DRAFT

SELF-IMPLEMENTING/PERFORMANCED BASED POLYCHLORINATED BIPHENLY REMOVAL

Former Peregrine Coldwater Road Facility
Genesee Township, Michigan

NOVEMBER 2000 REF. NO. 12636 (17) CONESTOGA-ROVERS & ASSOCIATES

11100 Metro Airport Center Drive, Suite #160 Romulus, Michigan 48174 (734) 942-0909 Office (734) 942-1858 Fax

TABLE OF CONTENTS

			Page
1.0	INTROD	OUCTION	1
	1.1	GENERAL	1
	1.2	PROJECT BACKGROUND	
	1.3	BASIS FOR WORK PLAN	
	1.4	REPORT ORGANIZATION	
2.0	CCODE C	DE MODIZ DE ANI	_
2.0	SCOPE C	OF WORK PLAN	5
3.0	PROJECT	T MANAGEMENT	6
	3.1	GENERAL	6
	3.2	WORK PLAN CERTIFICATION AND OVERSIGHT	6
	3.3	CONTRACTOR/SUBCONTRACTORS	6
	3.4	PROJECT DOCUMENTATION AND MONITORING	7
	3.5	SITE SECURITY	7
4.0		REMOVAL OF PCB TRANSFORMERS, BREAKERS, CAPACITORS,	
		ECTRICAL SWITCHGEAR EQUIPMENT	
	4.1	REMOVAL OF PCB TRANSFORMERS	
	4.2	REMOVAL OF PCB CAPACITORS	9
	4.3	REMOVAL OF PCB BREAKERS AND RELATED	
		SWITCHGEAR TEMS	10
	4.4	LOCATING CHARACTERIZATION VERIFICATION SAMPLES	10
5.0	TASK 2:	SAMPLING AND THE REMOVAL OF PCB IMPACTED	
	CONCRI	ETE IN THE BASEMENT FAN ROOM	12
	5.1	CHARACTERIZATION SAMPLING (40 CFR SUBPART N)	12
	5.2	REMOVAL OF CONCRETE IN THE BASEMENT FAN ROOM	
	5.3	VERIFICATION SAMPLING (40 CFR 761 SUBPART O)	13
6.0	TASK 3:	REMOVAL OF PCB LIGHT BALLASTS	14
	6.1	REMOVAL, STORAGE, TRANSPORTATION, AND DISPOSAL	14
7.0	TASK 1.	SAMPLING AND REMOVAL OF IMPACTED CONCRTETE	
7.0		ROOM 3	15
	7.1	CHARACTERIZATION SAMPLING (40 CFR SUBPART N)	
	7.1	REMOVAL OF CONCRETE IN THE BASEMENT FAN ROOM	
	7.3	VERIFICATION SAMPLING (40 CFR 761 SUBPART O)	
		`	10
8.0		SAMPLING AND REMOVAL OF IMPACTED CONCRTETE	
		ROOM 13	
	8.1	CHARACTERIZATION SAMPLING (40 CFR SUBPART N)	
	8.2	REMOVAL OF CONCRETE IN THE BASEMENT FAN ROOM	
	8.3	VERIFICATION SAMPLING (40 CFR 761 SUBPART O)	18

TABLE OF CONTENTS (CONT'D)

		Page
9.0	TASK 6: SAMPLING AND REMOVAL OF IMPACETED MATERIAL	
	IN BAY P-16 (BUILDING 44)	19
	9.1 WOOD BLOCK FLOORING REMOVAL	19
	9.2 CHARACTERIZATION SAMPLING OF CONCRETE	
	UNDERNEATH WOOD BLOCK FLOORING IN BAY P-16	
	(40 CFR 761 SUBPART O AND M)	19
	9.3 ADDITIONAL CHARACTERIZATION SAMPLING OF	
	CONCRETE NORTH OF BAY P-16	20
10.0	TASK 7: REMOVAL OF IMPACTED MATERIAL IN MAIN SWITCHYARD	22
11.0	TASK 8: SAMPLING AND REMOVAL OF CONCRETE IN SUBSTATION 1A	23
11.0	11.1 CHARACTERIZATION SAMPLING (40 CFR SUBPART N)	-
	11.2 CONCRETE REMOVAL	
	11.3 ADDITIONAL CHARACTERIZATION VERIFICATION	20
	SAMPLING AND CONCRETE REMOVAL (40 CFR 761	
	SUBPARTS O AND M)	24
12.0	TASK 9: SAMPLING OF NATURAL GAS LINES (40 CFR 761 SUBPART M)	25
13.0	TASK 10: SAMPLING OF MISCELLANEOUS SUSPECT ITEMS	26
	TASK 11: EQUIPMENT DECONTAMINATION	
14.0	TASK 11: EQUIPMENT DECONTAMINATION	27
15.0	TASK 12: TEMPORARY STORAGE TRANSPORTATION, AND DISPOSAL	28
15.0	15.1 RECORD KEEPING	
	15.2 TRANSPORTATION AND DISPOSAL	
	10.2 TRAINSI ORTATIONAIND DISTOSAL	20
16.0	ADDITIONAL CONSIDERATION	30
17.0	SUMMARY, CONCLUSIONS, AND CERTIFICATION	31

