 1.5                    | 2.4                    | 6.2                    | 3                      | 2.2                    | 5                      | 4.7                    | 4.2                    | 6.4                    | NA                     |
| Chromium (total) [a]         | 22                     | 12                     | 24                     | 24                     | 5.6                    | 24                     | 27                     | 14                     | 9.5                    | 17                     | NA                     |
| Lead [b]                     | 95                     | 6.4                    | 42                     | 73                     | 3.6                    | 37                     | 110                    | 51                     | 70                     | 53                     | 12                     |
| Vanadium                     | 16                     | 7.7                    | 6.8                    | 29                     | 9.4                    | 10                     | 9.2                    | 21                     | 17                     | 27                     | NA                     |
| Volatile Organic Compounds   | \$                     |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
| Benzene                      | <0.040                 | <0.061                 | NA                     |
| 1,1-Dichloroethane           | <0.040                 | <0.061                 | NA                     |
| Ethylbenzene                 | 0.029                  | <0.061                 | NA                     |
| Methyl cyclohexane           | 0.44                   | <0.26                  | NA                     |
| 1,1,1-Trichloroethane        | <0.040                 | <0.061                 | NA                     |
| Semi Volatile Organic Comp   |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
| Acenaphthylene               | <0.19                  | <0.30                  | NA                     |
| Benzo(a)anthracene           | 0.052                  | <0.30                  | NA                     |
| Benzo(a)pyrene               | 0.063                  | <0.30                  | NA                     |
| Benzo(b)fluoranthene         | 0.058                  | <0.30                  | NA                     |
| Benzo(g,h,i)perylene         | 0.043                  | <0.30                  | NA                     |
| Benzo(k)fluoranthene         | 0.051                  | <0.30                  | NA                     |
| Carbazole                    | <0.19                  | <0.30                  | NA                     |
| Dibenz(a,h)anthracene        | <0.19                  | <0.30                  | NA                     |
| Dimethyl phthalate           | <0.19                  | <0.30                  | NA                     |
| Di-n-octyl phthalate         | <0.19                  | <0.30                  | NA                     |
| Indeno(1,2,3-cd)pyrene       | <0.19                  | <0.30                  | NA                     |
| 3&4-Methylphenol             | <0.38                  | <0.59                  | NA                     |
| Naphthalene                  | 0.039                  | <0.30                  | NA                     |
| 2-Nitrophenol                | <0.19                  | <0.30                  | NA                     |
| N-Nitrosodi-n-propylamine    | <0.19                  | <0.30                  | NA                     |
| Phenanthrene                 | 0.11                   | <0.30                  | NA                     |
| Polychlorinated Biphenyls (I |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
| Aroclor-1242 (PCB-1242)      | < 0.039                | <0.061                 | NA                     |
| Aroclor-1248 (PCB-1248)      | < 0.039                | < 0.061                | NA                     |
| Aroclor-1254 (PCB-1254)      | <0.039                 | < 0.061                | NA                     |
| Aroclor-1260 (PCB-1260)      | <0.039                 | <0.061                 | NA                     |

|                              | AOI 83/84-2 cont.      |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
|------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| AOI Number   Location ID:    | 83/84-2   RFI-83/84-39 | 83/84-2   RFI-83/84-39 | 83/84-2   RFI-83/84-39 | 83/84-2   RFI-83/84-40 | 83/84-2   RFI-83/84-49 | 83/84-2   RFI-83/84-49 | 83/84-2   RFI-83/84-49 | 83/84-2   RFI-83/84-49 | 83/84-2   RFI-83/84-52 | 83/84-2   RFI-83/84-52 | 83/84-2   RFI-83/84-52 |
| Sample Depth(ft BGS):        | 0.9 - 2.9              | 1.1 - 3.1              | 5.1 - 7.1              | 1 - 2.5                | 0.9 - 2.9              | 4.5 - 6.5              | 8.5 - 10.5             | 8.5 - 10.5             | 0.9 - 2.9              | 2.9 - 4.9              | 2.9 - 4.9              |
| Date Collected:              | 03/07/03               | 03/19/03               | 03/19/03               | 03/06/03               | 04/09/03               | 04/09/03               | 04/09/03               | 04/09/03               | 04/11/03               | 04/11/03               | 04/11/03               |
| Sample Name:                 |                        |                        |                        |                        |                        |                        | RFI-83/84-49(8.5-10.5) |                        |                        | RFI-83/84-52(2.9-4.9)  | RFI-83/84-DUP-441      |
| Inorganics                   | 111100/04 00(0.0 2.0)  | 111 00/04 00(111 011)  |                        | 111100/04 40(110 210)  | 111100/04 40(0.0 2.0)  | 1(1100/04 40(4.0 0.0)  |                        |                        | 1(1100/04 02(0.0 2.0)  | 1(1100/04 02(2:0 4:0)  |                        |
| Arsenic                      | 13                     | 0.99                   | 0.98                   | NA                     | 3.3                    | 35                     | 2.9                    | 15                     | 4.5                    | 4.1                    | 3.5                    |
| Chromium (total) [a]         | 2400                   | 3.4                    | 2.9                    | NA                     | 26                     | 20                     | 22                     | 21                     | 12                     | 9.6                    | 8.6                    |
| Lead [b]                     | 96                     | 3                      | 2.3                    | 3000                   | 65                     | 1200                   | 13                     | 590                    | 8.4                    | 7.1                    | 7                      |
| Vanadium                     | 390                    | 5                      | 5                      | NA                     | 10                     | 18                     | 22                     | 23                     | 21                     | 18                     | 18                     |
| Volatile Organic Compounds   |                        | Ũ                      | Ū                      |                        |                        |                        |                        | =0                     |                        |                        |                        |
| Benzene                      | <0.037                 | <0.036                 | <0.036                 | NA                     | <0.038                 | <0.040                 | <0.041                 | <0.040                 | <0.038                 | <0.038                 | <0.038                 |
| 1.1-Dichloroethane           | < 0.037                | < 0.036                | < 0.036                | NA                     | 0.14                   | < 0.040                | < 0.041                | <0.040                 | < 0.038                | < 0.038                | <0.038                 |
| Ethylbenzene                 | < 0.037                | < 0.036                | < 0.036                | NA                     | < 0.038                | < 0.040                | < 0.041                | <0.040                 | < 0.038                | < 0.038                | <0.038                 |
| Methyl cyclohexane           | 0.087                  | <0.15                  | <0.15                  | NA                     | <0.16                  | 0.26                   | 0.069                  | 0.04                   | <0.16                  | <0.16                  | 0.028                  |
| 1,1,1-Trichloroethane        | <0.037                 | < 0.036                | < 0.036                | NA                     | <0.038                 | <0.040                 | <0.041                 | <0.040                 | <0.038                 | <0.038                 | <0.038                 |
| Semi Volatile Organic Comp   | 0                      |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
| Acenaphthylene               | <4.6                   | <0.18                  | <0.18                  | NA                     | <4.7                   | <1.9                   | <0.21                  | <1.9                   | <1.9                   | <2.9                   | <0.56                  |
| Benzo(a)anthracene           | <4.6                   | <0.18                  | <0.18                  | NA                     | 3.3                    | <1.9                   | 0.077                  | <1.9                   | <1.9                   | <2.9                   | 0.45                   |
| Benzo(a)pyrene               | <4.6                   | <0.18                  | <0.18                  | NA                     | 3.6                    | <1.9                   | <0.21                  | <1.9                   | <1.9                   | <2.9                   | <0.56                  |
| Benzo(b)fluoranthene         | <4.6                   | <0.18                  | <0.18                  | NA                     | 3.8                    | <1.9                   | <0.21                  | <1.9                   | <1.9                   | <2.9                   | <0.56                  |
| Benzo(g,h,i)perylene         | <4.6                   | <0.18                  | <0.18                  | NA                     | <4.7                   | <1.9                   | <0.21                  | <1.9                   | <1.9                   | <2.9                   | <0.56                  |
| Benzo(k)fluoranthene         | <4.6                   | <0.18                  | <0.18                  | NA                     | 4.4                    | <1.9                   | <0.21                  | <1.9                   | <1.9                   | <2.9                   | <0.56                  |
| Carbazole                    | <4.6                   | <0.18                  | <0.18                  | NA                     | 1.7                    | <1.9                   | <0.21                  | <1.9                   | <1.9                   | <2.9                   | <0.56                  |
| Dibenz(a,h)anthracene        | <4.6                   | <0.18                  | <0.18                  | NA                     | <4.7                   | <1.9                   | <0.21                  | <1.9                   | <1.9                   | <2.9                   | <0.56                  |
| Dimethyl phthalate           | <4.6                   | <0.18                  | <0.18                  | NA                     | <4.7                   | <1.9                   | <0.21                  | <1.9                   | <1.9                   | <2.9                   | <0.56                  |
| Di-n-octyl phthalate         | <4.6                   | <0.18                  | <0.18                  | NA                     | <4.7                   | <1.9                   | <0.21                  | <1.9                   | <1.9                   | <2.9                   | <0.56                  |
| Indeno(1,2,3-cd)pyrene       | <4.6                   | <0.18                  | <0.18                  | NA                     | <4.7                   | <1.9                   | <0.21                  | <1.9                   | <1.9                   | <2.9                   | <0.56                  |
| 3&4-Methylphenol             | <9.3                   | <0.35                  | <0.36                  | NA                     | <9.4                   | <3.9                   | <0.41                  | <3.9                   | <3.7                   | <5.7                   | <1.1                   |
| Naphthalene                  | <4.6                   | <0.18                  | <0.18                  | NA                     | 4.6                    | <1.9                   | <0.21                  | <1.9                   | <1.9                   | <2.9                   | 0.63                   |
| 2-Nitrophenol                | <4.6                   | <0.18                  | <0.18                  | NA                     | <4.7                   | <1.9                   | <0.21                  | <1.9                   | <1.9                   | <2.9                   | <0.56                  |
| N-Nitrosodi-n-propylamine    | <4.6                   | <0.18                  | <0.18                  | NA                     | <4.7                   | <1.9                   | <0.21                  | <1.9                   | <1.9                   | <2.9                   | <0.56                  |
| Phenanthrene                 | <4.6                   | <0.18                  | <0.18                  | NA                     | 9.7                    | 1.5                    | 0.27                   | <1.9                   | 1.4                    | 2.7                    | 2.6                    |
| Polychlorinated Biphenyls (I |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |
| Aroclor-1242 (PCB-1242)      | <0.038                 | < 0.036                | < 0.037                | NA                     | <0.039                 | <0.040                 | 0.1                    | 0.19                   | 0.054                  | 0.096                  | 0.13                   |
| Aroclor-1248 (PCB-1248)      | < 0.038                | < 0.036                | < 0.037                | NA                     | 0.12                   | < 0.040                | < 0.042                | < 0.040                | <0.038                 | < 0.039                | < 0.039                |
| Aroclor-1254 (PCB-1254)      | < 0.038                | < 0.036                | < 0.037                | NA                     | 0.22                   | < 0.040                | < 0.042                | 0.06                   | < 0.038                | < 0.039                | < 0.039                |
| Aroclor-1260 (PCB-1260)      | <0.038                 | <0.036                 | <0.037                 | NA                     | <0.039                 | <0.040                 | <0.042                 | <0.040                 | <0.038                 | <0.039                 | <0.039                 |

#### AOIs with Soil Exceedances of the Construction Worker Health-Based Goals Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

|                              | AOI 83/84-2 cont.      |                        |                        |                        |
|------------------------------|------------------------|------------------------|------------------------|------------------------|
| AOI Number   Location ID:    | 83/84-2   RFI-83/84-52 | 83/84-2   RFI-83/84-53 | 83/84-2   RFI-83/84-53 | 83/84-2   RFI-83/84-53 |
| Sample Depth(ft BGS):        | 6.9 - 8.9              | 0.9 - 2.9              | 6.9 - 8.9              | 8.9 - 10.9             |
| Date Collected:              | 04/11/03               | 04/11/03               | 04/11/03               | 04/11/03               |
| Sample Name:                 | RFI-83/84-52(6.9-8.9)  | RFI-83/84-53(0.9-2.9)  | RFI-83/84-53(6.9-8.9)  | RFI-83/84-53(8.9-10.9) |
| Inorganics                   |                        |                        |                        |                        |
| Arsenic                      | 10                     | 3.2                    | 2.2                    | 4.5                    |
| Chromium (total) [a]         | 26                     | 15                     | 5.3                    | 16                     |
| Lead [b]                     | 16                     | 8.8                    | 3.8                    | 9.8                    |
| Vanadium                     | 42                     | 18                     | 9.9                    | 28                     |
| Volatile Organic Compound    |                        |                        |                        |                        |
| Benzene                      | <0.044                 | <0.037                 | <0.036                 | <0.041                 |
| 1,1-Dichloroethane           | <0.044                 | <0.037                 | <0.036                 | <0.041                 |
| Ethylbenzene                 | <0.044                 | <0.037                 | <0.036                 | <0.041                 |
| Methyl cyclohexane           | <0.19                  | <0.16                  | 0.58                   | 0.092                  |
| 1,1,1-Trichloroethane        | <0.044                 | <0.037                 | <0.036                 | <0.041                 |
| Semi Volatile Organic Comp   | 1                      |                        |                        |                        |
| Acenaphthylene               | <0.22                  | <3.7                   | <1.8                   | <4.0                   |
| Benzo(a)anthracene           | 0.19                   | 2.2                    | <1.8                   | <4.0                   |
| Benzo(a)pyrene               | <0.22                  | 1.6                    | <1.8                   | <4.0                   |
| Benzo(b)fluoranthene         | <0.22                  | 2.4                    | <1.8                   | <4.0                   |
| Benzo(g,h,i)perylene         | <0.22                  | <3.7                   | <1.8                   | <4.0                   |
| Benzo(k)fluoranthene         | <0.22                  | 1.6                    | <1.8                   | <4.0                   |
| Carbazole                    | <0.22                  | <3.7                   | <1.8                   | <4.0                   |
| Dibenz(a,h)anthracene        | <0.22                  | <3.7                   | <1.8                   | <4.0                   |
| Dimethyl phthalate           | <0.22                  | <3.7                   | <1.8                   | <4.0                   |
| Di-n-octyl phthalate         | <0.22                  | <3.7                   | <1.8                   | <4.0                   |
| Indeno(1,2,3-cd)pyrene       | <0.22                  | <3.7                   | <1.8                   | <4.0                   |
| 3&4-Methylphenol             | <0.44                  | <7.4                   | <3.6                   | <8.1                   |
| Naphthalene                  | 0.15                   | <3.7                   | <1.8                   | <4.0                   |
| 2-Nitrophenol                | <0.22                  | <3.7                   | <1.8                   | <4.0                   |
| N-Nitrosodi-n-propylamine    | <0.22                  | <3.7                   | <1.8                   | <4.0                   |
| Phenanthrene                 | 0.97                   | 8.7                    | 1.5                    | 2.4                    |
| Polychlorinated Biphenyls (I | •                      |                        |                        |                        |
| Aroclor-1242 (PCB-1242)      | <0.045                 | 0.041                  | 0.057                  | <0.042                 |
| Aroclor-1248 (PCB-1248)      | <0.045                 | <0.038                 | < 0.037                | <0.042                 |
| Aroclor-1254 (PCB-1254)      | <0.045                 | <0.038                 | <0.037                 | <0.042                 |
| Aroclor-1260 (PCB-1260)      | <0.045                 | <0.038                 | <0.037                 | <0.042                 |

Page 25 of 30

|                                                    | AOI 83/84-3            |                        |                        |                        |                        |                         |                        |                        |                        |                        |                        |
|----------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| AOI Number   Location ID:                          | 83/84-3   RFI-83/84-05 | 83/84-3   RFI-83/84-05 | 83/84-3   RFI-83/84-16 | 83/84-3   RFI-83/84-16 | 83/84-3   RFI-83/84-16 | 83/84-3   RFI-83/84-17R | 83/84-3   RFI-83/84-18 | 83/84-3   RFI-83/84-18 | 83/84-3   RFI-83/84-19 | 83/84-3   RFI-83/84-19 | 83/84-3   RFI-83/84-34 |
| Sample Depth(ft BGS):                              | 0.7 - 2.7              | 6.7 - 8.7              | 0.8 - 2.8              | 0.8 - 2.8              | 2.8 - 4.8              | 1 - 3                   | 0.8 - 2.8              | 2.8 - 4.8              | 0.8 - 2.8              | 2.8 - 3.4              | 0.7 - 2.7              |
| Date Collected:                                    | 07/24/01               | 07/24/01               | 12/10/01               | 12/10/01               | 12/10/01               | 03/06/03                | 12/10/01               | 12/10/01               | 12/10/01               | 12/10/01               | 09/04/02               |
|                                                    |                        | RFI-83/84-05(6.7-8.7)  |                        | RFI-83/84-DUP-207      | RFI-83/84-16(2.8-4.8)  |                         |                        |                        |                        |                        |                        |
| Inorganics                                         |                        |                        |                        |                        |                        |                         |                        |                        |                        |                        |                        |
| Arsenic                                            | 5.7                    | 3.7                    | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Chromium (total) [a]                               | 17                     | 6.8                    | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Lead [b]                                           | 42000                  | 6.4                    | 670                    | 870                    | 2500                   | 1800                    | 400                    | 1100                   | 110                    | 38                     | 35                     |
| Vanadium                                           | 14                     | 10                     | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Volatile Organic Compound                          |                        |                        |                        |                        |                        |                         |                        |                        |                        |                        |                        |
| Benzene                                            | <0.039                 | <0.038                 | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| 1,1-Dichloroethane                                 | <0.039                 | <0.038                 | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Ethylbenzene                                       | <0.039                 | <0.038                 | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Methyl cyclohexane                                 | 0.097                  | <0.16                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| 1,1,1-Trichloroethane                              | <0.039                 | <0.038                 | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Semi Volatile Organic Comp                         |                        |                        |                        |                        |                        |                         |                        |                        |                        |                        |                        |
| Acenaphthylene                                     | <0.19                  | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Benzo(a)anthracene                                 | 4.4                    | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Benzo(a)pyrene                                     | 4                      | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Benzo(b)fluoranthene                               | 4.1                    | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Benzo(g,h,i)perylene                               | 1.6                    | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Benzo(k)fluoranthene                               | 4.3                    | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Carbazole                                          | 0.81                   | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Dibenz(a,h)anthracene                              | <0.19                  | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Dimethyl phthalate                                 | <0.19                  | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Di-n-octyl phthalate                               | <0.19                  | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Indeno(1,2,3-cd)pyrene                             | 1.7                    | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| 3&4-Methylphenol                                   | < 0.38                 | < 0.36                 | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Naphthalene                                        | 0.052                  | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| 2-Nitrophenol                                      | <0.19                  | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| N-Nitrosodi-n-propylamine                          | <0.19                  | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Phenanthrene<br>Relyableringtod Binhonylo (I       | 4.4                    | <0.18                  | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| Polychlorinated Biphenyls (                        |                        | -0.027                 | NA                     | NIA                    | NIA                    | NA                      | NIA                    | NIA                    | NIA                    | NIA                    | NA                     |
| Aroclor-1242 (PCB-1242)<br>Aroclor-1248 (PCB-1248) | <0.039<br><0.039       | <0.037<br><0.037       | NA<br>NA               | NA<br>NA               | NA<br>NA               | NA<br>NA                | NA<br>NA               | NA<br>NA               | NA<br>NA               | NA<br>NA               | NA<br>NA               |
| Aroclor-1248 (PCB-1248)<br>Aroclor-1254 (PCB-1254) | <0.039<br><0.039       | <0.037<br><0.037       | NA<br>NA               | NA                     | NA                     | NA<br>NA                | NA                     | NA<br>NA               | NA<br>NA               | NA                     | NA                     |
| Aroclor-1254 (PCB-1254)<br>Aroclor-1260 (PCB-1260) | <0.039<br><0.039       | <0.037<br><0.037       | NA                     | NA                     | NA                     | NA                      | NA                     | NA                     | NA                     | NA                     | NA                     |
| AIUCIUI-1200 (FCD-1200)                            | <0.039                 | <0.037                 | INA                    | INA                    | INA                    | INA INA                 | IN/A                   | INA                    | INA                    | INA                    | NA NA                  |

#### AOIs with Soil Exceedances of the Construction Worker Health-Based Goals Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

|                             | AOI 83/84-3 cont.      |                        |                        |                        |                        |                        |
|-----------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| AOI Number   Location ID:   | 83/84-3   RFI-83/84-35 | 83/84-3   RFI-83/84-36 | 83/84-3   RFI-83/84-37 | 83/84-3   RFI-83/84-41 | 83/84-3   RFI-83/84-42 | 83/84-3   RFI-83/84-43 |
| Sample Depth(ft BGS):       | 0.7 - 2.7              | 0.7 - 2.7              | 0.7 - 2.7              | 1 - 2                  | 1 - 3                  | 1.5 - 3.5              |
| Date Collected:             | 09/04/02               | 09/04/02               | 09/04/02               | 03/05/03               | 03/05/03               | 03/05/03               |
| Sample Name:                | RFI-83/84-35(0.7-2.7)  | RFI-83/84-36(0.7-2.7)  | RFI-83/84-37(0.7-2.7)  | RFI-83/84-41(01-02)    | RFI-83/84-42(01-03)    | RFI-83/84-43(1.5-3.5)  |
| Inorganics                  |                        |                        |                        |                        |                        |                        |
| Arsenic                     | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Chromium (total) [a]        | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Lead [b]                    | 3900                   | 200                    | 290                    | 10                     | 47                     | 400                    |
| Vanadium                    | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Volatile Organic Compound   |                        |                        |                        |                        |                        |                        |
| Benzene                     | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| 1,1-Dichloroethane          | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Ethylbenzene                | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Methyl cyclohexane          | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| 1,1,1-Trichloroethane       | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Semi Volatile Organic Comp  | 1                      |                        |                        |                        |                        |                        |
| Acenaphthylene              | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Benzo(a)anthracene          | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Benzo(a)pyrene              | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Benzo(b)fluoranthene        | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Benzo(g,h,i)perylene        | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Benzo(k)fluoranthene        | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Carbazole                   | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Dibenz(a,h)anthracene       | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Dimethyl phthalate          | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Di-n-octyl phthalate        | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Indeno(1,2,3-cd)pyrene      | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| 3&4-Methylphenol            | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Naphthalene                 | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| 2-Nitrophenol               | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| N-Nitrosodi-n-propylamine   | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Phenanthrene                | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Polychlorinated Biphenyls ( |                        |                        |                        |                        |                        |                        |
| Aroclor-1242 (PCB-1242)     | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Aroclor-1248 (PCB-1248)     | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Aroclor-1254 (PCB-1254)     | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| Aroclor-1260 (PCB-1260)     | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |

Page 27 of 30

| AOI Number   Location ID:    | AOI 86-1          | 96 1   DEI 02 09 | 86-1   RFI-86-01   | 86-1   RFI-86-01   | 86-1   RFI-86-01    | 96 1   DEI 96 01 | 96 1   DEI 96 02 | 96 1   DEI 96 02 |               |                  |                  | 86-1   RFI-86-04 |                  |                  |
|------------------------------|-------------------|------------------|--------------------|--------------------|---------------------|------------------|------------------|------------------|---------------|------------------|------------------|------------------|------------------|------------------|
|                              |                   |                  |                    | •                  |                     |                  |                  |                  |               |                  |                  |                  |                  |                  |
| Sample Depth(ft BGS):        | 0.7 - 2           | 4 - 6            | 0.5 - 2.5          | 4.5 - 6.5          | 8.5 - 10.5          | 8.5 - 10.5       | 1 - 3            | 7 - 9            | 7 - 9         | 2 - 4            | 4 - 6            | 1 - 3            | 3 - 5            | 1 - 3            |
| Date Collected:              | 05/21/01          | 05/21/01         | 05/23/01           | 05/23/01           | 05/23/01            | 05/23/01         | 07/31/01         | 07/31/01         | 07/31/01      | 06/20/01         | 06/20/01         | 07/24/01         | 07/24/01         | 06/20/01         |
| Sample Name:                 | RFI-02-08(0.7-02) | RFI-02-08(04-06) | RFI-86-01(0.5-2.5) | RFI-86-01(4.5-6.5) | RFI-86-01(8.5-10.5) | RFI-86-DUP-15S   | RFI-86-02(01-03) | RFI-86-02(07-09) | RFI-86-Dup-43 | RFI-86-03(02-04) | RFI-86-03(04-06) | RFI-86-04(01-03) | RFI-86-04(03-05) | RFI-86-05(01-03) |
| Inorganics                   |                   |                  |                    |                    |                     |                  |                  |                  |               |                  |                  |                  |                  |                  |
| Arsenic                      | 10                | 4.1              | 12                 | 7.4                | 3.3                 | 3                | 2.7              | 3.5              | 2.9           | 9.8              | 34               | 4.5              | 4.5              | 5.8              |
| Chromium (total) [a]         | 38                | 25               | 17                 | 8.1                | 8.9                 | 4.7              | 4.8              | 7                | 4.7           | 30               | 8.5              | 19               | 20               | 16               |
| Lead [b]                     | 190               | 10               | 110                | 7.7                | 6.4                 | 2.9              | 2.8              | 6                | 3.6           | 14               | 4.7              | 630              | 460              | 27               |
| Vanadium                     | 25                | 37               | 15                 | 14                 | 13                  | 5.7              | 10               | 12               | 8.6           | 48               | 13               | 15               | 9.3              | 16               |
| Volatile Organic Compound    |                   |                  |                    |                    |                     |                  |                  |                  |               |                  |                  |                  |                  |                  |
| Benzene                      | 0.011             | <0.042           | 0.1                | <0.037             | <0.040              | <0.040           | <0.039           | <0.037           | < 0.037       | < 0.043          | <0.042           | <0.040           | <0.040           | <0.038           |
| 1,1-Dichloroethane           | <0.039            | <0.042           | <0.038             | <0.037             | <0.040              | <0.040           | <0.039           | <0.037           | < 0.037       | <0.043           | <0.042           | <0.040           | <0.040           | <0.038           |
| Ethylbenzene                 | 0.022             | 0.014            | 0.18               | 0.0091             | <0.040              | <0.040           | < 0.039          | 0.028            | 0.039         | 0.065            | <0.042           | <0.040           | <0.040           | 0.032            |
| Methyl cyclohexane           | 0.15              | <0.18            | 1.5                | 0.045              | <0.17               | <0.17            | <0.17            | <0.16            | 0.033         | <0.18            | <0.18            | 0.12             | 0.038            | 0.19             |
| 1,1,1-Trichloroethane        | <0.039            | <0.042           | <0.038             | <0.037             | <0.040              | <0.040           | < 0.039          | <0.037           | < 0.037       | <0.043           | 0.05             | <0.040           | <0.040           | 0.19             |
| Semi Volatile Organic Comp   | (                 |                  |                    |                    |                     |                  |                  |                  |               |                  |                  |                  |                  |                  |
| Acenaphthylene               | <0.19             | <0.20            | 0.61               | <0.18              | <0.19               | <0.19            | <0.19            | <0.90            | <0.89         | <0.21            | <0.20            | 0.056            | <0.19            | <0.19            |
| Benzo(a)anthracene           | 0.41              | <0.20            | 2.5                | 0.068              | <0.19               | <0.19            | <0.19            | <0.90            | <0.89         | <0.21            | <0.20            | 0.11             | <0.19            | 0.037            |
| Benzo(a)pyrene               | 0.56              | <0.20            | 3.9                | 0.073              | <0.19               | <0.19            | <0.19            | <0.90            | <0.89         | <0.21            | <0.20            | 0.18             | <0.19            | <0.19            |
| Benzo(b)fluoranthene         | 0.61              | <0.20            | 4.3                | 0.078              | <0.19               | <0.19            | <0.19            | <0.90            | <0.89         | <0.21            | 0.13             | 0.4              | <0.19            | 0.15             |
| Benzo(g,h,i)perylene         | 0.55              | <0.20            | 4.5                | 0.065              | <0.19               | <0.19            | <0.19            | <0.90            | <0.89         | <0.21            | <0.20            | <0.19            | <0.19            | <0.19            |
| Benzo(k)fluoranthene         | 0.49              | <0.20            | 3.5                | 0.057              | <0.19               | <0.19            | <0.19            | <0.90            | <0.89         | <0.21            | <0.20            | 0.21             | <0.19            | <0.19            |
| Carbazole                    | 0.055             | <0.20            | 0.14               | <0.18              | <0.19               | <0.19            | <0.19            | <0.90            | <0.89         | <0.21            | <0.20            | <0.19            | <0.19            | <0.19            |
| Dibenz(a,h)anthracene        | 0.16              | <0.20            | 1.3                | <0.18              | <0.19               | <0.19            | <0.19            | <0.90            | <0.89         | <0.21            | <0.20            | <0.19            | <0.19            | <0.19            |
| Dimethyl phthalate           | <0.19             | <0.20            | <0.19              | <0.18              | <0.19               | <0.19            | <0.19            | <0.90            | <0.89         | <0.21            | <0.20            | <0.19            | <0.19            | <0.19            |
| Di-n-octyl phthalate         | <0.19             | <0.20            | <0.19              | <0.18              | <0.19               | <0.19            | <0.19            | <0.90            | <0.89         | <0.21            | <0.20            | <0.19            | <0.19            | <0.19            |
| Indeno(1,2,3-cd)pyrene       | 0.47              | <0.20            | 4                  | 0.06               | <0.19               | <0.19            | <0.19            | <0.90            | <0.89         | <0.21            | <0.20            | <0.19            | <0.19            | <0.19            |
| 3&4-Methylphenol             | <0.38             | <0.40            | <0.37              | <0.37              | <0.39               | <0.39            | <0.37            | <1.8             | <1.8          | <0.42            | <0.41            | <0.38            | <0.39            | <0.38            |
| Naphthalene                  | 0.043             | <0.20            | 0.44               | <0.18              | <0.19               | 0.19             | <0.19            | 1.9              | 1.8           | <0.21            | <0.20            | <0.19            | <0.19            | 0.06             |
| 2-Nitrophenol                | <0.19             | <0.20            | <0.19              | <0.18              | <0.19               | <0.19            | <0.19            | <0.90            | <0.89         | <0.21            | <0.20            | <0.19            | <0.19            | <0.19            |
| N-Nitrosodi-n-propylamine    | <0.19             | <0.20            | <0.19              | <0.18              | <0.19               | <0.19            | <0.19            | <0.90            | <0.89         | <0.21            | <0.20            | <0.19            | <0.19            | <0.19            |
| Phenanthrene                 | 0.45              | <0.20            | 1                  | 0.063              | <0.19               | <0.19            | <0.19            | <0.90            | <0.89         | <0.21            | <0.20            | 0.14             | <0.19            | 0.093            |
| Polychlorinated Biphenyls (I |                   |                  |                    |                    |                     |                  |                  |                  |               |                  |                  |                  |                  |                  |
| Aroclor-1242 (PCB-1242)      | <0.039            | <0.042           | <0.039             | <0.038             | <0.040              | <0.040           | <0.039           | <0.037           | <0.037        | <0.043           | <0.042           | <0.039           | <0.040           | <0.039           |
| Aroclor-1248 (PCB-1248)      | <0.039            | <0.042           | <0.039             | <0.038             | <0.040              | <0.040           | <0.039           | <0.037           | <0.037        | <0.043           | <0.042           | <0.039           | <0.040           | <0.039           |
| Aroclor-1254 (PCB-1254)      | <0.039            | <0.042           | 0.073              | <0.038             | <0.040              | <0.040           | <0.039           | <0.037           | <0.037        | <0.043           | <0.042           | 0.041            | <0.040           | 0.067            |
| Aroclor-1260 (PCB-1260)      | <0.039            | <0.042           | 0.039              | <0.038             | <0.040              | <0.040           | <0.039           | <0.037           | <0.037        | <0.043           | <0.042           | 0.022            | <0.040           | 0.037            |

|                             | AOI 86-1 cont.   |                  |                   |                   |                    |                  |                     |                    |                     |                      |                    |                    |                    |                    |
|-----------------------------|------------------|------------------|-------------------|-------------------|--------------------|------------------|---------------------|--------------------|---------------------|----------------------|--------------------|--------------------|--------------------|--------------------|
| AOI Number   Location ID:   | 86-1   RFI-86-05 | 86-1   RFI-86-05 | 86-1   RFI-86-06D | 86-1   RFI-86-06D | 86-1   RFI-86-07   | 86-1   RFI-86-07 | 86-1   RFI-86-07    | 86-1   RFI-86-08   | 86-1   RFI-86-08    | 86-1   RFI-86-08     | 86-1   RFI-86-10   | 86-1   RFI-86-11   | 86-1   RFI-86-11   | 86-1   RFI-86-12   |
| Sample Depth(ft BGS):       | 3 - 5            | 5 - 7            | 2 - 4             | 6 - 8             | 0.7 - 2.7          | 0.7 - 2.7        | 8.7 - 10.7          | 0.6 - 2.6          | 8.6 - 10.6          | 10.6 - 12.6          | 6.5 - 8.5          | 0.7 - 2.7          | 2.7 - 4.7          | 0.8 - 2.8          |
| Date Collected:             | 06/20/01         | 06/20/01         | 06/15/01          | 06/15/01          | 05/23/01           | 05/23/01         | 05/23/01            | 07/20/01           | 07/20/01            | 07/20/01             | 11/21/01           | 11/21/01           | 11/21/01           | 11/21/01           |
| Sample Name:                | RFI-86-05(03-05) | RFI-86-05(05-07) | RFI-86-06D(02-04) | RFI-86-06D(06-08) | RFI-86-07(0.7-2.7) | RFI-86-DUP-14    | RFI-86-07(8.7-10.7) | RFI-86-08(0.6-2.6) | RFI-86-08(8.6-10.6) | RFI-86-08(10.6-12.6) | RFI-86-10(6.5-8.5) | RFI-86-11(0.7-2.7) | RFI-86-11(2.7-4.7) | RFI-86-12(0.8-2.8) |
| Inorganics                  |                  |                  |                   |                   |                    |                  |                     |                    |                     |                      |                    |                    |                    |                    |
| Arsenic                     | 3.1              | 4                | 4.8               | 13                | 110                | 110              | 9.1                 | 8.4                | 12                  | 9.5                  | NA                 | 35                 | 8.5                | 56                 |
| Chromium (total) [a]        | 15               | 11               | 13                | 28                | 5.4                | 5.5              | 21                  | 25                 | 21                  | 22                   | NA                 | NA                 | NA                 | NA                 |
| Lead [b]                    | 7.6              | 10               | 110               | 260               | 7.3                | 7.5              | 12                  | 170                | 99                  | 14                   | NA                 | NA                 | NA                 | NA                 |
| Vanadium                    | 11               | 15               | 16                | 29                | 15                 | 16               | 30                  | 18                 | 23                  | 38                   | NA                 | NA                 | NA                 | NA                 |
| Volatile Organic Compounds  |                  |                  |                   |                   |                    |                  |                     |                    |                     |                      |                    |                    |                    |                    |
| Benzene                     | <0.038           | <0.041           | <0.042            | < 0.052           | 0.0074             | <0.040           | <0.045              | 0.08               | <0.045              | < 0.044              | NA                 | NA                 | NA                 | NA                 |
| 1,1-Dichloroethane          | <0.038           | <0.041           | < 0.042           | < 0.052           | <0.040             | < 0.040          | <0.045              | 0.039              | 0.098               | < 0.044              | NA                 | NA                 | NA                 | NA                 |
| Ethylbenzene                | < 0.038          | <0.041           | < 0.042           | < 0.052           | 0.011              | 0.014            | <0.045              | 0.035              | <0.045              | < 0.044              | NA                 | NA                 | NA                 | NA                 |
| Methyl cyclohexane          | 0.13             | <0.17            | <0.18             | 0.045             | 0.024              | 0.1              | <0.19               | 0.36               | 0.05                | <0.19                | NA                 | NA                 | NA                 | NA                 |
| 1,1,1-Trichloroethane       | 0.29             | 0.064            | < 0.042           | <0.052            | <0.040             | < 0.040          | <0.045              | 1.5                | 0.77                | < 0.044              | NA                 | NA                 | NA                 | NA                 |
| Semi Volatile Organic Comp  |                  |                  |                   |                   |                    |                  |                     |                    |                     |                      |                    |                    |                    |                    |
| Acenaphthylene              | <0.18            | <0.19            | <0.20             | <0.26             | <0.19              | <0.19            | <0.22               | 0.12               | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| Benzo(a)anthracene          | <0.18            | <0.19            | 0.05              | 0.067             | 0.082              | 0.052            | <0.22               | 1.3                | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| Benzo(a)pyrene              | <0.18            | <0.19            | 0.058             | 0.074             | 0.071              | 0.046            | <0.22               | 1.7                | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| Benzo(b)fluoranthene        | 0.13             | 0.13             | 0.16              | 0.21              | 0.062              | <0.19            | <0.22               | 1.5                | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| Benzo(g,h,i)perylene        | <0.18            | <0.19            | <0.20             | <0.26             | 0.06               | <0.19            | <0.22               | 1.1                | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| Benzo(k)fluoranthene        | <0.18            | <0.19            | 0.16              | 0.21              | 0.049              | <0.19            | <0.22               | 1.2                | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| Carbazole                   | <0.18            | <0.19            | <0.20             | <0.26             | <0.19              | <0.19            | <0.22               | 0.068              | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| Dibenz(a,h)anthracene       | <0.18            | <0.19            | <0.20             | <0.26             | <0.19              | <0.19            | <0.22               | <0.19              | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| Dimethyl phthalate          | <0.18            | <0.19            | <0.20             | <0.26             | <0.19              | <0.19            | <0.22               | <0.19              | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| Di-n-octyl phthalate        | <0.18            | <0.19            | <0.20             | <0.26             | <0.19              | <0.19            | <0.22               | <0.19              | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| Indeno(1,2,3-cd)pyrene      | <0.18            | <0.19            | 0.032             | <0.26             | 0.052              | <0.19            | <0.22               | 1                  | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| 3&4-Methylphenol            | < 0.36           | < 0.39           | <0.40             | <0.52             | <0.38              | < 0.38           | <0.43               | < 0.37             | <0.43               | <0.42                | NA                 | NA                 | NA                 | NA                 |
| Naphthalene                 | <0.18            | <0.19            | <0.20             | <0.26             | <0.19              | 0.039            | <0.22               | 0.093              | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| 2-Nitrophenol               | <0.18            | <0.19            | <0.20             | <0.26             | <0.19              | <0.19            | <0.22               | <0.19              | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| N-Nitrosodi-n-propylamine   | <0.18            | <0.19            | <0.20             | <0.26             | <0.19              | <0.19            | <0.22               | <0.19              | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| Phenanthrene                | 0.041            | <0.19            | 0.067             | 0.071             | 0.17               | 0.11             | <0.22               | 0.79               | <0.22               | <0.21                | NA                 | NA                 | NA                 | NA                 |
| Polychlorinated Biphenyls ( |                  |                  |                   |                   |                    |                  |                     |                    |                     |                      |                    |                    |                    |                    |
| Aroclor-1242 (PCB-1242)     | < 0.037          | <0.040           | <0.041            | <0.053            | <0.19              | < 0.039          | <0.045              | < 0.039            | <0.045              | < 0.043              | NA                 | NA                 | NA                 | NA                 |
| Aroclor-1248 (PCB-1248)     | < 0.037          | <0.040           | 0.054             | <0.053            | 3.5                | 1.6              | <0.045              | <0.039             | <0.045              | < 0.043              | NA                 | NA                 | NA                 | NA                 |
| Aroclor-1254 (PCB-1254)     | 0.026            | <0.040           | <0.041            | <0.053            | <0.19              | < 0.039          | <0.045              | < 0.039            | <0.045              | < 0.043              | NA                 | NA                 | NA                 | NA                 |
| Aroclor-1260 (PCB-1260)     | 0.014            | <0.040           | <0.041            | <0.053            | <0.19              | < 0.039          | <0.045              | <0.039             | <0.045              | < 0.043              | NA                 | NA                 | NA                 | NA                 |

| AOI Number   Location ID:   | AOI 86-1 cont.<br>86-1   RFI-86-12 | 86-1   RFI-86-13   | 86-1   RFI-86-13   | 86-1   RFI-86-14   | 86-1   RFI-86-14   | 86-1   RFI-86-15   | 86-1   RFI-86-16   | 86-1   RFI-86-16   | 86-1   RFI-86-16    | 86-1   RFI-86-17 | 86-1   RFI-86-18 |
|-----------------------------|------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|------------------|------------------|
| Sample Depth(ft BGS):       | 2.8 - 4.8                          | 0.8 - 2.8          | 2.8 - 4.8          | 0.5 - 2.5          | 4.5 - 6.5          | 0.3 - 2.3          | 0.8 - 2.8          | 7.8 - 9.8          | 9.8 - 11.8          | 1-3              | 1-3              |
| Date Collected:             | 11/21/01                           | 11/21/01           | 11/21/01           | 01/09/02           | 01/09/02           | 01/14/02           | 02/27/03           | 02/27/03           | 02/27/03            | 03/12/03         | 03/12/03         |
|                             |                                    |                    |                    |                    |                    |                    |                    |                    |                     |                  |                  |
|                             | RFI-86-12(2.8-4.8)                 | RFI-86-13(0.8-2.8) | RFI-80-13(2.8-4.8) | RFI-86-14(0.5-2.5) | RFI-80-14(4.3-6.3) | RFI-86-15(0.3-2.3) | RFI-80-16(0.8-2.8) | RFI-80-16(7.8-9.8) | RFI-86-16(9.8-11.8) | RFI-86-17(01-03) | RFI-86-18(01-03) |
| Inorganics                  |                                    |                    |                    |                    |                    |                    |                    |                    |                     |                  |                  |
| Arsenic                     | 4.7                                | 11                 | 6.2                | 2.4                | 6.7                | 3.3                | 3.9                | 6.2                | 7.9                 | 190              | 19               |
| Chromium (total) [a]        | NA                                 | NA                 | NA                 | 5.3                | 24                 | 6.3                | 7                  | 23                 | 29                  | NA               | NA               |
| Lead [b]                    | NA                                 | NA                 | NA                 | 4                  | 10                 | 9.6                | 9.5                | 12                 | 14                  | NA               | NA               |
| Vanadium                    | NA                                 | NA                 | NA                 | 8                  | 38                 | 10                 | 12                 | 35                 | 42                  | NA               | NA               |
| Volatile Organic Compounds  |                                    |                    |                    |                    |                    |                    |                    |                    |                     |                  |                  |
| Benzene                     | NA                                 | NA                 | NA                 | <0.037             | <0.041             | <0.039             | <0.036             | <0.043             | <0.047              | NA               | NA               |
| 1,1-Dichloroethane          | NA                                 | NA                 | NA                 | <0.037             | <0.041             | <0.039             | <0.036             | <0.043             | <0.047              | NA               | NA               |
| Ethylbenzene                | NA                                 | NA                 | NA                 | <0.037             | <0.041             | <0.039             | <0.036             | <0.043             | <0.047              | NA               | NA               |
| Methyl cyclohexane          | NA                                 | NA                 | NA                 | <0.16              | <0.18              | <0.17              | <0.15              | <0.19              | <0.20               | NA               | NA               |
| 1,1,1-Trichloroethane       | NA                                 | NA                 | NA                 | < 0.037            | <0.041             | < 0.039            | < 0.036            | < 0.043            | <0.047              | NA               | NA               |
| Semi Volatile Organic Comp  | 1                                  |                    |                    |                    |                    |                    |                    |                    |                     |                  |                  |
| Acenaphthylene              | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| Benzo(a)anthracene          | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| Benzo(a)pyrene              | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| Benzo(b)fluoranthene        | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| Benzo(g,h,i)perylene        | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| Benzo(k)fluoranthene        | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| Carbazole                   | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| Dibenz(a,h)anthracene       | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| Dimethyl phthalate          | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| Di-n-octyl phthalate        | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| Indeno(1,2,3-cd)pyrene      | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| 3&4-Methylphenol            | NA                                 | NA                 | NA                 | < 0.36             | <0.40              | <0.37              | <0.36              | <0.43              | <0.45               | NA               | NA               |
| Naphthalene                 | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| 2-Nitrophenol               | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| N-Nitrosodi-n-propylamine   | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| Phenanthrene                | NA                                 | NA                 | NA                 | <0.18              | <0.20              | <0.19              | <0.18              | <0.21              | <0.23               | NA               | NA               |
| Polychlorinated Biphenyls ( |                                    |                    |                    |                    |                    |                    |                    |                    |                     |                  |                  |
| Aroclor-1242 (PCB-1242)     | NA                                 | NA                 | NA                 | < 0.037            | <0.041             | <0.039             | <0.037             | <0.044             | <0.047              | NA               | NA               |
| Aroclor-1248 (PCB-1248)     | NA                                 | NA                 | NA                 | < 0.037            | <0.041             | < 0.039            | < 0.037            | < 0.044            | < 0.047             | NA               | NA               |
| Aroclor-1254 (PCB-1254)     | NA                                 | NA                 | NA                 | < 0.037            | <0.041             | < 0.039            | < 0.037            | <0.044             | <0.047              | NA               | NA               |
| Aroclor-1260 (PCB-1260)     | NA                                 | NA                 | NA                 | < 0.037            | <0.041             | <0.039             | < 0.037            | <0.044             | <0.047              | NA               | NA               |
| 1.00107 1200 (1 00 1200)    | 1 1/ 1                             | 11/1               |                    | \$0.001            | \$0.041            | 10.000             | \$0.007            | 10.01              | \$0.047             | 1 1/ 1           | 1973             |