LIST OF FIGURES (Following Text)

FIGURE 1.1	SITE LOCATION
FIGURE 1.2	SITE PLAN
FIGURE 3.1	PROJECT ORGANIZATION
FIGURE 4.1	LOCATION OF INDICATOR WIPE AND CONFIRMATION SAMPLES FROM SUBSTATION 1 TRANSFORMER PAD
FIGURE 4.2	LOCATION OF INDICATOR WIPE AND CONFIRMATION SAMPLES FROM SUBSTATION 2 TRANSFORMER PAD
FIGURE 4.3	LOCATION OF INDICATOR WIPE AND CONFIRMATION SAMPLES FROM SUBSTATION 4 TRANSFORMER PAD
FIGURE 4.4	LOCATION OF INDICATOR WIFE AND CONFIRMATION SAMPLES FROM SUBSTATION 6 TRANSFORMER PAD
FIGURE 4.5	LOCATION OF INDICATOR WIPE AND CONFIRMATION SAMPLES FROM SUBSTATION 7 TRANSFORMER PAD
FIGURE 5.0	LOCATION OF INDICATOR WIPE, CONFIRMATION, AND VERIFICATION SAMPLES FROM THE BASEMENT FAN ROOM
FIGURE 7.0	LOCATION OF INDICATOR WIPE, CONFIRMATION, AND VERIFICATION SAMPLES FROM FAN ROOM 3
FIGURE 8.0	LOCATION OF INDICATOR WIPE, CONFIRMATIONS, AND VERIFICATION SAMPLES FROM FAN ROOM 13
FIGURE 9.0	LOCATION OF INDICATOR WIPE, CONFIRMATIONS, AND VERIFICATION SAMPLES FROM BAY P-16
FIGURE 10.0	LOCATION OF INDICATOR WIPE, CONFIRMATIONS, AND VERIFICATION SAMPLES FROM THE MASTER SWITCHYARD (PRIMARY SUBSTATION)
FIGURE 11.0	LOCATION OF INDICATOR WIPE, CONFIRMATIONS, AND VERIFICATION SAMPLES FROM SUBSTATION 1/1A
FIGURE 12.0	LOCATION OF NATURAL GAS LINE WIPE SAMPLES

LIST OF TABLES (Following Text)

TABLE 1.3	ANALYTICAL SUMMARY OF INDICATOR PCB WIPE SAMPLING
TABLE 3.1	PERSONNEL/CONTRACTORS ON SITE DURING WORK PLAN IMPLEMENTATION
TABLE 4.1	INVENTORY SUMMARY OF TRANFORMERS
TABLE 4.2	INVENTORY SUMMARY OF CAPACITORS
TABLE 4.3	INVENTORY SUMMARY OF SWITCHGEAR ELECTRICAL EQUIPMENT (OIL-BREAKERS, BUSHINGS, POTHEADS, AND POTENTIAL TRANSFORMERS)
TABLE 4.4	ANALYTICAL SUMMARY OF CHARACTERIZATION SAMPLING FROM SUBSTATION TRANSFORMER PADS IN BUILDING 44
TABLE 5.0	ANALYTICAL SUMMARY OF INDICATOR WIPE, CHARATERIZATION, AND VERIFICATION SAMPLING IN THE BASEMENT FAN ROOM
TABLE 6.0	SUMMARY OF UNIQUE DRUM ID'S AND OUT OF SERVICE DATES
TABLE 7.0	ANALYTICAL SUMMARY OF INDICATOR WIPE, CHARACTERIZATION, AND VERIFICATION SAMPLING FROM FAN ROOM 3
TABLE 8.0	ANALYTICAL SUMMARY OF INDICATOR WIPE, CHARACTERIZATION, AND VERIFICATION SAMPLING FROM FAN ROOM 13
TABLE 9.0	ANALYTICAL SUMMARY OF WOOD BLOCK FLOORING, INDICATOR WIPE, CHARACTERIZATION, AND VERIFICATION SAMPLING FROM BAY P-16
TABLE 10.0	ANALYTICAL SUMMARY OF INDICATOR WIPE, CHARACTERIZATION, AND VERIFICATION SAMPLING FROM PRIMARY SUBSTATION
TABLE 11.0	ANALYTICAL SUMMARY OF INDICATOR WIPE, CHARACTERIZATION, AND VERIFICATION SAMPLING FROM SUBSTATION 1/1A