|                              |              |              |               |              | AOI 36-1                                     |                                       |                |                |                                   |                |                |                |                                       |                   |                    |                  |                   |
|------------------------------|--------------|--------------|---------------|--------------|----------------------------------------------|---------------------------------------|----------------|----------------|-----------------------------------|----------------|----------------|----------------|---------------------------------------|-------------------|--------------------|------------------|-------------------|
| AOI Number   Location ID:    |              | Construction | Maximum       | Exceeds      | 36-1   36-100                                | 36-1   36-100                         | 36-1   36-100  | 36-1   36-100  | 36-1   36-100                     | 36-1   36-120  | 36-1   36-120  | 36-1   36-121  | 36-1   36-121                         | 36-1   RFI-36-02  | 36-1   RFI-36-02   | 36-1   RFI-36-02 | 36-1   RFI-36-02  |
| Date Collected:              |              | Worker       | Detected      | Construction | 09/27/01                                     | 09/27/01                              | 06/13/02       | 03/25/03       | 06/10/05                          | 09/27/01       | 09/27/01       | 09/27/01       | 09/27/01                              | 10/04/01          | 10/04/01           | 06/13/02         | 03/25/03          |
| Sample Name:                 | Units        | Water HBG    | Concentraiton |              | 36-100(092701)                               | 36-100D(092701                        | 36-100(061302) | 36-100(032503) | 36-100(061005)                    | 36-120(092701) | 36-120D(092701 | 36-121(092701) | 36-121D(092701)                       | RFI-36-02(100401) | RFI-36-02D(100401) | RFI-36-02(061302 | RFI-36-02(032503) |
| Inorganics                   |              |              |               |              | <u>,                                    </u> | , , , , , , , , , , , , , , , , , , , |                |                | , , , , , , , , , , , , , , , , , | , <i>,</i> ,   | ```            |                | , , , , , , , , , , , , , , , , , , , |                   |                    |                  | ,                 |
| Arsenic                      | mg/L         | 1.3E+01      | 0.14          | no           | 0.021                                        | NA                                    | 0.012          | 0.012          | NA                                | NA             | NA             | NA             | NA                                    | 0.085             | NA                 | 0.091            | 0.019             |
| Barium                       | mg/L         | 1.0E+03      | 1.4           | no           | 0.84                                         | NA                                    | 0.25           | 0.21           | NA                                | NA             | NA             | NA             | NA                                    | 0.4               | NA                 | 0.23             | 0.17              |
| Beryllium                    | mg/L         | 2.7E+00      | 0.0036        | no           | 0.00054                                      | NA                                    | <0.00040       | <0.00040       | NA                                | NA             | NA             | NA             | NA                                    | 0.00074           | NA                 | <0.00040         | <0.00040          |
| Cadmium                      | mg/L         | 1.9E+00      | 0.021         | no           | 0.00022                                      | NA                                    | 0.00023        | 0.00033        | NA                                | NA             | NA             | NA             | NA                                    | <0.00020          | NA                 | <0.00020         | 0.00014           |
| Chromium (total) [a]         | mg/L         | 7.0E-01      | 0.22          | no           | 0.001                                        | NA                                    | 0.0008         | 0.0016         | NA                                | NA             | NA             | NA             | NA                                    | 0.001             | NA                 | 0.0005           | 0.00043           |
| Cobalt                       | mg/L         | 2.0E+01      | 0.072         | no           | 0.0078                                       | NA                                    | 0.006          | 0.0034         | NA                                | NA             | NA             | NA             | NA                                    | 0.014             | NA                 | 0.0053           | 0.012             |
| Lead [b]                     | mg/L         | 1.5E-02      | 0.092         | YES          | 0.00034                                      | NA                                    | 0.00033        | 0.00093        | NA                                | NA             | NA             | NA             | NA                                    | 0.00051           | NA                 | 0.00042          | 0.0013            |
| Manganese                    | mg/L         | 4.2E+02      | 3.3           | no           | 1.6                                          | NA                                    | 1.8            | 0.63           | NA                                | NA             | NA             | NA             | NA                                    | 1.2               | NA                 | 1.4              | 0.64              |
| Thallium                     | mg/L         | 3.0E+00      | 0.0013        | no           | 0.0003                                       | NA                                    | 0.00015        | 0.000082       | NA                                | NA             | NA             | NA             | NA                                    | <0.00020          | NA                 | <0.00020         | <0.00020          |
| Vanadium                     | mg/L         | 1.4E+00      | 0.21          | no           | <0.00080                                     | NA                                    | <0.00080       | 0.000097       | NA                                | NA             | NA             | NA             | NA                                    | <0.00080          | NA                 | <0.00080         | <0.00080          |
| Inorganics-Dissolved         | <u>g</u> / = |              | 0.2.1         |              | 10100000                                     |                                       | 10100000       | 0.000001       |                                   |                |                |                |                                       | 10100000          |                    |                  |                   |
| Arsenic                      | mg/L         | 1.3E+01      | 0.081         | no           | NA                                           | 0.017                                 | NA             | NA             | NA                                | NA             | <0.0010        | NA             | <0.0010                               | NA                | 0.057              | NA               | NA                |
| Barium                       | mg/L         | 1.0E+03      | 2.5           | no           | NA                                           | 0.63                                  | NA             | NA             | NA                                | NA             | 0.26           | NA             | 0.064                                 | NA                | R                  | NA               | NA                |
| Cobalt                       | mg/L         | 2.0E+01      | 0.011         | no           | NA                                           | 0.006                                 | NA             | NA             | NA                                | NA             | 0.001          | NA             | 0.0024                                | NA                | 0.0084             | NA               | NA                |
| Lead [b]                     | mg/L         | 1.5E-02      | 0.019         | YES          | NA                                           | < 0.00040                             | NA             | NA             | NA                                | NA             | < 0.00040      | NA             | <0.00040                              | NA                | <0.00040           | NA               | NA                |
| Manganese                    | mg/L         | 4.2E+02      | 2.5           | no           | NA                                           | 1.5                                   | NA             | NA             | NA                                | NA             | 0.13           | NA             | 0.77                                  | NA                | 0.78               | NA               | NA                |
| Selenium                     | mg/L         | 2.2E+02      | 0.017         | no           | NA                                           | 0.0024                                | NA             | NA             | NA                                | NA             | <0.0023        | NA             | 0.0023                                | NA                | 0.0014             | NA               | NA                |
| Thallium                     | mg/L         | 3.0E+00      | 0.00071       | no           | NA                                           | <0.00020                              | NA             | NA             | NA                                | NA             | < 0.00020      | NA             | <0.00020                              | NA                | <0.00020           | NA               | NA                |
| Vanadium                     | mg/L         | 1.4E+00      | 0.0027        | no           | NA                                           | <0.00080                              | NA             | NA             | NA                                | NA             | <0.00080       | NA             | <0.00080                              | NA                | <0.00080           | NA               | NA                |
| Volatile Organic Compound    |              |              | 010021        |              |                                              | 10100000                              |                |                |                                   |                |                |                |                                       |                   | 10100000           |                  |                   |
| Benzene                      | mg/L         | 1.0E+01      | 0.36          | no           | 0.08                                         | NA                                    | 0.051          | 0.0032         | 0.008                             | <0.0010        | NA             | <0.0010        | NA                                    | <0.0010           | NA                 | NA               | NA                |
| 1.3-Dichlorobenzene          | mg/L         | 2.1E+02      | 0.0001        | no           | < 0.0010                                     | NA                                    | <0.0010        | < 0.0010       | < 0.0050                          | < 0.0010       | NA             | < 0.0010       | NA                                    | <0.0010           | NA                 | NA               | NA                |
| 1,1-Dichloroethane           | mg/L         | 7.0E+01      | 1.3           | no           | 1.3                                          | NA                                    | 0.78           | 0.17           | 0.32                              | <0.0010        | NA             | < 0.0010       | NA                                    | 0.00076           | NA                 | NA               | NA                |
| 1,2-Dichloroethane           | mg/L         | 4.4E+00      | 0.0093        | no           | < 0.0010                                     | NA                                    | 0.003          | <0.0010        | < 0.0050                          | <0.0010        | NA             | < 0.0010       | NA                                    | <0.0010           | NA                 | NA               | NA                |
| cis-1,2-Dichloroethene       | mg/L         | 6.8E+02      | 0.23          | no           | 0.037                                        | NA                                    | 0.033          | 0.003          | 0.004                             | <0.0010        | NA             | < 0.0010       | NA                                    | <0.0010           | NA                 | NA               | NA                |
| 1,2-Dichloropropane          | mg/L         | 2.2E+00      | ND            | no           | < 0.0010                                     | NA                                    | <0.0010        | <0.0010        | <0.0050                           | <0.0010        | NA             | < 0.0010       | NA                                    | <0.0010           | NA                 | NA               | NA                |
| Ethylbenzene                 | mg/L         | 2.8E+01      | 0.004         | no           | <0.0010                                      | NA                                    | <0.0010        | <0.0010        | < 0.0050                          | < 0.0010       | NA             | < 0.0010       | NA                                    | <0.0010           | NA                 | NA               | NA                |
| Methyl cyclohexane           | mg/L         | 3.8E+02      | 0.001         | no           | <0.0010                                      | NA                                    | <0.0010        | <0.0010        | <0.10                             | <0.0010        | NA             | <0.0010        | NA                                    | <0.0010           | NA                 | NA               | NA                |
| Methyl Tert Butyl Ether      | mg/L         | 4.3E+02      | 0.015         | no           | 0.0069                                       | NA                                    | 0.0067         | < 0.0050       | 0.004                             | < 0.0050       | NA             | < 0.0050       | NA                                    | < 0.0050          | NA                 | NA               | NA                |
| Methylene chloride           | mg/L         | 1.4E+02      | 0.0004        | no           | <0.0050                                      | NA                                    | < 0.0050       | < 0.0050       | < 0.030                           | < 0.0050       | NA             | < 0.0050       | NA                                    | <0.0050           | NA                 | NA               | NA                |
| Tetrachloroethene            | mg/L         | 1.5E+00      | 0.006         | no           | <0.0010                                      | NA                                    | <0.0010        | <0.0010        | < 0.0050                          | < 0.0010       | NA             | < 0.0010       | NA                                    | <0.0010           | NA                 | NA               | NA                |
| Toluene                      | mg/L         | 5.4E+02      | 0.0029        | no           | 0.001                                        | NA                                    | 0.00078        | <0.0010        | < 0.0050                          | <0.0010        | NA             | <0.0010        | NA                                    | <0.0010           | NA                 | NA               | NA                |
| Trichloroethene              | mg/L         | 5.4E+01      | 0.099         | no           | 0.0031                                       | NA                                    | 0.0036         | 0.0037         | 0.008                             | <0.0010        | NA             | <0.0010        | NA                                    | <0.0010           | NA                 | NA               | NA                |
| Vinyl chloride               | mg/L         | 7.2E+00      | 0.093         | no           | 0.026                                        | NA                                    | 0.0063         | <0.0010        | 0.009                             | < 0.0010       | NA             | < 0.0010       | NA                                    | <0.0010           | NA                 | NA               | NA                |
| m&p-Xylene                   | mg/L         | 5.9E+01      | 0.009         | no           | <0.0020                                      | NA                                    | <0.0020        | <0.0020        | < 0.0050                          | <0.0020        | NA             | <0.0020        | NA                                    | <0.0020           | NA                 | NA               | NA                |
| o-Xylene                     | mg/L         | 5.9E+01      | 0.004         | no           | 0.004                                        | NA                                    | 0.003          | <0.0010        | <0.0050                           | <0.0010        | NA             | <0.0010        | NA                                    | <0.0010           | NA                 | NA               | NA                |
| Semi Volatile Organic Comp   | pounds (     | (SVOCs)      |               |              |                                              |                                       |                |                |                                   |                |                |                |                                       |                   |                    |                  |                   |
| Benzo(a)anthracene           | mg/L         | 5.7E-02      | 0.00089       | no           | <0.0010                                      | NA                                    | NA             | NA             | NA                                | <0.0010        | NA             | <0.0011        | NA                                    | <0.0010           | NA                 | NA               | NA                |
| Benzo(a)pyrene               | mg/L         | 3.3E-03      | 0.00055       | no           | <0.0020                                      | NA                                    | NA             | NA             | NA                                | <0.0020        | NA             | <0.0021        | NA                                    | <0.0020           | NA                 | NA               | NA                |
| Benzo(k)fluoranthene         | mg/L         | 2.4E-01      | 0.00072       | no           | <0.0050                                      | NA                                    | NA             | NA             | NA                                | <0.0051        | NA             | <0.0053        | NA                                    | <0.0050           | NA                 | NA               | NA                |
| bis(2-Chloroethyl)ether      | mg/L         | 3.6E-01      | ND            | no           | <0.0010                                      | NA                                    | NA             | NA             | NA                                | <0.0010        | NA             | <0.0011        | NA                                    | <0.0010           | NA                 | NA               | NA                |
| Dibenz(a,h)anthracene        | mg/L         | 2.1E-03      | ND            | no           | <0.0020                                      | NA                                    | NA             | NA             | NA                                | <0.0020        | NA             | <0.0021        | NA                                    | <0.0020           | NA                 | NA               | NA                |
| 3&4-Methylphenol             | mg/L         | 3.3E+01      | ND            | no           | <0.010                                       | NA                                    | NA             | NA             | NA                                | <0.010         | NA             | <0.011         | NA                                    | <0.010            | NA                 | NA               | NA                |
| Naphthalene                  | mg/L         | 5.2E-01      | ND            | no           | <0.0050                                      | NA                                    | NA             | NA             | NA                                | <0.0051        | NA             | <0.0053        | NA                                    | <0.0050           | NA                 | NA               | NA                |
| Nitrobenzene                 | mg/L         | 3.0E+00      | ND            | no           | <0.0020                                      | NA                                    | NA             | NA             | NA                                | <0.0020        | NA             | <0.0021        | NA                                    | <0.0020           | NA                 | NA               | NA                |
| 2,2'-oxybis(1-Chloropropane) |              | 9.7E+00      | ND            | no           | <0.0050                                      | NA                                    | NA             | NA             | NA                                | <0.0051        | NA             | <0.0053        | NA                                    | <0.0050           | NA                 | NA               | NA                |
| Phenanthrene                 | mg/L         | 8.2E+02      | ND            | no           | <0.0050                                      | NA                                    | NA             | NA             | NA                                | <0.0051        | NA             | < 0.0053       | NA                                    | <0.0050           | NA                 | NA               | NA                |

|                              | AOI 36-1 cont.    |                  |                   |                    |                   |                   |                   |                   |                                       |                   |                     |                  |                   |                                        |
|------------------------------|-------------------|------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|---------------------------------------|-------------------|---------------------|------------------|-------------------|----------------------------------------|
| AOI Number   Location ID:    | 36-1   RFI-36-02  | 36-1   RFI-36-02 | 36-1   RFI-36-02  | 36-1   RFI-36-02   | 36-1   RFI-36-03                      | 36-1   RFI-36-03  | 36-1   RFI-36-03    | 36-1   RFI-36-03 | 36-1   RFI-36-03  | 36-1   RFI-36-04                       |
| Date Collected:              | 10/13/04          | 11/02/06         | 11/02/06          | 11/14/07           | 09/27/01          | 09/27/01          | 06/18/02          | 03/25/03          | 06/09/05                              | 11/02/06          | 04/23/07            | 06/26/07         | 06/26/07          | 09/28/01                               |
|                              | RFI-36-02(101304) | Dup-2(110206)    | RFI-36-02(110206) | RFI-36-02 (111407) | RFI-36-03(092701) | RFI-36-03D(092701 | RFI-36-03(061802) | RFI-36-03(032503) | RFI-36-03(060905)                     | RFI-36-03(110206) | RFI-36-03(04/23/07) | Dup-01(062607    | RFI-36-03(062607) | RFI-36-04(092801)                      |
| Inorganics                   |                   | ,                | ,                 | ,                  |                   | <b>`</b>          | , <u> </u>        |                   | , , , , , , , , , , , , , , , , , , , | , <u>,</u>        | · · · · ·           |                  |                   | `````````````````````````````````````` |
| Arsenic                      | 0.013             | NA               | NA                | NA                 | <0.0015           | NA                | <0.0019           | 0.0028            | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Barium                       | NA                | NA               | NA                | NA                 | 0.15              | NA                | 0.2               | 0.15              | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Beryllium                    | NA                | NA               | NA                | NA                 | 0.00074           | NA                | <0.00040          | <0.00040          | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Cadmium                      | NA                | NA               | NA                | NA                 | 0.00031           | NA                | 0.00049           | 0.021             | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Chromium (total) [a]         | NA                | NA               | NA                | NA                 | 0.002             | NA                | 0.0012            | 0.0029            | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Cobalt                       | NA                | NA               | NA                | NA                 | 0.00084           | NA                | 0.0053            | 0.0092            | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Lead [b]                     | NA                | NA               | NA                | NA                 | 0.00037           | NA                | 0.00019           | 0.0052            | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Manganese                    | NA                | NA               | NA                | NA                 | 0.11              | NA                | 0.43              | 0.25              | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Thallium                     | NA                | NA               | NA                | NA                 | <0.00020          | NA                | 0.00042           | 0.00023           | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Vanadium                     | NA                | NA               | NA                | NA                 | <0.00080          | NA                | <0.00080          | 0.0023            | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Inorganics-Dissolved         |                   |                  |                   |                    |                   |                   |                   |                   |                                       |                   |                     |                  |                   |                                        |
| Arsenic                      | NA                | NA               | NA                | NA                 | NA                | 0.0014            | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Barium                       | NA                | NA               | NA                | NA                 | NA                | 0.17              | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Cobalt                       | NA                | NA               | NA                | NA                 | NA                | 0.00078           | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Lead [b]                     | NA                | NA               | NA                | NA                 | NA                | < 0.00040         | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Manganese                    | NA                | NA               | NA                | NA                 | NA                | 0.12              | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Selenium                     | NA                | NA               | NA                | NA                 | NA                | 0.0042            | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Thallium                     | NA                | NA               | NA                | NA                 | NA                | < 0.00020         | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Vanadium                     | NA                | NA               | NA                | NA                 | NA                | <0.00080          | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | NA                                     |
| Volatile Organic Compound    |                   |                  |                   |                    |                   |                   |                   |                   |                                       |                   |                     |                  |                   |                                        |
| Benzene                      | <0.0010           | <0.0010          | <0.0010           | <0.0010            | <0.0010           | NA                | <0.0010           | 0.0028            | <0.0010                               | <0.0010           | <0.0010             | <0.0010          | <0.0010           | <0.0010                                |
| 1,3-Dichlorobenzene          | <0.0010           | <0.0010          | <0.0010           | <0.0010            | <0.0010           | NA                | <0.0010           | <0.0010           | <0.0010                               | <0.0010           | <0.0010             | <0.0010          | <0.0010           | <0.0010                                |
| 1,1-Dichloroethane           | 0.004             | 0.002            | 0.001             | 0.001              | 0.0045            | NA                | 0.086             | 0.16              | <0.0010                               | 0.0008            | 0.001               | 0.003            | 0.003             | 0.00082                                |
| 1,2-Dichloroethane           | <0.0010           | <0.0010          | <0.0010           | <0.0010            | <0.0010           | NA                | 0.0019            | 0.0011            | <0.0010                               | <0.0010           | <0.0010             | <0.0010          | <0.0010           | <0.0010                                |
| cis-1,2-Dichloroethene       | <0.0010           | <0.0010          | <0.0010           | <0.0010            | <0.0010           | NA                | 0.00077           | 0.0012            | <0.0010                               | <0.0010           | <0.0010             | <0.0010          | <0.0010           | <0.0010                                |
| 1,2-Dichloropropane          | <0.0010           | <0.0010          | <0.0010           | <0.0010            | <0.0010           | NA                | <0.0010           | <0.0010           | <0.0010                               | <0.0010           | <0.0010             | <0.0010          | <0.0010           | <0.0010                                |
| Ethylbenzene                 | <0.0010           | <0.0010          | <0.0010           | <0.0010            | <0.0010           | NA                | <0.0010           | <0.0010           | <0.0010                               | <0.0010           | <0.0010             | <0.0010          | <0.0010           | <0.0010                                |
| Methyl cyclohexane           | <0.020            | <0.020           | <0.020            | <0.020             | <0.0010           | NA                | <0.0010           | <0.0010           | <0.020                                | <0.020            | <0.020              | <0.020           | <0.020            | <0.0010                                |
| Methyl Tert Butyl Ether      | <0.0050           | <0.0050          | <0.0050           | <0.0050            | <0.0050           | NA                | 0.00065           | <0.0050           | <0.0050                               | <0.0050           | <0.0050             | <0.0050          | <0.0050           | <0.0050                                |
| Methylene chloride           | 0.0004            | <0.0050          | <0.0050           | <0.0050            | <0.0050           | NA                | <0.0050           | <0.0050           | <0.0050                               | <0.0050           | <0.0050             | <0.0050          | <0.0050           | <0.0050                                |
| Tetrachloroethene            | <0.0010           | <0.0010          | <0.0010           | <0.0010            | <0.0010           | NA                | <0.0010           | <0.0010           | <0.0010                               | <0.0010           | <0.0010             | <0.0010          | <0.0010           | <0.0010                                |
| Toluene                      | <0.0010           | <0.0010          | <0.0010           | <0.0010            | <0.0010           | NA                | <0.0010           | <0.0010           | <0.0010                               | <0.0010           | <0.0010             | <0.0010          | <0.0010           | <0.0010                                |
| Trichloroethene              | <0.0010           | <0.0010          | <0.0010           | <0.0010            | 0.00068           | NA                | <0.0010           | <0.0010           | <0.0010                               | <0.0010           | <0.0010             | <0.0010          | <0.0010           | <0.0010                                |
| Vinyl chloride               | <0.0010           | <0.0010          | <0.0010           | <0.0010            | <0.0010           | NA                | 0.0019            | <0.0010           | <0.0010                               | <0.0010           | <0.0010             | <0.0010          | <0.0010           | <0.0010                                |
| m&p-Xylene                   | <0.0010           | <0.0010          | <0.0010           | <0.0010            | <0.0020           | NA                | <0.0020           | <0.0020           | <0.0010                               | <0.0010           | <0.0010             | <0.0010          | <0.0010           | <0.0020                                |
| o-Xylene                     | <0.0010           | <0.0010          | <0.0010           | <0.0010            | <0.0010           | NA                | <0.0010           | <0.0010           | <0.0010                               | <0.0010           | <0.0010             | <0.0010          | <0.0010           | <0.0010                                |
| Semi Volatile Organic Com    |                   |                  |                   |                    |                   |                   |                   |                   |                                       |                   |                     |                  |                   |                                        |
| Benzo(a)anthracene           | NA                | NA               | NA                | NA                 | <0.0010           | NA                | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | <0.0010                                |
| Benzo(a)pyrene               | NA                | NA               | NA                | NA                 | <0.0021           | NA                | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | <0.0021                                |
| Benzo(k)fluoranthene         | NA                | NA               | NA                | NA                 | <0.0051           | NA                | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | <0.0051                                |
| bis(2-Chloroethyl)ether      | NA                | NA               | NA                | NA                 | <0.0010           | NA                | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | <0.0010                                |
| Dibenz(a,h)anthracene        | NA                | NA               | NA                | NA                 | <0.0021           | NA                | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | <0.0021                                |
| 3&4-Methylphenol             | NA                | NA               | NA                | NA                 | <0.010            | NA                | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | <0.010                                 |
| Naphthalene                  | NA                | NA               | NA                | NA                 | <0.0051           | NA                | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | <0.0051                                |
| Nitrobenzene                 | NA                | NA               | NA                | NA                 | <0.0021           | NA                | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | <0.0021                                |
| 2,2'-oxybis(1-Chloropropane) | NA                | NA               | NA                | NA                 | <0.0051           | NA                | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | <0.0051                                |
| Phenanthrene                 | NA                | NA               | NA                | NA                 | <0.0051           | NA                | NA                | NA                | NA                                    | NA                | NA                  | NA               | NA                | <0.0051                                |