LIST OF APPENDICES

APPENDIX A	PHOTOGRAPHIC DOCUMENTATION OF WORK PLAN IMPLEMENTATION
APPENDIX B	WASTE DISPOSAL MANIFESTS AND DISPOSAL RECORDS
APPENDIX C	CRA DATA QUALITY ASSESSMENT AND VALIDATION MEMORANDA
APPENDIX D	PCB INDICATOR WIPE SAMPLING ANALYTICAL DATA

LIST OF DRAWINGS

DRAWING NO. 1 SITE PLAN

APPENDIX E

DRAWING NO. 2 LOCATION OF INDICATOR WIPE SAMPLES

DRAWING NO. 3 LOCATIONS OF TRANSFORMERS, CAPACITORS, OIL-

BREAKERS, POTHEADS, POTENTIAL TRANSFORMERS, XYZ END TERMINATORS, AND BUSHINGS THROUGHOUT THE

PCB CONCRETE CONFIRMATION AND VERIFICATION SAMPLING

FACILITY

ANALYTICAL DATA

LIST OF ACRONYMS

CFR Code of Federal Regulations
CRA Conestoga-Rovers & Associates
DOT Department of Transportation
HDPE High Density Polyethylene

IWPC Inland Waters Pollution Control

LDR Land Disposal Restriction

MDEQ Michigan Department of Environmental Quality

PCBs polychlorinated biphenyls

PPE Personal Protective Equipment

ppm parts per million

psi pounds per square inch

RCRA Resource Conservation and Recovery Act

REALM Remediation and Environmental Liability and Management, Inc.

Report Certification Report

Site Former Peregrine Facility, Coldwater Road, Flint, Michigan

SOW Scope of Work

TSCA Toxic Substances Control Act

U.S. EPA United States Environmental Protection Agency

Work Plan Removal, Disposal, and Decommissioning Work Plan

1.0 INTRODUCTION

1.1 GENERAL

This document presents the Final Certification Report (Report) which describes the voluntary removal of Polychlorinated Biphenyl (PCBs) items from the Former Peregrine Coldwater Road Facility located at 1245 Coldwater Road, Genesee Township, Michigan (Site) and certifies the completion of such activities in accordance with the PCB Mega Rules (40 CFR Part 761). This implementation was conducted during the period from February 12, 2000 to , XXXX,XX, 2001 with final shipment of material for disposal continuing until (XXXX), 2001??. The Implementation involved the removal of PCB Light Ballasts, PCB Transformers, PCB Capacitors, PCB Oil Blast Breakers, Impacted Concrete, Impacted Sand, and Impacted Limestone.

The Site location is presented on Figure 1.1. The general layout of the Site is presented on Figure 1.2.

1.2 PROJECT BACKGROUND

The Former Peregrine site is located at 1245 East Coldwater Road in Genesee Township, Michigan. In past operations the plant produced interior components for cars and light trucks. Major historical operations included stamping, welding and miscellaneous assembly of automotive components. The Facility began operations in 1953 and ceased operation late spring 1998.

The facility consists of a manufacturing complex of four main structures. The structures include: a 1.97 million square foot machining and assembling building (Building 44); a storage building (Building 63); a powerhouse, and an administrative building.

The main manufacturing building is a two-story steel-framed structure. Just to the south, connected by a common wall stands the Administrative Office Complex. Together they total 1,900,000 million square feet of floor space.

Building 63 is a steel frame, warehouse-type structure that was once used for floor space of spare chemicals, waste drums, and scrap metal parts.

The Powerhouse consists of several coal and natural gas boilers. The powerhouse is a steel and brick framed structure that still has the brick stack for the coal exhaust.

1.3 BASIS FOR WORK PLAN

The basis of this work was to identify any suspect areas where PCBs may have been used throughout the facility prior to demolition as a part of the decommissioning activities. Also, the goals were to characterize these suspect areas/equipment, remove/decontaminate, and dispose of these items in accordance with 40 CFR 761.