|                              | AOI 36-1 cont.     |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|------------------------------|--------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| AOI Number   Location ID:    | 36-1   RFI-36-04   | 36-1   RFI-36-04 | 36-1   RFI-36-04 | 36-1   RFI-36-04 | 36-1   RFI-36-04 | 36-1   RFI-36-05 | 36-1   RFI-36-23 | 36-1   RFI-36-23 |
| Date Collected:              | 09/28/01           | 06/18/02         | 06/18/02         | 04/02/03         | 09/18/08         | 09/21/01         | 09/21/01         | 09/21/01         | 09/21/01         | 12/16/02         | 04/02/03         | 06/10/05         | 02/20/02         | 02/20/02         |
|                              | RFI-36-04D(092801) |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Inorganics                   |                    |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | ,                |
| Arsenic                      | NA                 | 0.08             | 0.08             | 0.087            | NA               | NA               | NA               | NA               | NA               | 0.0045           | NA               | NA               | NA               | NA               |
| Barium                       | NA                 | 0.46             | 0.53             | 0.41             | NA               | NA               | NA               | NA               | NA               | 0.15             | NA               | NA               | NA               | NA               |
| Beryllium                    | NA                 | <0.00040         | 0.00013          | <0.00040         | NA               | NA               | NA               | NA               | NA               | <0.00040         | NA               | NA               | NA               | NA               |
| Cadmium                      | NA                 | <0.00040         | 0.00012          | 0.00019          | NA               | NA               | NA               | NA               | NA               | 0.00014          | NA               | NA               | NA               | NA               |
| Chromium (total) [a]         | NA                 | 0.00071          | 0.00067          | 0.0033           | NA               | NA               | NA               | NA               | NA               | 0.0022           | NA               | NA               | NA               | NA               |
| Cobalt                       | NA                 | 0.0029           | 0.0031           | 0.003            | NA               | NA               | NA               | NA               | NA               | 0.0022           | NA               | NA               | NA               | NA               |
| Lead [b]                     | NA                 | 0.0029           | 0.00091          | 0.0018           | NA               | NA               | NA               | NA               | NA               | 0.00096          | NA               | NA               | NA               | NA               |
|                              | NA                 | 0.001            | 0.56             | 0.6              | NA               | NA               | NA               | NA               | NA               | 1.4              | NA               | NA               | NA               | NA               |
| Manganese<br>Thallium        | NA                 | <0.00021         | 0.00012          | 0.00022          | NA               | NA               | NA               | NA               | NA               | 0.0008           | NA               | NA               | NA               | NA               |
| Vanadium                     | NA                 |                  |                  |                  | NA               | NA               | NA               | NA               | NA               |                  | NA               | NA               | NA               | NA               |
|                              | NA                 | 0.00021          | <0.00080         | 0.00065          | INA              | INA              | INA              | INA              | INA              | 0.00022          | INA              | INA              | INA              | INA              |
| Inorganics-Dissolved         | 0.004              | NIA              | NIA              | NLA              | NIA              | NIA              | 0.0054           | NIA              | 0.0040           | NIA              | NIA              | NIA              | NIA              | 0.077            |
| Arsenic                      | 0.081<br>0.48      | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA         | 0.0051<br>0.22   | NA<br>NA         | 0.0046           | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA         | 0.077<br>0.042   |
| Barium                       |                    |                  |                  |                  |                  |                  | -                |                  | 0.22             |                  |                  |                  |                  |                  |
| Cobalt                       | 0.0026<br><0.00040 | NA<br>NA         | NA<br>NA         | NA               | NA<br>NA         | NA<br>NA         | 0.011            | NA<br>NA         | 0.011<br>0.00063 | NA               | NA<br>NA         | NA               | NA               | 0.00032          |
| Lead [b]                     |                    |                  |                  | NA               |                  |                  | 0.00061          |                  |                  | NA               |                  | NA               | NA               | < 0.00040        |
| Manganese                    | 0.33               | NA               | NA               | NA               | NA               | NA               | 1.1              | NA               | 1.1              | NA               | NA               | NA               | NA               | 0.058            |
| Selenium                     | 0.0029             | NA               | NA               | NA               | NA               | NA               | 0.0018           | NA               | < 0.0014         | NA               | NA               | NA               | NA               | < 0.0014         |
| Thallium                     | <0.00020           | NA               | NA               | NA               | NA               | NA               | <0.00020         | NA               | <0.00020         | NA               | NA               | NA               | NA               | <0.00020         |
| Vanadium                     | <0.00080           | NA               | NA               | NA               | NA               | NA               | <0.00080         | NA               | <0.00080         | NA               | NA               | NA               | NA               | 0.0017           |
| Volatile Organic Compound    |                    |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Benzene                      | NA                 | NA               | NA               | NA               | < 0.0010         | <0.0010          | NA               | <0.0010          | NA               | <0.0010          | < 0.0010         | < 0.0050         | < 0.0010         | NA               |
| 1,3-Dichlorobenzene          | NA                 | NA               | NA               | NA               | <0.0010          | <0.0010          | NA               | <0.0010          | NA               | <0.0010          | <0.0010          | <0.0050          | <0.0010          | NA               |
| 1,1-Dichloroethane           | NA                 | NA               | NA               | NA               | 0.002            | 0.49             | NA               | 0.45             | NA               | 0.33             | 0.24             | 0.4              | 0.0017           | NA               |
| 1,2-Dichloroethane           | NA                 | NA               | NA               | NA               | <0.0010          | 0.0007           | NA               | 0.00076          | NA               | <0.0010          | <0.0010          | <0.0050          | 0.00084          | NA               |
| cis-1,2-Dichloroethene       | NA                 | NA               | NA               | NA               | 0.001            | 0.0045           | NA               | 0.0043           | NA               | 0.0019           | 0.001            | 0.003            | <0.0010          | NA               |
| 1,2-Dichloropropane          | NA                 | NA               | NA               | NA               | <0.0010          | <0.0010          | NA               | <0.0010          | NA               | <0.0010          | <0.0010          | <0.0050          | <0.0010          | NA               |
| Ethylbenzene                 | NA                 | NA               | NA               | NA               | <0.0010          | <0.0010          | NA               | <0.0010          | NA               | <0.0010          | <0.0010          | <0.0050          | <0.0010          | NA               |
| Methyl cyclohexane           | NA                 | NA               | NA               | NA               | <0.020           | <0.0010          | NA               | <0.0010          | NA               | <0.0010          | <0.0010          | <0.10            | <0.0010          | NA               |
| Methyl Tert Butyl Ether      | NA                 | NA               | NA               | NA               | <0.0050          | 0.0074           | NA               | 0.0076           | NA               | 0.0047           | <0.0050          | 0.003            | <0.0050          | NA               |
| Methylene chloride           | NA                 | NA               | NA               | NA               | <0.0050          | <0.0050          | NA               | <0.0050          | NA               | <0.0050          | <0.0050          | <0.030           | <0.0050          | NA               |
| Tetrachloroethene            | NA                 | NA               | NA               | NA               | <0.0010          | <0.0010          | NA               | <0.0010          | NA               | <0.0010          | <0.0010          | <0.0050          | <0.0010          | NA               |
| Toluene                      | NA                 | NA               | NA               | NA               | <0.0010          | <0.0010          | NA               | <0.0010          | NA               | <0.0010          | <0.0010          | <0.0050          | <0.0010          | NA               |
| Trichloroethene              | NA                 | NA               | NA               | NA               | <0.0010          | 0.0063           | NA               | 0.0062           | NA               | 0.0023           | 0.0014           | <0.0050          | <0.0010          | NA               |
| Vinyl chloride               | NA                 | NA               | NA               | NA               | 0.003            | 0.008            | NA               | 0.0076           | NA               | 0.00069          | <0.0010          | 0.019            | <0.0010          | NA               |
| m&p-Xylene                   | NA                 | NA               | NA               | NA               | <0.0010          | <0.0020          | NA               | <0.0020          | NA               | <0.0020          | <0.0020          | <0.0050          | <0.0020          | NA               |
| o-Xylene                     | NA                 | NA               | NA               | NA               | <0.0010          | <0.0010          | NA               | <0.0010          | NA               | <0.0010          | <0.0010          | <0.0050          | <0.0010          | NA               |
| Semi Volatile Organic Com    |                    |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Benzo(a)anthracene           | NA                 | NA               | NA               | NA               | NA               | <0.0010          | NA               | <0.0010          | NA               | NA               | NA               | NA               | <0.0011          | NA               |
| Benzo(a)pyrene               | NA                 | NA               | NA               | NA               | NA               | <0.0020          | NA               | <0.0020          | NA               | NA               | NA               | NA               | <0.0022          | NA               |
| Benzo(k)fluoranthene         | NA                 | NA               | NA               | NA               | NA               | <0.0050          | NA               | <0.0050          | NA               | NA               | NA               | NA               | <0.0056          | NA               |
| bis(2-Chloroethyl)ether      | NA                 | NA               | NA               | NA               | NA               | <0.0010          | NA               | <0.0010          | NA               | NA               | NA               | NA               | <0.0011          | NA               |
| Dibenz(a,h)anthracene        | NA                 | NA               | NA               | NA               | NA               | <0.0020          | NA               | <0.0020          | NA               | NA               | NA               | NA               | <0.0022          | NA               |
| 3&4-Methylphenol             | NA                 | NA               | NA               | NA               | NA               | <0.010           | NA               | <0.010           | NA               | NA               | NA               | NA               | <0.011           | NA               |
| Naphthalene                  | NA                 | NA               | NA               | NA               | NA               | <0.0050          | NA               | <0.0050          | NA               | NA               | NA               | NA               | <0.0056          | NA               |
| Nitrobenzene                 | NA                 | NA               | NA               | NA               | NA               | <0.0020          | NA               | <0.0020          | NA               | NA               | NA               | NA               | <0.0022          | NA               |
| 2,2'-oxybis(1-Chloropropane) | NA                 | NA               | NA               | NA               | NA               | <0.0050          | NA               | <0.0050          | NA               | NA               | NA               | NA               | <0.0056          | NA               |
| Phenanthrene                 | NA                 | NA               | NA               | NA               | NA               | <0.0050          | NA               | < 0.0050         | NA               | NA               | NA               | NA               | < 0.0056         | NA               |

|                               | AOI 36-1 cont. |                  |                  |                  |                   |                   |                   |                  |                  |                  |                   |                     |                   |                   |
|-------------------------------|----------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|------------------|------------------|------------------|-------------------|---------------------|-------------------|-------------------|
| AOI Number   Location ID:     |                | 36-1   RFI-36-24 | 36-1   RFI-36-24 | 36-1   RFI-36-24 | 36-1   RFI-36-25R | 36-1   RFI-36-25R | 36-1   RFI-36-25R | 36-1   REI-36-27 | 36-1   RFI-36-27 | 36-1   REI-36-29 | 36-1   RFI-36-29R | 36-1   RFI-36-29R   | 36-1   RFI-36-29R | 36-1   REI-36-29R |
| Date Collected:               | 06/19/02       | 10/05/01         | 10/05/01         | 06/19/02         | 02/26/02          | 02/26/02          | 06/19/02          | 02/20/02         | 02/20/02         | 10/03/01         | 02/26/02          | 02/26/02            | 02/26/02          | 02/26/02          |
|                               |                |                  |                  |                  |                   |                   |                   |                  |                  |                  |                   | RFI-36-29Rd(022602) |                   |                   |
| Inorganics                    |                |                  |                  |                  |                   |                   |                   |                  |                  |                  |                   |                     |                   |                   |
| Arsenic                       | 0.093          | NA               | NA               | NA               | NA                | NA                | 0.0036            | NA               | NA               | NA               | NA                | NA                  | NA                | NA                |
| Barium                        | 0.095          | NA               | NA               | NA               | NA                | NA                | 0.39              | NA               | NA               | NA               | NA                | NA                  | NA                | NA                |
| Beryllium                     | <0.00040       | NA               | NA               | NA               | NA                | NA                | <0.00040          | NA               | NA               | NA               | NA                | NA                  | NA                | NA                |
| Cadmium                       | <0.00040       | NA               | NA               | NA               | NA                | NA                | <0.00040          | NA               | NA               | NA               | NA                | NA                  | NA                | NA                |
| Chromium (total) [a]          | 0.001          | NA               | NA               | NA               | NA                | NA                | 0.001             | NA               | NA               | NA               | NA                | NA                  | NA                | NA                |
| Chiomum (total) [a]<br>Cobalt | 0.0009         | NA               | NA               | NA               | NA                | NA                | 0.00076           | NA               | NA               | NA               | NA                | NA                  | NA                | NA                |
|                               | 0.0009         | NA               | NA               | NA               | NA                | NA                | 0.00078           | NA               | NA               | NA               | NA                | NA                  | NA                | NA                |
| Lead [b]                      |                |                  |                  |                  |                   |                   |                   |                  |                  |                  |                   | NA                  | NA                | NA<br>NA          |
| Manganese                     | 0.098          | NA               | NA               | NA               | NA                | NA                | 0.57              | NA               | NA               | NA               | NA                | NA                  | NA                | NA<br>NA          |
| Thallium                      | <0.00020       | NA               | NA               | NA               | NA                | NA                | 0.000057          | NA               | NA               | NA               | NA                |                     |                   |                   |
| Vanadium                      | 0.0038         | NA               | NA               | NA               | NA                | NA                | 0.0005            | NA               | NA               | NA               | NA                | NA                  | NA                | NA                |
| Inorganics-Dissolved          |                | N1.0             | 0.0040           | N 1 A            | N1.0              | 0.005             | N1.0              | N10              | 0.070            |                  |                   | 0.070               | N 1 A             | 0.004             |
| Arsenic                       | NA             | NA               | 0.0016           | NA               | NA                | 0.005             | NA                | NA               | 0.076            | NA               | NA                | 0.079               | NA                | 0.081             |
| Barium                        | NA             | NA               | R                | NA               | NA                | 0.42              | NA                | NA               | 0.43             | NA               | NA                | 0.15                | NA                | 0.16              |
| Cobalt                        | NA             | NA               | 0.00065          | NA               | NA                | 0.0011            | NA                | NA               | 0.0041           | NA               | NA                | 0.0016              | NA                | 0.0013            |
| Lead [b]                      | NA             | NA               | 0.00091          | NA               | NA                | <0.00040          | NA                | NA               | 0.0011           | NA               | NA                | 0.00047             | NA                | <0.00040          |
| Manganese                     | NA             | NA               | 0.25             | NA               | NA                | 0.63              | NA                | NA               | 0.27             | NA               | NA                | 0.11                | NA                | 0.11              |
| Selenium                      | NA             | NA               | <0.0014          | NA               | NA                | 0.0024            | NA                | NA               | <0.0060          | NA               | NA                | 0.0015              | NA                | <0.0014           |
| Thallium                      | NA             | NA               | <0.00020         | NA               | NA                | 0.00035           | NA                | NA               | <0.00091         | NA               | NA                | 0.00063             | NA                | 0.00035           |
| Vanadium                      | NA             | NA               | <0.00080         | NA               | NA                | 0.0027            | NA                | NA               | <0.00080         | NA               | NA                | 0.0015              | NA                | 0.0018            |
| Volatile Organic Compoune     |                |                  |                  |                  |                   |                   |                   |                  |                  |                  |                   |                     |                   |                   |
| Benzene                       | <0.0010        | 0.0006           | NA               | <0.0010          | <0.0010           | NA                | NA                | <0.0010          | NA               | 0.087            | 0.045             | NA                  | 0.047             | NA                |
| 1,3-Dichlorobenzene           | <0.0010        | <0.0010          | NA               | <0.0010          | <0.0010           | NA                | NA                | <0.0010          | NA               | <0.0010          | <0.0010           | NA                  | <0.0010           | NA                |
| 1,1-Dichloroethane            | <0.0010        | 0.068            | NA               | 0.0064           | 0.0018            | NA                | NA                | 0.00083          | NA               | 0.049            | 0.024             | NA                  | 0.026             | NA                |
| 1,2-Dichloroethane            | <0.0010        | <0.0010          | NA               | <0.0010          | <0.0010           | NA                | NA                | <0.0010          | NA               | 0.0021           | 0.002             | NA                  | 0.0024            | NA                |
| cis-1,2-Dichloroethene        | <0.0010        | 0.15             | NA               | <0.0010          | <0.0010           | NA                | NA                | <0.0010          | NA               | 0.0072           | 0.0058            | NA                  | 0.0066            | NA                |
| 1,2-Dichloropropane           | <0.0010        | <0.0010          | NA               | <0.0010          | <0.0010           | NA                | NA                | <0.0010          | NA               | <0.0010          | <0.0010           | NA                  | <0.0010           | NA                |
| Ethylbenzene                  | <0.0010        | <0.0010          | NA               | <0.0010          | <0.0010           | NA                | NA                | <0.0010          | NA               | <0.0010          | <0.0010           | NA                  | <0.0010           | NA                |
| Methyl cyclohexane            | <0.0010        | <0.0010          | NA               | <0.0010          | <0.0010           | NA                | NA                | <0.0010          | NA               | <0.0010          | <0.0010           | NA                  | <0.0010           | NA                |
| Methyl Tert Butyl Ether       | <0.0050        | <0.0050          | NA               | <0.0050          | <0.0050           | NA                | NA                | <0.0050          | NA               | 0.015            | 0.0071            | NA                  | 0.0072            | NA                |
| Methylene chloride            | <0.0050        | <0.0050          | NA               | <0.0050          | <0.0050           | NA                | NA                | <0.0050          | NA               | <0.0050          | <0.0050           | NA                  | < 0.0050          | NA                |
| Tetrachloroethene             | <0.0010        | <0.0010          | NA               | <0.0010          | <0.0010           | NA                | NA                | <0.0010          | NA               | <0.0010          | <0.0010           | NA                  | <0.0010           | NA                |
| Toluene                       | <0.0010        | <0.0010          | NA               | <0.0010          | <0.0010           | NA                | NA                | <0.0010          | NA               | <0.0017          | 0.0026            | NA                  | 0.0029            | NA                |
| Trichloroethene               | <0.0010        | 0.099            | NA               | <0.0010          | <0.0010           | NA                | NA                | <0.0010          | NA               | <0.0010          | <0.0010           | NA                  | <0.0010           | NA                |
| Vinyl chloride                | <0.0010        | 0.0046           | NA               | <0.0010          | <0.0010           | NA                | NA                | <0.0010          | NA               | 0.004            | 0.058             | NA                  | 0.06              | NA                |
| m&p-Xylene                    | <0.0020        | <0.0020          | NA               | <0.0020          | 0.00062           | NA                | NA                | <0.0020          | NA               | <0.0020          | 0.0008            | NA                  | 0.0008            | NA                |
| o-Xylene                      | <0.0010        | <0.0010          | NA               | <0.0010          | <0.0010           | NA                | NA                | <0.0010          | NA               | <0.0010          | <0.0010           | NA                  | <0.0010           | NA                |
| Semi Volatile Organic Com     |                |                  |                  |                  |                   |                   |                   |                  |                  |                  |                   |                     |                   |                   |
| Benzo(a)anthracene            | NA             | <0.0010          | NA               | NA               | <0.0010           | NA                | NA                | <0.0010          | NA               | NA               | <0.0010           | NA                  | <0.0010           | NA                |
| Benzo(a)pyrene                | NA             | <0.0020          | NA               | NA               | <0.0020           | NA                | NA                | <0.0020          | NA               | NA               | 0.00055           | NA                  | <0.0020           | NA                |
| Benzo(k)fluoranthene          | NA             | <0.0050          | NA               | NA               | <0.0050           | NA                | NA                | <0.0050          | NA               | NA               | 0.00072           | NA                  | <0.0050           | NA                |
| bis(2-Chloroethyl)ether       | NA             | <0.0010          | NA               | NA               | <0.0010           | NA                | NA                | <0.0010          | NA               | NA               | <0.0010           | NA                  | <0.0010           | NA                |
| Dibenz(a,h)anthracene         | NA             | <0.0020          | NA               | NA               | <0.0020           | NA                | NA                | <0.0020          | NA               | NA               | <0.0020           | NA                  | <0.0020           | NA                |
| 3&4-Methylphenol              | NA             | <0.010           | NA               | NA               | <0.010            | NA                | NA                | <0.010           | NA               | NA               | <0.010            | NA                  | <0.010            | NA                |
| Naphthalene                   | NA             | <0.0050          | NA               | NA               | <0.0050           | NA                | NA                | <0.0050          | NA               | NA               | <0.0050           | NA                  | <0.0050           | NA                |
| Nitrobenzene                  | NA             | <0.0020          | NA               | NA               | <0.0020           | NA                | NA                | <0.0020          | NA               | NA               | <0.0020           | NA                  | <0.0020           | NA                |
| 2,2'-oxybis(1-Chloropropane)  | NA             | <0.0050          | NA               | NA               | <0.0050           | NA                | NA                | <0.0050          | NA               | NA               | <0.0050           | NA                  | <0.0050           | NA                |
| Phenanthrene                  | NA             | <0.0050          | NA               | NA               | <0.0050           | NA                | NA                | < 0.0050         | NA               | NA               | <0.0050           | NA                  | < 0.0050          | NA                |