In addition, CRA prepared a Focused Building Decommissioning Assessment Report dated January 2000. The BDA report identified suspect areas and electrical equipment that may have been associated with PCB's. According to past plant personnel, all of the PCB electrical equipment was reclassified as non-PCBs in the 1980's. CRA located documentation that some of the electrical equipment in the past did contain PCBs in exceedance of 500 ppm PCBs, and was found that this electrical equipment was retrofitted with non-PCB oils. But, documentation could not be found to assure operating temperatures, and a 90-day in-service requirement was met. CRA recommended that all PCB associated electrical equipment and oils should be sampled to determine disposal in accordance with 40 CFR 761.70 and 40 CFR 761.75.

After reviewing analytical results VRA recommended the removal of several PCB and non-PCB containing Light Ballasts, PCB and non-PCB containing Transformers, PCB and non-PCB containing Breakers, and any PCB impacted matrix associated with historical operations of this equipment (i.e. spills, soil, concrete, waste streams).

As part of identifying suspect PCB areas, CRA Field personnel screened specific locations by collecting PCB indicator wipe samples. The locations of these samples were governed by the location of specific equipment and items that may have been associated with PCB's either in the past or present. Some of these items and locations include stained areas (porous and non-porous surfaces) adjacent to electrical equipment such as transformers, capacitors, regulators, air compressors, gas lines, and oily spills and residues. Each wipe sample was collected as 10 cm by 10 cm surfical samples; however, due to the inconsistent shapes this was not always possible. In these cases, an equivalent area of 100 cm² was used.

These samples were collected as a guideline to identify potentially PCB impacted areas. In all, one hundred and forty two (142) indicator PCB wipe samples were collected as part of the BDA and are summarized in Table 1.3. The locations of these indicator PCB wipe samples are shown on Drawing No. 2.

In addition to the indicator wipe samples, the BDA report summarizes over two hundred and twelve (212) additional samples that were collected and analyzed for PCBs.

These samples were part of the Standard Operating Procedures for identifying additional PCB impacted materials. Samples were collected and analyized for PCBs on every single sludge, solid, and liquid sample.

If an area was identified to be impacted, additional cleanup site characterization sampling was completed. This sampling was collected in accordance with 40 CFR 761 Subpart N, and is described in the individual sections below. These Characterization Samples were the basis for identifying the quantities of the PCB material for disposal, and defined the limits for removal. After identifying theses impacted areas, the items were removed.

Inland Waters was hired to complete removal. Conestoga-Rovers and Associates assured that the contractor removed these items did so with respect to the Toxic Substances Control Act (TSCA) regulations as presented in 40 Code of Federal Regulations (CFR) Part 761 (PCB Rules).

After the removal of the impacted items, CRA collected verification samples to assure completion of the removal (40 CFR 761 Subpart O). These procedures are also described in the sections below.

1.4 REPORT ORGANIZATION

This Report is organized into the following sections:

- i) Section 1.0 presents the Site location and background, the basis for the Work Plan, and the organization of the Report;
- ii) Section 2.0 presents a summary of the Scope of Work (SOW) for the Work Plan implementation;
- iii) Section 3.0 presents details of on-Site project management including implementation personnel, contractor and subcontractors, and Site security;
- iv) Section 4.0 presents details of the removal of the PCB-containing Transformers, Oil- Breakers, Potheads, Bushings, Potential Transformers, and Capacitors;
- v) Section 5.0 presents details of the removal of PCB-impacted concrete from the Basement Fan Room;
- vi) Section 6.0 presents details of the removal of PCB-containing Light Ballasts;
- vii) Section 7.0 presents details of the removal of PCB-impacted concrete from Fan Room #3;

- viii) Section 8.0 presents details of the removal of PCB-impacted concrete from Fan Room #13;
- ix) Section 9.0 presents details of the removal of PCB-impacted wood block flooring, concrete, and sand;
- x) Section 10.0 presents details of the removal of PCB-impacted limestone from the Master Switch Yard;
- xi) Section 11.0 presents details of the removal of PCB-impacted concrete from Substation #1 (1A);
- xii) Sections 12.0 describes the sampling of the Natural Gas Lines for PCBs;
- xiii) Section 13.0 describes the sampling of miscellaneous suspect items for PCBs;
- xiv) Section 14.0 describes the procedures for equipment decontamination;
- xv) Section 15.0 describes work in the Administrative Building;
- xvi) Section 16.0 describes the final summary, and conclusions;

This Report includes the following appendices

Appendix A	Photographic Documentation of Work Plan Implementation
Appendix B	Waste Disposal Manifests and Certifications for PCB Light Ballasts
Appendix C	Waste Disposal Approval Characterizations
Appendix D	Waste Disposal Manifests and Certifications
Appendix E	CRA Data Quality Assessment and Validation Memo
Appendix H	Sampling Analytical Data

The Text, Figures, Tables, and Appendices A through H are included in Volume I of this Report. Volume II contains Appendix I (Sampling Data).