|                              | AOI 36-1 cont.      |                  |                   |                   |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|------------------------------|---------------------|------------------|-------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| AOI Number   Location ID:    | 36-1   RFI-36-29R 3 | 6-1   RFI-36-29R | 36-1   RFI-36-29R | 36-1   RFI-36-29R | 36-1   RFI-36-31 | 36-1   RFI-36-31 | 36-1   RFI-36-32 | 36-1   RFI-36-32 | 36-1   RFI-36-32 | 36-1   RFI-36-32 | 36-1   RFI-36-35 | 36-1   RFI-36-35 | 36-1   RFI-36-35 | 36-1   RFI-36-35 |
| Date Collected:              | 06/20/02            | 06/20/02         | 04/03/03          | 04/03/03          | 10/05/01         | 10/05/01         | 09/28/01         | 09/28/01         | 12/19/02         | 04/02/03         | 09/27/01         | 09/27/01         | 06/18/02         | 06/18/02         |
|                              | RFI-36-29R(062002)  |                  |                   |                   |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Inorganics                   | ,                   |                  | ,                 |                   |                  |                  | ,,               |                  |                  |                  | , <u> </u>       |                  | ,                |                  |
| Arsenic                      | 0.085               | 0.1              | 0.14              | NA                | NA               | NA               | NA               | NA               | 0.076            | 0.037            | 0.02             | NA               | 0.015            | NA               |
| Barium                       | 0.15                | 0.19             | 0.18              | NA                | NA               | NA               | NA               | NA               | 0.32             | 0.23             | 0.7              | NA               | 0.42             | NA               |
| Beryllium                    | <0.00040            | <0.00040         | <0.00040          | NA                | NA               | NA               | NA               | NA               | 0.00045          | <0.00040         | 0.0036           | NA               | <0.00040         | NA               |
| Cadmium                      | 0.00025             | 0.00027          | <0.00020          | NA                | NA               | NA               | NA               | NA               | 0.0032           | 0.00016          | 0.0013           | NA               | 0.00027          | NA               |
| Chromium (total) [a]         | 0.0017              | 0.0016           | 0.001             | NA                | NA               | NA               | NA               | NA               | 0.025            | 0.0019           | 0.22             | NA               | 0.003            | NA               |
| Cobalt                       | 0.0014              | 0.0018           | 0.0021            | NA                | NA               | NA               | NA               | NA               | 0.01             | 0.0037           | 0.009            | NA               | 0.0041           | NA               |
| Lead [b]                     | 0.0019              | 0.0021           | 0.0013            | NA                | NA               | NA               | NA               | NA               | 0.022            | 0.0002           | 0.0025           | NA               | 0.0022           | NA               |
| Manganese                    | 0.12                | 0.15             | 0.1               | NA                | NA               | NA               | NA               | NA               | 2.2              | 1.2              | 0.85             | NA               | 1.1              | NA               |
| Thallium                     | 0.00019             | 0.00012          | 0.00029           | NA                | NA               | NA               | NA               | NA               | 0.0013           | 0.00016          | < 0.00058        | NA               | <0.00020         | NA               |
| Vanadium                     | 0.001               | 0.0012           | 0.0013            | NA                | NA               | NA               | NA               | NA               | 0.025            | <0.00080         | 0.21             | NA               | 0.0025           | NA               |
| Inorganics-Dissolved         |                     |                  |                   |                   |                  |                  |                  |                  |                  |                  | -                |                  |                  |                  |
| Arsenic                      | NA                  | NA               | NA                | 0.05              | NA               | 0.0047           | NA               | 0.05             | NA               | NA               | NA               | 0.005            | NA               | 0.012            |
| Barium                       | NA                  | NA               | NA                | 0.16              | NA               | R                | NA               | 0.21             | NA               | NA               | NA               | 0.49             | NA               | 0.34             |
| Cobalt                       | NA                  | NA               | NA                | 0.0015            | NA               | 0.0012           | NA               | 0.0033           | NA               | NA               | NA               | 0.0063           | NA               | 0.0032           |
| Lead [b]                     | NA                  | NA               | NA                | 0.00018           | NA               | <0.00040         | NA               | 0.0018           | NA               | NA               | NA               | 0.0039           | NA               | 0.00091          |
| Manganese                    | NA                  | NA               | NA                | 0.086             | NA               | 0.71             | NA               | 1.6              | NA               | NA               | NA               | 0.5              | NA               | 0.89             |
| Selenium                     | NA                  | NA               | NA                | <0.0016           | NA               | < 0.0014         | NA               | < 0.0014         | NA               | NA               | NA               | < 0.0014         | NA               | 0.0022           |
| Thallium                     | NA                  | NA               | NA                | <0.00020          | NA               | <0.00020         | NA               | <0.00020         | NA               | NA               | NA               | <0.00020         | NA               | <0.00020         |
| Vanadium                     | NA                  | NA               | NA                | 0.0017            | NA               | <0.00080         | NA               | <0.00080         | NA               | NA               | NA               | <0.00080         | NA               | 0.0017           |
| Volatile Organic Compound    |                     |                  |                   |                   |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Benzene                      | 0.05                | 0.085            | 0.36              | NA                | < 0.0010         | NA               | 0.00053          | NA               | NA               | NA               | 0.00052          | NA               | 0.0023           | NA               |
| 1,3-Dichlorobenzene          | <0.0010             | <0.0010          | <0.0010           | NA                | < 0.0010         | NA               | <0.0010          | NA               | NA               | NA               | <0.0010          | NA               | <0.0010          | NA               |
| 1,1-Dichloroethane           | 0.018               | 0.028            | 0.081             | NA                | 0.0061           | NA               | < 0.0010         | NA               | NA               | NA               | 0.061            | NA               | 0.78             | NA               |
| 1,2-Dichloroethane           | 0.0017              | 0.0027           | 0.0069            | NA                | <0.0010          | NA               | <0.0010          | NA               | NA               | NA               | <0.0010          | NA               | 0.0093           | NA               |
| cis-1,2-Dichloroethene       | 0.0043              | 0.0068           | 0.018             | NA                | <0.0010          | NA               | <0.0010          | NA               | NA               | NA               | 0.011            | NA               | 0.017            | NA               |
| 1,2-Dichloropropane          | <0.0010             | <0.0010          | <0.0010           | NA                | <0.0010          | NA               | <0.0010          | NA               | NA               | NA               | <0.0010          | NA               | <0.0010          | NA               |
| Ethylbenzene                 | <0.0010             | <0.0010          | <0.0010           | NA                | <0.0010          | NA               | <0.0010          | NA               | NA               | NA               | <0.0010          | NA               | <0.0010          | NA               |
| Methyl cyclohexane           | <0.0010             | <0.0010          | <0.0010           | NA                | <0.0010          | NA               | <0.0010          | NA               | NA               | NA               | <0.0010          | NA               | <0.0010          | NA               |
| Methyl Tert Butyl Ether      | 0.0057              | 0.0077           | 0.012             | NA                | < 0.0050         | NA               | < 0.0050         | NA               | NA               | NA               | < 0.0050         | NA               | 0.0057           | NA               |
| Methylene chloride           | <0.0050             | <0.0050          | <0.0050           | NA                | <0.0050          | NA               | < 0.0050         | NA               | NA               | NA               | <0.0050          | NA               | <0.0050          | NA               |
| Tetrachloroethene            | <0.0010             | <0.0010          | <0.0010           | NA                | < 0.0010         | NA               | <0.0010          | NA               | NA               | NA               | <0.0010          | NA               | <0.0010          | NA               |
| Toluene                      | 0.00057             | 0.001            | <0.0010           | NA                | <0.0010          | NA               | <0.0010          | NA               | NA               | NA               | <0.0010          | NA               | <0.0010          | NA               |
| Trichloroethene              | <0.0010             | <0.0010          | <0.0010           | NA                | <0.0010          | NA               | <0.0010          | NA               | NA               | NA               | 0.0027           | NA               | <0.0010          | NA               |
| Vinyl chloride               | 0.029               | 0.05             | 0.078             | NA                | < 0.0010         | NA               | <0.0010          | NA               | NA               | NA               | 0.00083          | NA               | 0.093            | NA               |
| m&p-Xylene                   | <0.0020             | <0.0020          | <0.0020           | NA                | <0.0020          | NA               | <0.0020          | NA               | NA               | NA               | <0.0020          | NA               | <0.0020          | NA               |
| o-Xylene                     | <0.0010             | <0.0010          | <0.0010           | NA                | < 0.0010         | NA               | <0.0010          | NA               | NA               | NA               | <0.0010          | NA               | <0.0010          | NA               |
| Semi Volatile Organic Com    |                     |                  |                   |                   |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Benzo(a)anthracene           | NA                  | NA               | NA                | NA                | <0.0010          | NA               | <0.0010          | NA               | NA               | NA               | <0.0010          | NA               | NA               | NA               |
| Benzo(a)pyrene               | NA                  | NA               | NA                | NA                | <0.0020          | NA               | <0.0021          | NA               | NA               | NA               | <0.0021          | NA               | NA               | NA               |
| Benzo(k)fluoranthene         | NA                  | NA               | NA                | NA                | <0.0050          | NA               | <0.0051          | NA               | NA               | NA               | <0.0051          | NA               | NA               | NA               |
| bis(2-Chloroethyl)ether      | NA                  | NA               | NA                | NA                | <0.0010          | NA               | <0.0010          | NA               | NA               | NA               | <0.0010          | NA               | NA               | NA               |
| Dibenz(a,h)anthracene        | NA                  | NA               | NA                | NA                | <0.0020          | NA               | <0.0021          | NA               | NA               | NA               | <0.0021          | NA               | NA               | NA               |
| 3&4-Methylphenol             | NA                  | NA               | NA                | NA                | <0.010           | NA               | <0.010           | NA               | NA               | NA               | <0.010           | NA               | NA               | NA               |
| Naphthalene                  | NA                  | NA               | NA                | NA                | <0.0050          | NA               | <0.0051          | NA               | NA               | NA               | <0.0051          | NA               | NA               | NA               |
| Nitrobenzene                 | NA                  | NA               | NA                | NA                | <0.0020          | NA               | <0.0021          | NA               | NA               | NA               | <0.0021          | NA               | NA               | NA               |
| 2,2'-oxybis(1-Chloropropane) |                     | NA               | NA                | NA                | <0.0050          | NA               | <0.0051          | NA               | NA               | NA               | <0.0051          | NA               | NA               | NA               |
| Phenanthrene                 | NA                  | NA               | NA                | NA                | < 0.0050         | NA               | <0.0051          | NA               | NA               | NA               | <0.0051          | NA               | NA               | NA               |

|                                         | AOI 36-1 cont.     |                    |                   |                   |                   |                   |                     |                   |                   |                    |
|-----------------------------------------|--------------------|--------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|--------------------|
| AOI Number   Location ID:               | 36-1   RFI-36-46   | 36-1   RFI-36-46   | 36-1   RFI-36-46  | 36-1   RFI-36-46  | 36-1   RFI-36-46  | 36-1   RFI-36-46  | 36-1   RFI-36-46    | 36-1   RFI-36-46  | 36-1   RFI-36-53  | 36-1   RFI-36-53   |
| Date Collected:                         | 02/25/02           | 06/17/02           | 03/25/03          | 10/11/04          | 06/09/05          | 11/02/06          | 04/23/07            | 06/26/07          | 04/04/05          | 06/10/05           |
| Sample Name:                            | RFI-36-46(022502)  | RFI-36-46(061702)  | RFI-36-46(032503) | RFI-36-46(101104) | RFI-36-46(060905) | RFI-36-46(110206) | RFI-36-46(04/23/07) | RFI-36-46(062607) | RFI-36-53(040405) | RFI-36-53(061005   |
| Inorganics                              |                    |                    |                   |                   |                   |                   |                     |                   |                   |                    |
| Arsenic                                 | NA                 | 0.00048            | <0.0010           | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Barium                                  | NA                 | 0.32               | 0.3               | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Beryllium                               | NA                 | <0.00040           | <0.00040          | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Cadmium                                 | NA                 | 0.00015            | 0.00024           | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Chromium (total) [a]                    | NA                 | 0.00028            | 0.0014            | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Cobalt                                  | NA                 | 0.0043             | 0.004             | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Lead [b]                                | NA                 | 0.00014            | <0.00040          | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Manganese                               | NA                 | 1.6                | 1.2               | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Thallium                                | NA                 | <0.00020           | 0.00072           | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Vanadium                                | NA                 | <0.00080           | <0.00080          | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Inorganics-Dissolved                    |                    | <0.00000           | <0.00000          | 1.07              |                   |                   |                     | 1.0.1             | 1.17              | 147.1              |
| Arsenic                                 | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Barium                                  | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Cobalt                                  | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Lead [b]                                | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Manganese                               | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Selenium                                | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Thallium                                | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Vanadium                                | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Volatile Organic Compound               |                    | INA                | INA               | INA               | INA               | INA               | INA                 | INA               | INA               | INA                |
| Benzene                                 | <0.0010            | <0.0010            | <0.0010           | <0.0010           | <0.0010           | <0.0010           | <0.0010             | <0.0010           | <0.0010           | <0.0010            |
| 1.3-Dichlorobenzene                     | <0.0010            | <0.0010            | <0.0010           | <0.0010           | <0.0010           | <0.0010           | <0.0010             | <0.0010           | <0.0010           | <0.0010            |
| 1,1-Dichloroethane                      | 0.055              | 0.11               | 0.049             | 0.016             | 0.021             | 0.01              | 0.003               | 0.007             | 0.003             | 0.001              |
| 1,2-Dichloroethane                      | 0.00076            | 0.0011             | <0.049            | <0.010            | <0.021            | <0.010            | <0.003              | <0.007            | <0.003            | <0.001             |
| cis-1,2-Dichloroethene                  | <0.0010            | 0.00089            | <0.0010           | <0.0010           | <0.0010           | <0.0010           | <0.0010             | <0.0010           | <0.0010           | <0.0010            |
| 1,2-Dichloropropane                     | <0.0010            | <0.0010            | <0.0010           | <0.0010           | <0.0010           | <0.0010           | <0.0010             | <0.0010           | <0.0010           | <0.0010            |
| Ethylbenzene                            | <0.0010            | <0.0010            | <0.0010           | <0.0010           | <0.0010           | <0.0010           | <0.0010             | <0.0010           | 0.004             | 0.003              |
|                                         |                    | <0.0010            |                   | <0.0010           |                   |                   | <0.0010             | <0.020            |                   | 0.003              |
| Methyl cyclohexane                      | <0.0010            |                    | <0.0010           |                   | <0.020            | <0.020            |                     |                   | 0.0008            | 0.0009             |
| Methyl Tert Butyl Ether                 | 0.001              | 0.0008             | <0.0050           | < 0.0050          | < 0.0050          | <0.0050           | < 0.0050            | < 0.0050          | 0.001             |                    |
| Methylene chloride<br>Tetrachloroethene | <0.0050<br><0.0010 | <0.0050<br><0.0010 | <0.0050           | < 0.0050          | <0.0050           | < 0.0050          | <0.0050             | <0.0050           | <0.0050           | <0.0050<br><0.0010 |
|                                         |                    |                    | <0.0010           | < 0.0010          | <0.0010           | <0.0010           | < 0.0010            | <0.0010           | <0.0010           |                    |
| Toluene                                 | <0.0010            | <0.0010            | <0.0010           | < 0.0010          | <0.0010           | <0.0010           | 0.0001              | <0.0010           | 0.0004            | 0.0003             |
| Trichloroethene                         | <0.0010            | < 0.0010           | <0.0010           | < 0.0010          | <0.0010           | <0.0010           | < 0.0010            | <0.0010           | < 0.0010          | < 0.0010           |
| Vinyl chloride                          | 0.0012             | 0.00059            | <0.0010           | < 0.0010          | <0.0010           | 0.0003            | < 0.0010            | <0.0010           | 0.013             | 0.013              |
| m&p-Xylene                              | <0.0020            | <0.0020            | <0.0020           | < 0.0010          | <0.0010           | < 0.0010          | < 0.0010            | <0.0010           | 0.009             | 0.007              |
| o-Xylene                                | <0.0010            | <0.0010            | <0.0010           | <0.0010           | <0.0010           | <0.0010           | <0.0010             | <0.0010           | 0.002             | 0.001              |
| Semi Volatile Organic Com               |                    | N 1 A              | N 1 A             |                   | N1.0              |                   | N14                 |                   | N14               |                    |
| Benzo(a)anthracene                      | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Benzo(a)pyrene                          | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Benzo(k)fluoranthene                    | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| bis(2-Chloroethyl)ether                 | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Dibenz(a,h)anthracene                   | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| 3&4-Methylphenol                        | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Naphthalene                             | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Nitrobenzene                            | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| 2,2'-oxybis(1-Chloropropane)            |                    | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |
| Phenanthrene                            | NA                 | NA                 | NA                | NA                | NA                | NA                | NA                  | NA                | NA                | NA                 |

Page 6 of 13

| AOI Number   Location ID: 81-<br>Date Collected: 0<br>Sample Name: 70-10 | 09/27/01 | 81-2   70-102<br>09/27/01 | 81-2   70-160 | 81-2   70-160 | 81-2   70-160 |               |               |               |               |               |               |               |               |               |               |               |               |
|--------------------------------------------------------------------------|----------|---------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Date Collected: 0<br>Sample Name: 70-1<br>Inorganics                     | 09/27/01 |                           |               |               |               | 81-2   70-160 | 81-2   70-160 | 81-2   70-160 | 81-2   70-163 | 81-2   70-163 | 81-2   70-163 | 81-2   70-163 | 81-2   70-163 | 81-2   70-165 | 81-2   70-165 | 81-2   70-165 | 81-2   70-165 |
| Sample Name: 70-1                                                        |          | 00/21/01                  | 09/26/01      | 09/26/01      | 06/17/02      | 06/17/02      | 03/28/03      | 03/28/03      | 09/28/01      | 09/28/01      | 06/20/02      | 06/20/02      | 03/28/03      | 09/26/01      | 09/26/01      | 06/22/02      | 06/22/02      |
| Inorganics                                                               |          | 70-102D(092701)           |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |
|                                                                          |          |                           |               |               |               |               |               |               |               | (,            |               |               |               |               |               | ,,            |               |
| Arsenic                                                                  | 0.0046   | NA                        | NA            | NA            | 0.02          | NA            | 0.024         | 0.025         | 0.01          | NA            | 0.0036        | NA            | 0.0053        | NA            | NA            | 0.0027        | NA            |
|                                                                          | 0.085    | NA                        | NA            | NA            | 0.28          | NA            | 0.29          | 0.29          | 0.068         | NA            | 0.026         | NA            | 0.038         | NA            | NA            | 0.02          | NA            |
|                                                                          | 0.00075  | NA                        | NA            | NA            | <0.00040      | NA            | <0.00040      | <0.00040      | 0.0023        | NA            | <0.00040      | NA            | < 0.00040     | NA            | NA            | < 0.00040     | NA            |
|                                                                          | <0.00020 | NA                        | NA            | NA            | <0.00020      | NA            | <0.00020      | <0.00020      | 0.00044       | NA            | 0.00019       | NA            | 0.00013       | NA            | NA            | 0.000064      | NA            |
|                                                                          | 0.001    | NA                        | NA            | NA            | <0.00020      | NA            | 0.0014        | 0.0014        | 0.0013        | NA            | 0.00054       | NA            | 0.00089       | NA            | NA            | 0.00042       | NA            |
|                                                                          | 0.0011   | NA                        | NA            | NA            | 0.00034       | NA            | 0.00096       | 0.00094       | 0.016         | NA            | 0.0076        | NA            | 0.014         | NA            | NA            | 0.0019        | NA            |
|                                                                          | 0.0004   | NA                        | NA            | NA            | 0.000083      | NA            | 0.00042       | 0.00042       | 0.00029       | NA            | 0.00037       | NA            | 0.0003        | NA            | NA            | 0.00023       | NA            |
| Manganese                                                                | 0.46     | NA                        | NA            | NA            | 0.11          | NA            | 0.14          | 0.14          | 3.2           | NA            | 2.1           | NA            | 2.4           | NA            | NA            | 1.2           | NA            |
|                                                                          | <0.00020 | NA                        | NA            | NA            | <0.00020      | NA            | <0.00020      | <0.00020      | <0.00067      | NA            | 0.00017       | NA            | 0.00018       | NA            | NA            | <0.00020      | NA            |
|                                                                          | <0.00020 | NA                        | NA            | NA            | <0.00020      | NA            | 0.0012        | 0.0012        | <0.00080      | NA            | 0.00027       | NA            | 0.00024       | NA            | NA            | 0.0003        | NA            |
| Inorganics-Dissolved                                                     | <0.00000 |                           |               | 1.07.1        | <0.00000      | 1.17          | 0.0012        | 0.0012        | <0.00000      |               | 0.00027       | 147.1         | 0.00024       |               | 1.07          | 0.0000        |               |
| Arsenic                                                                  | NA       | 0.0028                    | NA            | 0.035         | NA            | 0.022         | NA            | NA            | NA            | <0.0075       | NA            | 0.0019        | NA            | NA            | 0.0013        | NA            | 0.0029        |
| Barium                                                                   | NA       | 0.057                     | NA            | 0.31          | NA            | 0.27          | NA            | NA            | NA            | 0.044         | NA            | 0.019         | NA            | NA            | 0.037         | NA            | 0.0025        |
| Cobalt                                                                   | NA       | 0.00091                   | NA            | 0.00034       | NA            | 0.00031       | NA            | NA            | NA            | 0.01          | NA            | 0.0059        | NA            | NA            | 0.0011        | NA            | 0.0017        |
| Lead [b]                                                                 | NA       | <0.00040                  | NA            | < 0.00040     | NA            | <0.00040      | NA            | NA            | NA            | <0.00040      | NA            | <0.00040      | NA            | NA            | 0.019         | NA            | <0.00040      |
| Manganese                                                                | NA       | 0.41                      | NA            | 0.11          | NA            | 0.11          | NA            | NA            | NA            | 2.5           | NA            | 1.6           | NA            | NA            | 0.72          | NA            | 1.1           |
| Selenium                                                                 | NA       | 0.017                     | NA            | <0.0014       | NA            | < 0.0014      | NA            | NA            | NA            | 0.0039        | NA            | <0.0014       | NA            | NA            | 0.0042        | NA            | 0.0027        |
| Thallium                                                                 | NA       | <0.00020                  | NA            | <0.00020      | NA            | <0.00020      | NA            | NA            | NA            | 0.00021       | NA            | <0.00020      | NA            | NA            | < 0.00020     | NA            | <0.00020      |
| Vanadium                                                                 | NA       | <0.00080                  | NA            | <0.00080      | NA            | <0.00080      | NA            | NA            | NA            | <0.00080      | NA            | <0.00080      | NA            | NA            | <0.00080      | NA            | <0.00080      |
| Volatile Organic Compound                                                |          | 10.00000                  | 101           | 0.00000       |               | 10.00000      |               |               |               | 10.00000      |               | \$0.00000     |               |               | 10.00000      |               | 10.00000      |
|                                                                          | <0.0010  | NA                        | <0.0010       | NA            | <0.0010       | NA            | NA            | NA            | <0.0010       | NA            | NA            | NA            | NA            | <0.0010       | NA            | NA            | NA            |
|                                                                          | <0.0010  | NA                        | < 0.0010      | NA            | < 0.0010      | NA            | NA            | NA            | < 0.0010      | NA            | NA            | NA            | NA            | <0.0010       | NA            | NA            | NA            |
| -                                                                        | <0.0010  | NA                        | < 0.0010      | NA            | <0.0010       | NA            | NA            | NA            | < 0.0010      | NA            | NA            | NA            | NA            | <0.0010       | NA            | NA            | NA            |
| ,                                                                        | <0.0010  | NA                        | < 0.0010      | NA            | <0.0010       | NA            | NA            | NA            | < 0.0010      | NA            | NA            | NA            | NA            | <0.0010       | NA            | NA            | NA            |
|                                                                          | <0.0010  | NA                        | < 0.0010      | NA            | <0.0010       | NA            | NA            | NA            | 0.0032        | NA            | NA            | NA            | NA            | <0.0010       | NA            | NA            | NA            |
|                                                                          | <0.0010  | NA                        | < 0.0010      | NA            | <0.0010       | NA            | NA            | NA            | < 0.0010      | NA            | NA            | NA            | NA            | <0.0010       | NA            | NA            | NA            |
|                                                                          | <0.0010  | NA                        | < 0.0010      | NA            | < 0.0010      | NA            | NA            | NA            | < 0.0010      | NA            | NA            | NA            | NA            | <0.0010       | NA            | NA            | NA            |
| , , , , , , , , , , , , , , , , , , ,                                    | <0.0010  | NA                        | < 0.0010      | NA            | < 0.0010      | NA            | NA            | NA            | < 0.0010      | NA            | NA            | NA            | NA            | <0.0010       | NA            | NA            | NA            |
|                                                                          | < 0.0050 | NA                        | < 0.0050      | NA            | < 0.0050      | NA            | NA            | NA            | < 0.0050      | NA            | NA            | NA            | NA            | < 0.0050      | NA            | NA            | NA            |
|                                                                          | < 0.0050 | NA                        | < 0.0050      | NA            | < 0.0050      | NA            | NA            | NA            | < 0.0050      | NA            | NA            | NA            | NA            | < 0.0050      | NA            | NA            | NA            |
| ,                                                                        | <0.0010  | NA                        | < 0.0010      | NA            | <0.0010       | NA            | NA            | NA            | < 0.0010      | NA            | NA            | NA            | NA            | < 0.0010      | NA            | NA            | NA            |
|                                                                          | <0.0010  | NA                        | <0.0010       | NA            | <0.0010       | NA            | NA            | NA            | < 0.0010      | NA            | NA            | NA            | NA            | < 0.0010      | NA            | NA            | NA            |
|                                                                          | <0.0010  | NA                        | <0.0010       | NA            | <0.0010       | NA            | NA            | NA            | 0.0021        | NA            | NA            | NA            | NA            | < 0.0010      | NA            | NA            | NA            |
|                                                                          | <0.0010  | NA                        | < 0.0010      | NA            | <0.0010       | NA            | NA            | NA            | 0.00063       | NA            | NA            | NA            | NA            | < 0.0010      | NA            | NA            | NA            |
| , , , , , , , , , , , , , , , , , , ,                                    | <0.0020  | NA                        | <0.0020       | NA            | <0.0020       | NA            | NA            | NA            | < 0.0020      | NA            | NA            | NA            | NA            | <0.0020       | NA            | NA            | NA            |
|                                                                          | <0.0010  | NA                        | <0.0010       | NA            | <0.0010       | NA            | NA            | NA            | <0.0010       | NA            | NA            | NA            | NA            | < 0.0010      | NA            | NA            | NA            |
| Semi Volatile Organic Com                                                |          |                           |               |               |               |               |               |               |               |               |               |               |               |               |               |               | 1             |
|                                                                          | <0.0010  | NA                        | <0.0011       | NA            | NA            | NA            | NA            | NA            | <0.0010       | NA            | NA            | NA            | NA            | <0.0010       | NA            | NA            | NA            |
|                                                                          | <0.0020  | NA                        | <0.0022       | NA            | NA            | NA            | NA            | NA            | <0.0021       | NA            | NA            | NA            | NA            | <0.0020       | NA            | NA            | NA            |
|                                                                          | < 0.0051 | NA                        | < 0.0054      | NA            | NA            | NA            | NA            | NA            | < 0.0051      | NA            | NA            | NA            | NA            | < 0.0050      | NA            | NA            | NA            |
| . ,                                                                      | <0.0010  | NA                        | < 0.0011      | NA            | NA            | NA            | NA            | NA            | < 0.0010      | NA            | NA            | NA            | NA            | <0.0010       | NA            | NA            | NA            |
|                                                                          | <0.0020  | NA                        | <0.0022       | NA            | NA            | NA            | NA            | NA            | < 0.0021      | NA            | NA            | NA            | NA            | <0.0020       | NA            | NA            | NA            |
|                                                                          | < 0.010  | NA                        | <0.011        | NA            | NA            | NA            | NA            | NA            | <0.010        | NA            | NA            | NA            | NA            | < 0.010       | NA            | NA            | NA            |
|                                                                          | <0.0051  | NA                        | < 0.0054      | NA            | NA            | NA            | NA            | NA            | < 0.0051      | NA            | NA            | NA            | NA            | < 0.0050      | NA            | NA            | NA            |
|                                                                          | <0.0020  | NA                        | <0.0022       | NA            | NA            | NA            | NA            | NA            | < 0.0021      | NA            | NA            | NA            | NA            | <0.0020       | NA            | NA            | NA            |
|                                                                          | <0.0051  | NA                        | < 0.0054      | NA            | NA            | NA            | NA            | NA            | < 0.0051      | NA            | NA            | NA            | NA            | < 0.0050      | NA            | NA            | NA            |
|                                                                          | <0.0051  | NA                        | < 0.0054      | NA            | NA            | NA            | NA            | NA            | < 0.0051      | NA            | NA            | NA            | NA            | < 0.0050      | NA            | NA            | NA            |

|                              | AOI 81-2 cont. | 04 0 1 70 405  | 81-2   70-165             | 04 0 1 70 405             | 04.0   70.405             | 04 0 1 70 405             | 04.0   70.405             | 81-2   RFI-81-03  | 81-2   RFI-81-03             |                              |                   | 81-2   RFI-81-13  |                              |                  |                    |
|------------------------------|----------------|----------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------------|------------------------------|------------------------------|-------------------|-------------------|------------------------------|------------------|--------------------|
| AOI Number   Location ID:    |                |                | 81-2   70-165<br>10/29/07 | 81-2   70-165<br>09/16/08 | 81-2   70-165<br>09/16/08 | 81-2   70-165<br>09/24/09 | 81-2   70-165<br>09/24/09 | 09/28/01          | 81-2   RFI-81-03<br>09/28/01 | 81-2   RFI-81-03<br>03/27/03 |                   | 09/24/01          | 81-2   RFI-81-13<br>09/24/01 |                  | 81-2   RFI-81-39R  |
| Date Collected:              | 03/28/03       | 10/07/04       |                           |                           |                           |                           |                           |                   |                              |                              | 02/28/05          |                   |                              | 03/27/03         | 09/17/03           |
|                              | 70-165(032803) | 70-165(100704) | 70-165(10/29/07)          | 10-100(091008)            | Duplicate-4(091608)       | 70-165(092409)            | Duplicate-2(092409)       | KFI-61-03(092501) | KFI-01-03D(092301)           | RFI-01-03(032703)            | KFI-01-03(022005) | KFI-01-13(092401) | KFI-01-13D(092401            | KFI-01-13(U327U3 | KFI-01-39K(091703) |
| Inorganics                   |                |                |                           |                           |                           |                           |                           |                   |                              |                              |                   |                   |                              |                  |                    |
| Arsenic                      | 0.0029         | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | NA                           | 0.00091                      | NA                | NA                | NA                           | 0.001            | NA                 |
| Barium                       | 0.043          | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | NA                           | 0.086                        | NA                | NA                | NA                           | 0.5              | NA                 |
| Beryllium                    | <0.00040       | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | NA                           | <0.00040                     | NA                | NA                | NA                           | <0.00040         | NA                 |
| Cadmium                      | <0.00020       | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | NA                           | 0.000081                     | NA                | NA                | NA                           | <0.00020         | NA                 |
| Chromium (total) [a]         | 0.00093        | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | NA                           | 0.0019                       | NA                | NA                | NA                           | 0.00086          | NA                 |
| Cobalt                       | 0.0012         | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | NA                           | 0.00033                      | NA                | NA                | NA                           | 0.00018          | NA                 |
| Lead [b]                     | 0.027          | 0.055          | 0.054                     | 0.09                      | 0.092                     | 0.049                     | 0.049                     | NA                | NA                           | 0.00082                      | NA                | NA                | NA                           | 0.00045          | NA                 |
| Manganese                    | 0.46           | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | NA                           | 0.045                        | NA                | NA                | NA                           | 0.18             | NA                 |
| Thallium                     | <0.00020       | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | NA                           | 0.00048                      | NA                | NA                | NA                           | <0.00020         | NA                 |
| Vanadium                     | 0.0002         | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | NA                           | 0.00054                      | NA                | NA                | NA                           | <0.00080         | NA                 |
| Inorganics-Dissolved         |                |                |                           |                           |                           |                           |                           |                   |                              |                              |                   |                   |                              |                  |                    |
| Arsenic                      | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | <0.0010                      | NA                           | NA                | NA                | 0.0023                       | NA               | NA                 |
| Barium                       | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | 0.059                        | NA                           | NA                | NA                | 0.5                          | NA               | NA                 |
| Cobalt                       | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | 0.00073                      | NA                           | NA                | NA                | 0.00028                      | NA               | NA                 |
| Lead [b]                     | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | <0.00040                     | NA                           | NA                | NA                | <0.00040                     | NA               | NA                 |
| Manganese                    | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | 0.52                         | NA                           | NA                | NA                | 0.16                         | NA               | NA                 |
| Selenium                     | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | <0.0014                      | NA                           | NA                | NA                | <0.0014                      | NA               | NA                 |
| Thallium                     | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | <0.00020                     | NA                           | NA                | NA                | <0.00020                     | NA               | NA                 |
| Vanadium                     | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | NA                | <0.00080                     | NA                           | NA                | NA                | <0.00080                     | NA               | NA                 |
| Volatile Organic Compoune    |                |                |                           |                           |                           |                           |                           |                   |                              |                              |                   |                   |                              |                  |                    |
| Benzene                      | NA             | <0.0010        | NA                        | NA                        | NA                        | <0.0010                   | NA                        | <0.0010           | NA                           | NA                           | <0.0010           | <0.0010           | NA                           | NA               | 0.00043            |
| 1,3-Dichlorobenzene          | NA             | <0.0010        | NA                        | NA                        | NA                        | 0.0001                    | NA                        | <0.0010           | NA                           | NA                           | <0.0010           | <0.0010           | NA                           | NA               | <0.0010            |
| 1,1-Dichloroethane           | NA             | <0.0010        | NA                        | NA                        | NA                        | <0.0010                   | NA                        | <0.0010           | NA                           | NA                           | <0.0010           | 0.0016            | NA                           | NA               | 0.00069            |
| 1,2-Dichloroethane           | NA             | <0.0010        | NA                        | NA                        | NA                        | <0.0010                   | NA                        | <0.0010           | NA                           | NA                           | <0.0010           | <0.0010           | NA                           | NA               | <0.0010            |
| cis-1,2-Dichloroethene       | NA             | <0.0010        | NA                        | NA                        | NA                        | <0.0010                   | NA                        | <0.0010           | NA                           | NA                           | <0.0010           | <0.0010           | NA                           | NA               | <0.0010            |
| 1,2-Dichloropropane          | NA             | <0.0010        | NA                        | NA                        | NA                        | <0.0010                   | NA                        | <0.0010           | NA                           | NA                           | <0.0010           | <0.0010           | NA                           | NA               | <0.0010            |
| Ethylbenzene                 | NA             | <0.0010        | NA                        | NA                        | NA                        | <0.0010                   | NA                        | <0.0010           | NA                           | NA                           | <0.0010           | <0.0010           | NA                           | NA               | 0.0012             |
| Methyl cyclohexane           | NA             | <0.020         | NA                        | NA                        | NA                        | <0.020                    | NA                        | <0.0010           | NA                           | NA                           | <0.020            | <0.0010           | NA                           | NA               | 0.00086            |
| Methyl Tert Butyl Ether      | NA             | <0.0050        | NA                        | NA                        | NA                        | <0.0050                   | NA                        | <0.0050           | NA                           | NA                           | <0.0050           | <0.0050           | NA                           | NA               | <0.0050            |
| Methylene chloride           | NA             | <0.0050        | NA                        | NA                        | NA                        | <0.0050                   | NA                        | <0.0050           | NA                           | NA                           | <0.0050           | <0.0050           | NA                           | NA               | < 0.0050           |
| Tetrachloroethene            | NA             | <0.0010        | NA                        | NA                        | NA                        | <0.0010                   | NA                        | <0.0010           | NA                           | NA                           | <0.0010           | <0.0010           | NA                           | NA               | <0.0010            |
| Toluene                      | NA             | <0.0010        | NA                        | NA                        | NA                        | 0.0001                    | NA                        | <0.0010           | NA                           | NA                           | <0.0010           | <0.0010           | NA                           | NA               | <0.0010            |
| Trichloroethene              | NA             | <0.0010        | NA                        | NA                        | NA                        | <0.0010                   | NA                        | <0.0010           | NA                           | NA                           | <0.0010           | 0.0029            | NA                           | NA               | <0.0010            |
| Vinyl chloride               | NA             | <0.0010        | NA                        | NA                        | NA                        | <0.0010                   | NA                        | <0.0010           | NA                           | NA                           | <0.0010           | <0.0010           | NA                           | NA               | <0.0010            |
| m&p-Xylene                   | NA             | <0.0010        | NA                        | NA                        | NA                        | <0.0010                   | NA                        | <0.0020           | NA                           | NA                           | <0.0010           | <0.0020           | NA                           | NA               | 0.0017             |
| o-Xylene                     | NA             | <0.0010        | NA                        | NA                        | NA                        | <0.0010                   | NA                        | <0.0010           | NA                           | NA                           | <0.0010           | <0.0010           | NA                           | NA               | 0.0005             |
| Semi Volatile Organic Com    |                |                |                           |                           |                           |                           |                           |                   |                              |                              |                   |                   |                              |                  |                    |
| Benzo(a)anthracene           | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | 0.00089           | NA                           | NA                           | NA                | <0.0011           | NA                           | NA               | NA                 |
| Benzo(a)pyrene               | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | <0.0022           | NA                           | NA                           | NA                | <0.0021           | NA                           | NA               | NA                 |
| Benzo(k)fluoranthene         | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | <0.0056           | NA                           | NA                           | NA                | <0.0053           | NA                           | NA               | NA                 |
| bis(2-Chloroethyl)ether      | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | <0.0011           | NA                           | NA                           | NA                | <0.0011           | NA                           | NA               | NA                 |
| Dibenz(a,h)anthracene        | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | <0.0022           | NA                           | NA                           | NA                | <0.0021           | NA                           | NA               | NA                 |
| 3&4-Methylphenol             | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | <0.011            | NA                           | NA                           | NA                | <0.011            | NA                           | NA               | NA                 |
| Naphthalene                  | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | <0.0056           | NA                           | NA                           | NA                | <0.0053           | NA                           | NA               | NA                 |
| Nitrobenzene                 | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | <0.0022           | NA                           | NA                           | NA                | <0.0021           | NA                           | NA               | NA                 |
| 2,2'-oxybis(1-Chloropropane) | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | <0.0056           | NA                           | NA                           | NA                | <0.0053           | NA                           | NA               | NA                 |
| Phenanthrene                 | NA             | NA             | NA                        | NA                        | NA                        | NA                        | NA                        | <0.0056           | NA                           | NA                           | NA                | <0.0053           | NA                           | NA               | NA                 |

|                                        | AOI 81-2 cont.     |                  |                  |                  |                  |                  |                  |
|----------------------------------------|--------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| AOI Number   Location ID:              | 81-2   RFI-81-39R  | 81-2   RFI-81-50 |
| Date Collected:                        | 10/11/04           | 04/04/05         | 04/04/05         | 11/02/06         | 10/31/07         | 09/16/08         | 09/24/09         |
|                                        | RFI-81-39R(101104) |                  |                  |                  |                  |                  |                  |
| Inorganics                             |                    |                  |                  |                  |                  |                  |                  |
| Arsenic                                | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Barium                                 | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Beryllium                              | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Cadmium                                | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
|                                        | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Chromium (total) [a]<br>Cobalt         | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
|                                        | NA                 | <0.0030          | <0.0030          | NA               | <0.0030          | NA               | <0.0030          |
| Lead [b]                               |                    |                  |                  |                  |                  |                  |                  |
| Manganese                              | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Thallium                               | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Vanadium                               | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Inorganics-Dissolved                   |                    |                  |                  |                  |                  |                  |                  |
| Arsenic                                | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Barium                                 | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Cobalt                                 | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Lead [b]                               | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Manganese                              | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Selenium                               | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Thallium                               | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Vanadium                               | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Volatile Organic Compound              |                    |                  |                  |                  |                  |                  |                  |
| Benzene                                | 0.0005             | NA               | NA               | <0.0010          | <0.0010          | <0.0010          | <0.0010          |
| 1,3-Dichlorobenzene                    | <0.0010            | NA               | NA               | <0.0010          | <0.0010          | <0.0010          | < 0.0010         |
| 1,1-Dichloroethane                     | 0.0007             | NA               | NA               | <0.0010          | <0.0010          | < 0.0010         | <0.0010          |
| 1,2-Dichloroethane                     | <0.0010            | NA               | NA               | <0.0010          | <0.0010          | <0.0010          | <0.0010          |
| cis-1,2-Dichloroethene                 | <0.0010            | NA               | NA               | <0.0010          | <0.0010          | <0.0010          | <0.0010          |
| 1,2-Dichloropropane                    | <0.0010            | NA               | NA               | < 0.0010         | <0.0010          | <0.0010          | <0.0010          |
| Ethylbenzene                           | < 0.0010           | NA               | NA               | <0.0010          | <0.0010          | < 0.0010         | < 0.0010         |
| Methyl cyclohexane                     | 0.001              | NA               | NA               | <0.020           | <0.020           | < 0.020          | <0.020           |
| Methyl Tert Butyl Ether                | < 0.0050           | NA               | NA               | < 0.0050         | <0.0050          | < 0.0050         | < 0.0050         |
| Methylene chloride                     | < 0.0050           | NA               | NA               | < 0.0050         | <0.0050          | < 0.0050         | < 0.0050         |
| Tetrachloroethene                      | <0.0010            | NA               | NA               | < 0.0010         | <0.0010          | < 0.0010         | < 0.0010         |
| Toluene                                | 0.0002             | NA               | NA               | <0.0010          | <0.0010          | <0.0010          | 0.0002           |
| Trichloroethene                        | <0.0010            | NA               | NA               | 0.0004           | 0.0002           | <0.0010          | 0.0008           |
| Vinyl chloride                         | <0.0010            | NA               | NA               | <0.0010          | < 0.0010         | <0.0010          | < 0.0010         |
| m&p-Xylene                             | <0.0010            | NA               | NA               | 0.0001           | <0.0010          | <0.0010          | 0.0003           |
| o-Xylene                               | <0.0010            | NA               | NA               | <0.0001          | <0.0010          | <0.0010          | <0.0003          |
| Semi Volatile Organic Com              |                    | IN/A             | INA              | <0.0010          | <0.0010          | <0.0010          | <0.0010          |
| Benzo(a)anthracene                     | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
|                                        |                    |                  |                  |                  |                  |                  |                  |
| Benzo(a)pyrene<br>Benzo(k)fluoranthene | NA                 | NA<br>NA         | NA               | NA<br>NA         | NA<br>NA         | NA               | NA<br>NA         |
| ( )                                    | NA                 |                  | NA               |                  |                  | NA               |                  |
| bis(2-Chloroethyl)ether                | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Dibenz(a,h)anthracene                  | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| 3&4-Methylphenol                       | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Naphthalene                            | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| Nitrobenzene                           | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |
| 2,2'-oxybis(1-Chloropropane)           |                    | NA               | NA               | NA               | NA               | NA               | NA               |
| Phenanthrene                           | NA                 | NA               | NA               | NA               | NA               | NA               | NA               |

Page 9 of 13

|                                              | AOI 81-3           |               |                    |                    |                    |                    |                  |                   |                  |                    |                  |                    |                    |                    |                    |
|----------------------------------------------|--------------------|---------------|--------------------|--------------------|--------------------|--------------------|------------------|-------------------|------------------|--------------------|------------------|--------------------|--------------------|--------------------|--------------------|
| AOI Number   Location ID:                    | 81-3   86-100      | 81-3   86-100 | 81-3   86-100      | 81-3   86-100      | 81-3   86-100      | 81-3   RFI-81-08   | 81-3   RFI-81-08 | 81-3   RFI-81-08  | 81-3   RFI-81-08 | 81-3   RFI-81-08   | 81-3   RFI-81-08 | 81-3   RFI-81-08   | 81-3   RFI-81-11   | 81-3   RFI-81-11   | 81-3   RFI-81-11   |
| Date Collected:                              | 09/24/01           | 09/24/01      | 06/18/02           | 04/01/03           | 10/07/04           | 09/24/01           | 09/24/01         | 06/17/02          | 06/17/02         | 04/01/03           | 10/07/04         | 02/24/05           | 09/24/01           | 09/24/01           | 06/19/02           |
|                                              |                    |               |                    |                    |                    |                    |                  |                   |                  |                    |                  |                    |                    | RFI-81-11D(092401) |                    |
| Inorganics                                   |                    |               |                    |                    | ,                  | ( )                |                  |                   |                  |                    |                  |                    |                    |                    | - (,               |
| Arsenic                                      | NA                 | NA            | 0.0029             | 0.003              | NA                 | NA                 | NA               | 0.0011            | NA               | 0.0073             | NA               | NA                 | NA                 | NA                 | 0.011              |
| Barium                                       | NA                 | NA            | 1.2                | 0.66               | 1.4                | NA                 | NA               | 0.13              | NA               | 0.0075             | NA               | NA                 | NA                 | NA                 | 0.22               |
| Beryllium                                    | NA                 | NA            | <0.00040           | <0.00040           | NA                 | NA                 | NA               | <0.00040          | NA               | <0.00040           | NA               | NA                 | NA                 | NA                 | <0.00040           |
| Cadmium                                      | NA                 | NA            | 0.00035            | 0.0098             | 0.0008             | NA                 | NA               | <0.00040          | NA               | <0.00040           | NA               | NA                 | NA                 | NA                 | <0.00040           |
| Chromium (total) [a]                         | NA                 | NA            | 0.0006             | 0.0030             | NA                 | NA                 | NA               | 0.00054           | NA               | 0.0013             | NA               | NA                 | NA                 | NA                 | 0.00097            |
| Cobalt                                       | NA                 | NA            | 0.0019             | 0.072              | NA                 | NA                 | NA               | 0.00058           | NA               | 0.0033             | NA               | NA                 | NA                 | NA                 | 0.00037            |
| Lead [b]                                     | NA                 | NA            | 0.0034             | 0.033              | 0.006              | NA                 | NA               | 0.00050           | NA               | 0.00039            | <0.0030          | NA                 | NA                 | NA                 | 0.0020             |
| Manganese                                    | NA                 | NA            | 1.2                | 1.7                | NA                 | NA                 | NA               | 1.4               | NA               | 3.3                | 1.4              | NA                 | NA                 | NA                 | 0.45               |
| Thallium                                     | NA                 | NA            | <0.00020           | 0.00045            | NA                 | NA                 | NA               | <0.00020          | NA               | <0.00020           | NA               | NA                 | NA                 | NA                 | <0.00020           |
| Vanadium                                     | NA                 | NA            | <0.00020           | <0.00043           | NA                 | NA                 | NA               | <0.00020          | NA               | <0.00020           | NA               | NA                 | NA                 | NA                 | 0.0005             |
| Inorganics-Dissolved                         | INA                | INA           | <0.00060           | <0.00060           | INA                | INA                | INA              | <0.00000          | INA              | <0.00080           | INA              | INA                | INA                | NA NA              | 0.0005             |
| Arsenic                                      | NA                 | 0.0058        | NA                 | NA                 | NA                 | NA                 | 0.0078           | NA                | 0.001            | NA                 | NA               | NA                 | NA                 | 0.013              | NA                 |
| Barium                                       | NA                 | 2.5           | NA                 | NA                 | NA                 | NA                 | 0.0078           | NA                | 0.001            | NA                 | NA               | NA                 | NA                 | 0.013              | NA                 |
| Cobalt                                       | NA                 | 2.5<br>0.0049 | NA                 | NA                 | NA                 | NA                 | 0.43             | NA                | 0.0006           | NA                 | NA               | NA                 | NA                 | 0.00029            | NA                 |
| Lead [b]                                     | NA                 | 0.0049        | NA                 | NA                 | NA                 | NA                 | <0.0023          | NA                | <0.0008          | NA                 | NA               | NA                 | NA                 | <0.00029           | NA                 |
| Manganese                                    | NA                 | 1.1           | NA                 | NA                 | NA                 | NA                 | <0.00040         | NA                | <0.00040         | NA                 | NA               | NA                 | NA                 | 0.46               | NA                 |
| 3                                            | NA                 | <0.0014       | NA                 | NA                 | NA                 | NA                 | <0.0023          |                   | <0.0014          | NA                 |                  |                    |                    | <0.0014            | NA                 |
| Selenium<br>Thallium                         | NA                 | <0.0014       | NA                 | NA                 | NA                 | NA                 | <0.0023          | NA<br>NA          | <0.0014          | NA                 | NA<br>NA         | NA<br>NA           | NA<br>NA           | <0.0014            | NA                 |
| Vanadium                                     | NA                 | <0.00020      | NA                 | NA                 | NA                 | NA                 |                  | NA                | <0.00020         | NA                 | NA               | NA                 | NA                 | <0.00020           | NA                 |
| Valiadium<br>Volatile Organic Compound       |                    | <0.00080      | INA                | INA                | INA                | INA                | <0.00080         | INA               | <0.00080         | INA                | INA              | INA                | INA                | <0.00080           | NA                 |
| <b>U</b> 1                                   |                    | NIA           | -0.0010            | -0.0010            | 0.0002             | -0.0010            | NIA              | -0.0010           | NIA              | -0.0010            | -0.0010          | -0.0010            | -0.0010            | NIA                | -0.0010            |
| Benzene<br>1,3-Dichlorobenzene               | <0.0010            | NA<br>NA      | <0.0010            | < 0.0010           | 0.0003<br><0.0010  | <0.0010            | NA               | <0.0010           | NA<br>NA         | <0.0010            | <0.0010          | <0.0010            | <0.0010            | NA<br>NA           | <0.0010            |
| 1,3-Dichloroethane                           | <0.0010<br><0.0010 | NA            | < 0.0010           | < 0.0010           |                    | <0.0010<br>0.0031  | NA               | <0.0010<br>0.0011 | NA               | < 0.0010           | <0.0010<br>0.002 | <0.0010<br>0.002   | < 0.0010           | NA                 | <0.0010<br>0.0036  |
| ,                                            | <0.0010            | NA            | <0.0010<br><0.0010 | <0.0010<br><0.0010 | <0.0010<br><0.0010 | <0.0031            | NA               |                   | NA               | 0.0047             |                  |                    | 0.0043             | NA                 |                    |
| 1,2-Dichloroethane<br>cis-1,2-Dichloroethene |                    | NA            | 0.047              | 0.0027             | 0.008              |                    | NA               | <0.0010<br>0.0014 | NA               | <0.0010            | <0.0010          | <0.0010<br>0.024   | < 0.0010           | NA                 | <0.0010            |
| 1,2-Dichloropropane                          | 0.0052<br><0.0010  | NA            |                    |                    |                    | 0.0036             | NA<br>NA         | <0.0014           | NA               | 0.05               | 0.025<br><0.0010 |                    | 0.00055            | NA                 | <0.0010<br><0.0010 |
| Ethylbenzene                                 | <0.0010            | NA            | <0.0010<br><0.0010 | <0.0010<br><0.0010 | <0.0010<br><0.0010 | <0.0010<br><0.0010 | NA               | <0.0010           | NA               | <0.0010<br><0.0010 | <0.0010          | <0.0010<br><0.0010 | <0.0010<br><0.0010 | NA                 | <0.0010            |
| Methyl cyclohexane                           | <0.0010            | NA            | <0.0010            | <0.0010            | <0.020             | <0.0010            | NA               | <0.0010           | NA               | <0.0010            | <0.020           | <0.020             | <0.0010            | NA                 | <0.0010            |
| Methyl Tert Butyl Ether                      | <0.0010            | NA            | <0.0010            | <0.0010            | <0.020             | <0.0010            | NA               | <0.0010           | NA               | <0.0010            | <0.020           | <0.020             | <0.0010            | NA                 | <0.0010            |
| Methylene chloride                           | <0.0050            | NA            | <0.0050            | <0.0050            | <0.0050            | <0.0050            | NA               | <0.0050           | NA               | <0.0050            | <0.0050          | <0.0050            | <0.0050            | NA                 | <0.0050            |
| Tetrachloroethene                            | <0.0010            | NA            | <0.0030            | <0.0030            | <0.0030            | <0.0030            | NA               | <0.0030           | NA               | <0.0030            | <0.0030          | <0.0030            | <0.0030            | NA                 | <0.0030            |
| Toluene                                      | <0.0010            | NA            | <0.0010            | <0.0010            | <0.0010            | <0.0010            | NA               | <0.0010           | NA               | <0.0010            | <0.0010          | <0.0010            | <0.0010            | NA                 | <0.0010            |
| Trichloroethene                              | 0.0038             | NA            | 0.032              | 0.0018             | 0.007              | 0.011              | NA               | 0.0077            | NA               | 0.0026             | 0.002            | 0.002              | <0.0010            | NA                 | <0.0010            |
| Vinyl chloride                               | 0.0038             | NA            | 0.032              | <0.0018            | 0.007              | 0.0067             | NA               | 0.0006            | NA               | 0.020              | 0.002            | 0.002              | 0.0016             | NA                 | 0.0012             |
| m&p-Xylene                                   | <0.0034            | NA            | <0.0020            | <0.0020            | <0.003             | <0.0020            | NA               | < 0.0020          | NA               | < 0.023            | <0.000           | <0.012             | <0.0020            | NA                 | <0.0012            |
| o-Xylene                                     | <0.0020            | NA            | <0.0020            | <0.0020            | <0.0010            | <0.0020            | NA               | <0.0020           | NA               | <0.0020            | <0.0010          | <0.0010            | <0.0020            | NA                 | <0.0020            |
| Semi Volatile Organic Com                    |                    |               | <0.0010            | <0.0010            | <0.0010            | <0.0010            | INA.             | <0.0010           | INA.             | <0.0010            | <0.0010          | <0.0010            | <0.0010            |                    | <0.0010            |
| Benzo(a)anthracene                           | <0.0011            | NA            | NA                 | NA                 | NA                 | <0.0011            | NA               | NA                | NA               | NA                 | NA               | NA                 | <0.0011            | NA                 | NA                 |
|                                              | <0.0022            | NA            | NA                 | NA                 | NA                 | <0.0022            | NA               | NA                | NA               | NA                 | NA               | NA                 | <0.0022            | NA                 | NA                 |
| Benzo(a)pyrene<br>Benzo(k)fluoranthene       | <0.0022            | NA            | NA                 | NA                 | NA                 | <0.0022            | NA               | NA                | NA               | NA                 | NA               | NA                 | <0.0022            | NA                 | NA                 |
| bis(2-Chloroethyl)ether                      | <0.0030            | NA            | NA                 | NA                 | NA                 | <0.0000            | NA               | NA                | NA               | NA                 | NA               | NA                 | <0.0033            | NA                 | NA                 |
| Dibenz(a,h)anthracene                        | <0.0022            | NA            | NA                 | NA                 | NA                 | <0.0022            | NA               | NA                | NA               | NA                 | NA               | NA                 | <0.0022            | NA                 | NA                 |
| 3&4-Methylphenol                             | <0.0022            | NA            | NA                 | NA                 | NA                 | <0.0022            | NA               | NA                | NA               | NA                 | NA               | NA                 | <0.0022            | NA                 | NA                 |
| Naphthalene                                  | <0.0056            | NA            | NA                 | NA                 | NA                 | <0.0056            | NA               | NA                | NA               | NA                 | NA               | NA                 | <0.0055            | NA                 | NA                 |
| Nitrobenzene                                 | <0.0022            | NA            | NA                 | NA                 | NA                 | <0.0030            | NA               | NA                | NA               | NA                 | NA               | NA                 | <0.0033            | NA                 | NA                 |
| 2,2'-oxybis(1-Chloropropane)                 |                    | NA            | NA                 | NA                 | NA                 | <0.0022            | NA               | NA                | NA               | NA                 | NA               | NA                 | <0.0022            | NA                 | NA                 |
| Phenanthrene                                 | <0.0056            | NA            | NA                 | NA                 | NA                 | <0.0056            | NA               | NA                | NA               | NA                 | NA               | NA                 | <0.0055            | NA                 | NA                 |
| i nonanumene                                 | <b>NO.0000</b>     | IN/A          | IN/A               |                    | 11/4               | <b>NO.0000</b>     | 11/1             | 1974              | 11/4             | L NA               | 11/4             | 11/4               | <b>NO.0000</b>     | 11/4               | 11/71              |

| AOI Number   Location ID:<br>Date Collected: | 06/19/02           | 04/01/03          | 81-3   RFI-81-12R<br>12/07/01 | 81-3   RFI-81-12R<br>12/07/01 | 06/20/02          | 06/20/02            | 02/19/02          | 06/20/02         | 06/20/02            | 04/03/03          | 81-3   RFI-81-33<br>10/06/04 | 04/04/05        | 04/04/05          | 81-3   RFI-81-51<br>10/29/07 |
|----------------------------------------------|--------------------|-------------------|-------------------------------|-------------------------------|-------------------|---------------------|-------------------|------------------|---------------------|-------------------|------------------------------|-----------------|-------------------|------------------------------|
|                                              | RFI-81-11d(061902) | RFI-81-11(040103) | RFI-81-12R(120701)            | RFI-81-12Rd(120701)           | RFI-81-12R(062002 | RFI-81-12Rd(062002) | RFI-81-33(021902) | RFI-81-33(062002 | ?)RFI-81-33d(062002 | RFI-81-33(040303) | RFI-81-33(100604)            | Dupe 01(040405) | RFI-81-51(040405) | RFI-81-51(10/29/07)          |
| Inorganics                                   |                    | 0.0004            | 0.0070                        |                               | 0.004.4           |                     |                   | 0.0050           |                     | 0.0040            |                              |                 |                   |                              |
| Arsenic                                      | NA                 | 0.0064            | 0.0079                        | NA                            | 0.0014            | NA                  | NA                | 0.0056           | NA                  | 0.0049            | NA                           | NA              | NA                | NA                           |
| Barium                                       | NA                 | 1                 | 0.13                          | NA                            | 0.12              | NA                  | NA                | 0.12             | NA                  | 0.11              | 0.12                         | NA              | NA                | NA                           |
| Beryllium                                    | NA                 | <0.00040          | 0.00023                       | NA                            | <0.00040          | NA                  | NA                | <0.00040         | NA                  | <0.00040          | NA                           | NA              | NA                | NA                           |
| Cadmium                                      | NA                 | <0.00020          | 0.00016                       | NA                            | 0.000093          | NA                  | NA                | <0.00020         | NA                  | 0.000072          | <0.00050                     | NA              | NA                | NA                           |
| Chromium (total) [a]                         | NA                 | 0.0019            | 0.0056                        | NA                            | 0.0015            | NA                  | NA                | 0.00046          | NA                  | 0.00026           | NA                           | NA              | NA                | NA                           |
| Cobalt                                       | NA                 | 0.0012            | 0.0034                        | NA                            | 0.0022            | NA                  | NA                | 0.0013           | NA                  | 0.0014            | NA                           | NA              | NA                | NA                           |
| Lead [b]                                     | NA                 | 0.021             | 0.0029                        | NA                            | 0.0008            | NA                  | NA                | 0.00025          | NA                  | 0.00015           | < 0.0030                     | NA              | NA                | NA                           |
| Manganese                                    | NA                 | 2                 | 0.38                          | NA                            | 0.27              | NA                  | NA                | 0.88             | NA                  | 0.79              | NA                           | NA              | NA                | NA                           |
| Thallium                                     | NA                 | <0.00020          | 0.00015                       | NA                            | 0.00015           | NA                  | NA                | <0.00020         | NA                  | <0.00020          | NA                           | NA              | NA                | NA                           |
| Vanadium                                     | NA                 | <0.00080          | 0.0086                        | NA                            | 0.0014            | NA                  | NA                | <0.00080         | NA                  | 0.000098          | NA                           | NA              | NA                | NA                           |
| Inorganics-Dissolved                         |                    |                   |                               |                               |                   |                     |                   |                  |                     |                   |                              |                 |                   |                              |
| Arsenic                                      | 0.0097             | NA                | NA                            | 0.0034                        | NA                | <0.0010             | NA                | NA               | 0.0048              | NA                | NA                           | NA              | NA                | NA                           |
| Barium                                       | 0.19               | NA                | NA                            | 0.096                         | NA                | 0.087               | NA                | NA               | 0.1                 | NA                | NA                           | NA              | NA                | NA                           |
| Cobalt                                       | 0.00022            | NA                | NA                            | 0.0014                        | NA                | 0.0012              | NA                | NA               | 0.0012              | NA                | NA                           | NA              | NA                | NA                           |
| Lead [b]                                     | < 0.00040          | NA                | NA                            | < 0.00040                     | NA                | <0.00040            | NA                | NA               | < 0.00040           | NA                | NA                           | NA              | NA                | NA                           |
| Manganese                                    | 0.37               | NA                | NA                            | 0.28                          | NA                | 0.2                 | NA                | NA               | 0.77                | NA                | NA                           | NA              | NA                | NA                           |
| Selenium                                     | <0.0016            | NA                | NA                            | 0.0024                        | NA                | <0.0014             | NA                | NA               | <0.0014             | NA                | NA                           | NA              | NA                | NA                           |
| Thallium                                     | <0.0018            | NA                | NA                            | <0.0024                       | NA                | <0.0014             | NA                | NA               | <0.0014             | NA                | NA                           | NA              | NA                | NA                           |
|                                              |                    |                   |                               |                               |                   |                     |                   |                  |                     |                   |                              |                 |                   |                              |
| Vanadium                                     | 0.00085            | NA                | NA                            | 0.0012                        | NA                | 0.00081             | NA                | NA               | 0.00093             | NA                | NA                           | NA              | NA                | NA                           |
| Volatile Organic Compound                    |                    | 0.0040            | 0.0040                        |                               | 0.0040            |                     | 0.0040            | 0.0040           |                     | 0.0040            | 0.0040                       | 0.0040          | 0.0010            | 0.0040                       |
| Benzene                                      | NA                 | < 0.0010          | <0.0010                       | NA                            | <0.0010           | NA                  | <0.0010           | < 0.0010         | NA                  | <0.0010           | < 0.0010                     | <0.0010         | < 0.0010          | <0.0010                      |
| 1,3-Dichlorobenzene                          | NA                 | <0.0010           | <0.0010                       | NA                            | <0.0010           | NA                  | <0.0010           | <0.0010          | NA                  | <0.0010           | <0.0010                      | <0.0010         | <0.0010           | <0.0010                      |
| 1,1-Dichloroethane                           | NA                 | 0.0013            | <0.0010                       | NA                            | <0.0010           | NA                  | <0.0010           | <0.0010          | NA                  | <0.0010           | <0.0010                      | 0.004           | 0.004             | 0.004                        |
| 1,2-Dichloroethane                           | NA                 | <0.0010           | <0.0010                       | NA                            | <0.0010           | NA                  | <0.0010           | <0.0010          | NA                  | <0.0010           | <0.0010                      | <0.0010         | <0.0010           | <0.0010                      |
| cis-1,2-Dichloroethene                       | NA                 | <0.0010           | <0.0010                       | NA                            | <0.0010           | NA                  | <0.0010           | <0.0010          | NA                  | <0.0010           | <0.0010                      | 0.16            | 0.16              | 0.16                         |
| 1,2-Dichloropropane                          | NA                 | <0.0010           | <0.0010                       | NA                            | <0.0010           | NA                  | <0.0010           | <0.0010          | NA                  | <0.0010           | <0.0010                      | <0.0010         | <0.0010           | <0.0010                      |
| Ethylbenzene                                 | NA                 | <0.0010           | <0.0010                       | NA                            | <0.0010           | NA                  | <0.0010           | <0.0010          | NA                  | <0.0010           | <0.0010                      | <0.0010         | <0.0010           | <0.0010                      |
| Methyl cyclohexane                           | NA                 | <0.0010           | <0.0010                       | NA                            | <0.0010           | NA                  | <0.0010           | < 0.0010         | NA                  | < 0.0010          | <0.020                       | <0.020          | <0.020            | <0.020                       |
| Methyl Tert Butyl Ether                      | NA                 | < 0.0050          | < 0.0050                      | NA                            | < 0.0050          | NA                  | <0.0050           | < 0.0050         | NA                  | < 0.0050          | <0.0050                      | <0.0050         | < 0.0050          | <0.0050                      |
| Methylene chloride                           | NA                 | <0.0050           | < 0.0050                      | NA                            | < 0.0050          | NA                  | <0.0050           | < 0.0050         | NA                  | < 0.0050          | <0.0050                      | <0.0050         | < 0.0050          | <0.0050                      |
| Tetrachloroethene                            | NA                 | <0.0010           | <0.0010                       | NA                            | <0.0010           | NA                  | <0.0010           | <0.0010          | NA                  | <0.0010           | <0.0010                      | <0.0010         | <0.0010           | 0.002                        |
| Toluene                                      | NA                 | < 0.0010          | <0.0010                       | NA                            | <0.0010           | NA                  | <0.0010           | < 0.0010         | NA                  | <0.0010           | <0.0010                      | <0.0010         | <0.0010           | < 0.0010                     |
| Trichloroethene                              | NA                 | < 0.0010          | <0.0010                       | NA                            | <0.0010           | NA                  | < 0.0010          | <0.0010          | NA                  | <0.0010           | < 0.0010                     | 0.0008          | 0.0008            | 0.025                        |
| Vinyl chloride                               | NA                 | <0.0010           | <0.0010                       | NA                            | <0.0010           | NA                  | <0.0010           | <0.0010          | NA                  | <0.0010           | <0.0010                      | 0.065           | 0.064             | 0.054                        |
| m&p-Xylene                                   | NA                 | <0.0010           | <0.0010                       | NA                            | <0.0020           | NA                  | <0.0010           | <0.0010          | NA                  | <0.0020           | <0.0010                      | <0.000          | <0.004            | <0.004                       |
| o-Xylene                                     | NA                 | <0.0020           | <0.0020                       | NA                            | <0.0020           | NA                  | <0.0020           | <0.0020          | NA                  | <0.0020           | <0.0010                      | <0.0010         | <0.0010           | <0.0010                      |
| Semi Volatile Organic Com                    |                    | <0.0010           | <0.0010                       | INA.                          | <0.0010           |                     | <0.0010           | <0.0010          |                     | <0.0010           | <0.0010                      | <0.0010         | <0.0010           | <0.0010                      |
| •                                            | NA                 | NIA               | <0.0010                       | NIA                           | NA                | NIA                 | NIA               | NIA              | NIA                 | NIA               | NIA                          | NA              | NIA               | NIA                          |
| Benzo(a)anthracene                           |                    | NA                |                               | NA                            | NA                | NA                  | NA                | NA               | NA                  | NA                | NA                           |                 | NA                | NA                           |
| Benzo(a)pyrene                               | NA                 | NA                | < 0.0020                      | NA                            | NA                | NA                  | NA                | NA               | NA                  | NA                | NA                           | NA              | NA                | NA                           |
| Benzo(k)fluoranthene                         | NA                 | NA                | < 0.0050                      | NA                            | NA                | NA                  | NA                | NA               | NA                  | NA                | NA                           | NA              | NA                | NA                           |
| bis(2-Chloroethyl)ether                      | NA                 | NA                | <0.0010                       | NA                            | NA                | NA                  | NA                | NA               | NA                  | NA                | NA                           | NA              | NA                | NA                           |
| Dibenz(a,h)anthracene                        | NA                 | NA                | <0.0020                       | NA                            | NA                | NA                  | NA                | NA               | NA                  | NA                | NA                           | NA              | NA                | NA                           |
| 3&4-Methylphenol                             | NA                 | NA                | <0.010                        | NA                            | NA                | NA                  | NA                | NA               | NA                  | NA                | NA                           | NA              | NA                | NA                           |
| Naphthalene                                  | NA                 | NA                | <0.0050                       | NA                            | NA                | NA                  | NA                | NA               | NA                  | NA                | NA                           | NA              | NA                | NA                           |
| Nitrobenzene                                 | NA                 | NA                | <0.0020                       | NA                            | NA                | NA                  | NA                | NA               | NA                  | NA                | NA                           | NA              | NA                | NA                           |
| 2,2'-oxybis(1-Chloropropane)                 | NA                 | NA                | <0.0050                       | NA                            | NA                | NA                  | NA                | NA               | NA                  | NA                | NA                           | NA              | NA                | NA                           |
| Phenanthrene                                 | NA                 | NA                | < 0.0050                      | NA                            | NA                | NA                  | NA                | NA               | NA                  | NA                | NA                           | NA              | NA                | NA                           |

AOIs with Groundwater Exceedances of the Construction Worker Health-Based Goals Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

|                              | AOI 81-3 cont.    |                   |
|------------------------------|-------------------|-------------------|
| AOI Number   Location ID:    | 81-3   RFI-81-51  | 81-3   RFI-81-51  |
| Date Collected:              | 09/16/08          | 09/24/09          |
| Sample Name:                 | RFI-81-51(091608) | RFI-81-51(092409) |
| Inorganics                   |                   |                   |
| Arsenic                      | NA                | NA                |
| Barium                       | NA                | NA                |
| Beryllium                    | NA                | NA                |
| Cadmium                      | NA                | NA                |
| Chromium (total) [a]         | NA                | NA                |
| Cobalt                       | NA                | NA                |
| Lead [b]                     | NA                | NA                |
| Manganese                    | NA                | NA                |
| Thallium                     | NA                | NA                |
| Vanadium                     | NA                | NA                |
| Inorganics-Dissolved         |                   |                   |
| Arsenic                      | NA                | NA                |
| Barium                       | NA                | NA                |
| Cobalt                       | NA                | NA                |
| Lead [b]                     | NA                | NA                |
| Manganese                    | NA                | NA                |
| Selenium                     | NA                | NA                |
| Thallium                     | NA                | NA                |
| Vanadium                     | NA                | NA                |
| Volatile Organic Compound    |                   |                   |
| Benzene                      | <0.0010           | 0.0006            |
| 1,3-Dichlorobenzene          | <0.0010           | <0.0050 Y         |
| 1,1-Dichloroethane           | 0.001             | 0.005             |
| 1,2-Dichloroethane           | <0.0010           | <0.0050 Y         |
| cis-1,2-Dichloroethene       | 0.003             | 0.23              |
| 1,2-Dichloropropane          | < 0.0010          | <0.0050 Y         |
| Ethylbenzene                 | < 0.0010          | <0.0050 Y         |
| Methyl cyclohexane           | <0.020            | <0.10 Y           |
| Methyl Tert Butyl Ether      | < 0.0050          | <0.030 Y          |
| Methylene chloride           | < 0.0050          | <0.030 Y          |
| Tetrachloroethene            | 0.006             | 0.001             |
| Toluene                      | < 0.0010          | <0.0050 Y         |
| Trichloroethene              | 0.07              | 0.01              |
| Vinyl chloride               | 0.0003            | 0.068             |
| m&p-Xylene                   | < 0.0010          | <0.0050 Y         |
| o-Xylene                     | <0.0010           | <0.0050 Y         |
| Semi Volatile Organic Com    |                   | S0.0000 I         |
| Benzo(a)anthracene           | NA                | NA                |
| Benzo(a)pyrene               | NA                | NA                |
| Benzo(k)fluoranthene         | NA                | NA                |
| bis(2-Chloroethyl)ether      | NA                | NA                |
| Dibenz(a,h)anthracene        | NA                | NA                |
| 3&4-Methylphenol             | NA                | NA                |
| Naphthalene                  | NA                | NA                |
| Nitrobenzene                 | NA                | NA                |
|                              |                   | NA<br>NA          |
| 2,2'-oxybis(1-Chloropropane) |                   |                   |
| Phenanthrene                 | NA                | NA                |

Page 12 of 13

Table A-23 AOIs with Groundwater Exceedances of the Construction Worker Health-Based Goals Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

|                                        | AOI 83/84-3        |                  |                      |                       |                      |                      |
|----------------------------------------|--------------------|------------------|----------------------|-----------------------|----------------------|----------------------|
|                                        |                    | 00/04 0 1 44 440 |                      |                       |                      |                      |
| AOI Number   Location ID:              |                    |                  |                      |                       |                      |                      |
| Date Collected:                        | 09/28/01           | 09/28/01         | 02/22/02             | 02/22/02              | 06/20/02             | 04/02/03             |
|                                        | 11-140(092801)     | 11-140D(092801)  | RFI-83/84-20(022202) | RFI-83/84-20d(022202) | RFI-83/84-20(062002) | RFI-83/84-20(040203) |
| Inorganics                             |                    |                  |                      |                       |                      |                      |
| Arsenic                                | NA                 | NA               | NA                   | NA                    | 0.014                | 0.023                |
| Barium                                 | NA                 | NA               | NA                   | NA                    | 0.12                 | 0.13                 |
| Beryllium                              | NA                 | NA               | NA                   | NA                    | <0.00040             | <0.00040             |
| Cadmium                                | NA                 | NA               | NA                   | NA                    | 0.00014              | <0.00020             |
| Chromium (total) [a]                   | NA                 | NA               | NA                   | NA                    | 0.00061              | 0.00029              |
| Cobalt                                 | NA                 | NA               | NA                   | NA                    | 0.006                | 0.0024               |
| Lead [b]                               | NA                 | NA               | NA                   | NA                    | 0.017                | 0.0016               |
| Manganese                              | NA                 | NA               | NA                   | NA                    | 0.61                 | 0.6                  |
| Thallium                               | NA                 | NA               | NA                   | NA                    | 0.000073             | <0.00020             |
| Vanadium                               | NA                 | NA               | NA                   | NA                    | <0.00080             | 0.00009              |
| Inorganics-Dissolved                   |                    |                  |                      |                       |                      |                      |
| Arsenic                                | NA                 | <0.0010          | NA                   | 0.017                 | NA                   | NA                   |
| Barium                                 | NA                 | R                | NA                   | 0.13                  | NA                   | NA                   |
| Cobalt                                 | NA                 | 0.0019           | NA                   | 0.006                 | NA                   | NA                   |
| Lead [b]                               | NA                 | <0.00040         | NA                   | 0.0033                | NA                   | NA                   |
| Manganese                              | NA                 | 0.22             | NA                   | 0.92                  | NA                   | NA                   |
| Selenium                               | NA                 | 0.002            | NA                   | 0.0026                | NA                   | NA                   |
| Thallium                               | NA                 | <0.00020         | NA                   | 0.00071               | NA                   | NA                   |
| Vanadium                               | NA                 | <0.00080         | NA                   | 0.0023                | NA                   | NA                   |
| Volatile Organic Compound              |                    |                  |                      |                       |                      |                      |
| Benzene                                | <0.0010            | NA               | <0.0010              | NA                    | NA                   | NA                   |
| 1,3-Dichlorobenzene                    | <0.0010            | NA               | < 0.0010             | NA                    | NA                   | NA                   |
| 1,1-Dichloroethane                     | <0.0010            | NA               | < 0.0010             | NA                    | NA                   | NA                   |
| 1,2-Dichloroethane                     | <0.0010            | NA               | < 0.0010             | NA                    | NA                   | NA                   |
| cis-1,2-Dichloroethene                 | <0.0010            | NA               | 0.00083              | NA                    | NA                   | NA                   |
| 1,2-Dichloropropane                    | <0.0010            | NA               | < 0.0010             | NA                    | NA                   | NA                   |
| Ethylbenzene                           | < 0.0010           | NA               | <0.0010              | NA                    | NA                   | NA                   |
| Methyl cyclohexane                     | < 0.0010           | NA               | <0.0010              | NA                    | NA                   | NA                   |
| Methyl Tert Butyl Ether                | <0.0050            | NA               | <0.0050              | NA                    | NA                   | NA                   |
| Methylene chloride                     | <0.0050            | NA               | <0.0050              | NA                    | NA                   | NA                   |
| Tetrachloroethene                      | <0.0010            | NA               | <0.0000              | NA                    | NA                   | NA                   |
| Toluene                                | 0.00078            | NA               | <0.0010              | NA                    | NA                   | NA                   |
| Trichloroethene                        | < 0.0010           | NA               | 0.0015               | NA                    | NA                   | NA                   |
| Vinyl chloride                         | <0.0010            | NA               | <0.0010              | NA                    | NA                   | NA                   |
| m&p-Xylene                             | <0.0010            | NA               | <0.0010              | NA                    | NA                   | NA                   |
| o-Xylene                               | <0.0020            | NA               | <0.0020              | NA                    | NA                   | NA                   |
| Semi Volatile Organic Com              |                    | IN/A             | <0.0010              | INA                   | 11/4                 | INA                  |
|                                        | <0.0011            | NA               | <0.0010              | NA                    | NA                   | NA                   |
| Benzo(a)anthracene                     |                    |                  |                      |                       |                      |                      |
| Benzo(a)pyrene<br>Benzo(k)fluoranthene | <0.0022<br><0.0056 | NA<br>NA         | <0.0020<br><0.0050   | NA<br>NA              | NA<br>NA             | NA<br>NA             |
|                                        | <0.0056            |                  | <0.0050              | NA                    | NA                   | NA                   |
| bis(2-Chloroethyl)ether                |                    | NA               |                      |                       |                      |                      |
| Dibenz(a,h)anthracene                  | <0.0022            | NA               | <0.0020              | NA                    | NA                   | NA                   |
| 3&4-Methylphenol                       | < 0.011            | NA               | <0.010               | NA                    | NA                   | NA                   |
| Naphthalene                            | < 0.0056           | NA               | <0.0050              | NA                    | NA                   | NA                   |
| Nitrobenzene                           | <0.0022            | NA               | < 0.0020             | NA                    | NA                   | NA                   |
| 2,2'-oxybis(1-Chloropropane)           |                    | NA               | < 0.0050             | NA                    | NA                   | NA                   |
| Phenanthrene                           | <0.0056            | NA               | <0.0050              | NA                    | NA                   | NA                   |

<u>Notes:</u> [a] HBG based on chromium VI

[b] Lead HBG could not be calculated using these methods.

Drinking water action level used for screening. See text.

Highlighted data exceed the corresponding HBG

HBG = Health-Based Goal NA = Not analyzed ND = Not detected at these AOIs

Page 13 of 13

| AOI Number   Location ID:<br>Date Collected:<br>Sample Name: |      | Construction<br>Worker Water<br>HBG | Maximum<br>Detected<br>Concentraiton | Exceeds<br>Construction<br>Worker HBG? | AOI 83/84-3<br>83/84-3   RFI-83/84-05<br>07/31/01<br>RFI-83/84-05(073101) |
|--------------------------------------------------------------|------|-------------------------------------|--------------------------------------|----------------------------------------|---------------------------------------------------------------------------|
| Inorganics                                                   |      |                                     |                                      |                                        |                                                                           |
| Arsenic                                                      | mg/L | 1.3E+01                             | 0.1                                  | no                                     | NA                                                                        |
| Inorganics-Dissolved                                         |      |                                     |                                      |                                        |                                                                           |
| Arsenic                                                      | mg/L | 1.3E+01                             | 0.095                                | no                                     | 0.036                                                                     |
| Cobalt                                                       | mg/L | 2.0E+01                             | 0.03                                 | no                                     | 0.0054                                                                    |
| Lead [a]                                                     | mg/L | 1.5E-02                             | 0.02                                 | YES                                    | 0.02                                                                      |
| Manganese                                                    | mg/L | 4.2E+02                             | 2.8                                  | no                                     | 0.41                                                                      |
| Vanadium                                                     | mg/L | 1.4E+00                             | 0.016                                | no                                     | 0.0014                                                                    |
| Volatile Organic Compounds (VOCs)                            |      |                                     |                                      |                                        |                                                                           |
| Benzene                                                      | mg/L | 1.0E+01                             | 0.0051                               | no                                     | <0.0010                                                                   |
| 1,1-Dichloroethane                                           | mg/L | 7.0E+01                             | 0.25                                 | no                                     | <0.0010                                                                   |
| 1,2-Dichloroethane                                           | mg/L | 4.4E+00                             | 0.0054                               | no                                     | <0.0010                                                                   |
| Methyl cyclohexane                                           | mg/L | 3.8E+02                             | 0.0036                               | no                                     | <0.0010                                                                   |
| Methylene chloride                                           | mg/L | 1.4E+02                             | 0.0093                               | no                                     | <0.0050                                                                   |
| Trichloroethene                                              | mg/L | 5.4E+01                             | 0.046                                | no                                     | 0.0041                                                                    |
| Vinyl chloride                                               | mg/L | 7.2E+00                             | 0.069                                | no                                     | <0.0010                                                                   |
| Semi Volatile Organic Compounds (SVOCs)                      |      |                                     |                                      |                                        |                                                                           |
| Benzo(a)anthracene                                           | mg/L | 5.7E-02                             | 0.00078                              | no                                     | <0.0010                                                                   |
| bis(2-Ethylhexyl)phthalate                                   | mg/L | 2.4E+01                             | 0.11                                 | no                                     | <0.0050                                                                   |
| 2-Methylnaphthalene                                          | mg/L | 1.4E+00                             | 0.32                                 | no                                     | <0.0050                                                                   |
| Naphthalene                                                  | mg/L | 5.2E-01                             | 0.058                                | no                                     | <0.0050                                                                   |
| Pentachlorophenol                                            | mg/L | 3.6E-01                             | 0.0021                               | no                                     | <0.020                                                                    |
| Phenanthrene                                                 | mg/L | 8.2E+02                             | 0.017                                | no                                     | <0.0050                                                                   |

#### Notes:

[a] Lead HBG could not be calculated using these methods. Drinking water action level used for screening. See text.

Highlighted data exceed the corresponding HBG

HBG = Health-Based Goal NA = Not analyzed

| AOI     | Soil                                                   | Groundwater | Borehole Water |  |
|---------|--------------------------------------------------------|-------------|----------------|--|
| 05-1    | Lead                                                   |             |                |  |
| 05-6    | Lead                                                   |             |                |  |
| 10-1    | Lead<br>Chromium                                       |             |                |  |
| 36-1    | Benzene<br>Ethylbenzene<br>Naphthalene                 | Lead        |                |  |
| 36-2    | Chromium (total)                                       |             |                |  |
| 81-1    | Lead                                                   |             |                |  |
| 81-2    | Lead<br>1,1-Dichloroethane<br>1,1,1-Trichloroethane    | Lead        |                |  |
| 81-3    |                                                        | Lead        |                |  |
| 83/84-2 | Lead<br>Chromium (total)<br>Vanadium<br>Benzo(a)pyrene |             | Lead           |  |
| 83/84-3 | Lead                                                   | Lead        |                |  |
| 86-1    | Arsenic                                                |             |                |  |

Calculation of Exposure Point Concentrations for Soil

Former General Motors North American Operations Facility (otherwise known as Buick City)

#### Flint, Michigan

| Area of Interest      | Construction<br>Worker HBG<br>(mg/kg) | EPC<br>(mg/kg) | Basis of Exposure Point<br>Concentration | Notes                                           |
|-----------------------|---------------------------------------|----------------|------------------------------------------|-------------------------------------------------|
| AOI 10-1              |                                       |                |                                          |                                                 |
| Chromium (total)      | 426                                   | 225            | 95% Chebyshev (MVUE) UCL                 | LNAPL present in this area.                     |
| AOI 36-1              |                                       |                |                                          |                                                 |
| Benzene               | 53                                    | 19             | 97.5% KM (Chebyshev) UCL                 | LNAPL in groundwater present at this AOI.       |
| Ethylbenzene          | 255                                   | 20             | 95% KM (t) UCL                           | LNAPL in groundwater present at this AOI.       |
| Naphthalene           | 25                                    | 4              | 97.5% KM (Chebyshev) UCL                 | LNAPL in groundwater present at this AOI.       |
| AOI 36-2              |                                       |                |                                          |                                                 |
| Chromium (total)      | 426                                   | 438            | 95% Approximate Gamma UCL                | LNAPL present in this area.                     |
| AOI 81-2              |                                       |                |                                          |                                                 |
| 1,1-Dichloroethane    | 301                                   | 7000           | NP/EPC = detected concentration          | LNAPL observed in soil at this boring location. |
| 1,1,1-Trichloroethane | 2450                                  | 47000          | NP/EPC = detected concentration          | LNAPL observed in soil at this boring location. |
| AOI 83/84-2           |                                       |                |                                          |                                                 |
| Chromium (total)      | 426                                   | 587            | 99% Chebyshev (Mean, Sd) UCL             | LNAPL present in this area.                     |
| Vanadium              | 217                                   | 63             | 95% Chebyshev (Mean, Sd) UCL             | LNAPL present in this area.                     |
| Benzo(a)pyrene        | 44                                    | 19             | 99% KM (Chebyshev) UCL                   | LNAPL present in this area.                     |
| AOI 86-1              |                                       |                |                                          |                                                 |
| Arsenic               | 87                                    | 79             | 99% Chebyshev (Mean, Sd) UCL             | LNAPL present in this area.                     |

Shading indicates EPC exceeds HBG

AOI = Area of interest

EPC = Exposure point concentration

HBG - Health-based goal

LNAPL = Light non-aqueous phase liquid

NP = The data set could not be processed by ProUCL because consituent was only detected in one sample.

UCL - Upper confidence limit.

#### Calculation of Exposure Point Concentrations for Lead in Soil Former General Motors North American Operations Facility (otherwise known as Buick City) Flint, Michigan

| Area of Interest | Exposure Point<br>Concentration Based on<br>Mean Lead Level (mg/kg) | Commercial/Industrial<br>Screening Criteria<br>(mg/kg) |
|------------------|---------------------------------------------------------------------|--------------------------------------------------------|
| AOI 05-1         | 252                                                                 | 900                                                    |
| AOI 05-6         | 212                                                                 | 900                                                    |
| AOI 10-1         | 200                                                                 | 900                                                    |
| AOI 81-1         | 7922                                                                | 900                                                    |
| AOI 81-2         | 161                                                                 | 900                                                    |
| 83/84-2          | 469                                                                 | 900                                                    |
| 83/84-3          | 3199                                                                | 900                                                    |

Shading indicates EPC exceeds screening criteria

AOI = Area of interest

EPC = Exposure point concentration

# Table A-28Recommendations by Area of InterestFormer General Motors North American Operations Facility (otherwise known as Buick City)Flint, Michigan

| AOI     | Recommended Action                                                                    | Basis of Recommendation                                                                                                                                                      |
|---------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 05-1    | No action for construction worker                                                     | EPC for lead is below soil screening criteria                                                                                                                                |
| 05-6    | No action for construction worker                                                     | EPC for lead is below soil screening criteria                                                                                                                                |
| 10-1    | No action for construction worker                                                     | EPCs for lead and chromium are below soil<br>screening criteria                                                                                                              |
| 36-1    | No action for construction worker                                                     | EPCs for lead and VOCs are below soil and groundwater HBGs                                                                                                                   |
| 36-2    | No action for construction worker                                                     | Chromium EPC exceeds HBG at one<br>location near the railroad tracks (RFI-36-36);<br>however, speciated data in the area indicate<br>that chromium VI would be below the HBG |
| 81-1    | Require construction worker Health and<br>Safety Plan as part of planned restrictions | Lead concentrations are a potential risk to<br>construction workers                                                                                                          |
| 81-2    | Require construction worker Health and<br>Safety Plan as part of planned restrictions | NAPL in soil results in elevated VOC<br>concentrations at RFI-81-38                                                                                                          |
| 81-3    | No action for construction worker                                                     | EPC for lead is below groundwater HBG                                                                                                                                        |
| 83/84-2 | Require construction worker Health and<br>Safety Plan as part of planned restrictions | Chromium EPC exceeds HBG                                                                                                                                                     |
| 83/84-3 | Require construction worker Health and<br>Safety Plan as part of planned restrictions | Lead concentrations are a potential risk to<br>construction workers                                                                                                          |
| 86-1    | No action for construction worker                                                     | EPC for arsenic is below HBG                                                                                                                                                 |

AOI = Area of interest

EPC = Exposure point concentration

HBG - Health-based goal

LNAPL = Light non-aqueous phase liquid

### ARCADIS

#### Attachment A

Attached CD

Attachment A-1 Soil Risk Assessment Dataset and Screening for COPCs

Attachment A-2 Groundwater Risk Assessment Dataset and Screening for COPCs

Attachment A-3 Borehole Water Risk Assessment Dataset and Screening for COPCs

Attachment A-4 Basement Water Risk Assessment Dataset and Screening for COPCs

Attachment A-5 Adult Lead Model

Attachment A-6 ProUCL Output