2.0 SCOPE OF WORK PLAN

This Section provides a summary of characterization sampling, removal, decontamination, verification sampling, and disposal activities that were conducted at the Site consistent with the Work Plan. The materials removed from plant were placed in roll-off boxes and 55-gallon drums for temporary storage pending off-Site disposal, or placed in DOT Approved Vehicles and sent directly off Site for disposal. Following removal of PCB items, the associated equipment was decontaminated in accordance with the Work Plan. After the removal of the impacted material, verification samples were collected. Specific activities conducted to complete the Work Plan included the following:

- mobilization of contractors and setup of equipment;
- indicator wipe sampling of assumed PCB impacted areas;
- characterization sampling;
- delineation of work zones and decontamination areas;
- removal of PCB oils from Transformers, Capacitors, and Switchgear items;
- removal of PCB Light Ballasts;
- removal of impacted concrete;
- removal of impacted soil media;
- transportation of material in roll-off boxes, tankers, and 55-gallon drums for disposal at TSCA and, in certain cases, RCRA permitted landfills or incinerators;
- transportation of material via DOT Approved Vehicles to TSCA permitted landfills;
- decontamination of other PCB containers, transportation units, and associated equipment;
- Characterization/verification sampling of concrete in Sub-Station 1A, concrete in Fan Room 3, concrete in Fan Room 13, concrete and soil in the Basement Fan Room, concrete and soil in Bay P16, and the soil in the Master Switchyard.
- Demobilization of equipment, materials, facilities, and personnel.

All work activities completed during this Implementation were conducted at the Site in a manner designed to maintain the integrity of existing structures and equipment, and minimize the risk of potential impact to human health, welfare, and the environment.

3.0 PROJECT MANAGEMENT

3.1 GENERAL

Table 3.1 summarizes project personnel on Site during implementation of the Work Plan. Additionally, Figure 3.1 presents the generalized project organization chart.

3.2 WORK PLAN CERTIFICATION AND OVERSIGHT

Conestoga-Rovers & Associates (CRA) of Romulus, Michigan was retained by REALM to provide oversight and third party certification that the PCB removal activities conducted at the Site were in accordance with the Work Plan. CRA's responsibilities included liaison with REALM management personnel, and liaison with, and inspection of contractor and subcontractor activities to ensure that this Implementation was properly implemented. Representatives from CRA were on Site during all critical Work Plan implementation activities ranging from personnel mobilization through demobilization.

3.3 CONTRACTOR/SUBCONTRACTORS

Transformers, Capacitors, and Oil Breakers was SunOhio of Canton, Ohio. Trans-Cycle Incorporated (TCI) of Pell City. Alabama was subcontracted and limited by contract to transport bulk PCB liquids and electrical equipment to an approved facility. The contractor retained by REALM to implement the Cleaning Work Plan was Inland Waters Pollution Control (IWPC) of Detroit, Michigan. IWPC retained National Abatement (Flint, Michigan) as a general subcontractor to help complete the Work Plan activities for removal of the Light Ballasts. National Abatement's contract was limited to the removal of the Light Ballats from the second floor of building 44. Also, Entech Services was hired as subcontractor for IWPC to work side by side on the PCB cleaning/decommissioning portion of the contract. A portion of the work was also performed by CRA personnel including:

- overall project management and coordination of contractors;
- coordination of all transportation vehicles;
- waste characterization based upon Site records and sampling;
- indicator wipe, characterization, and verification sampling;

• daily inspections of roll off boxes, tankers, and 55-gallon drums before transportation off Site.

In addition, CRA retained the following subcontractors during the implementation of the Work Plan;

- CT&E Environmental Testing Services from Ludington, Michigan provided laboratory services for characterization and confirmatory sample purposes;
- Safety Kleen from Burton, Michigan provided approved DOT containers for temporary storage and transportation of hazardous solid wastes. Also Safety Kleen transported the material to an approved landfill.

3.4 PROJECT DOCUMENTATION AND MONITORING

CRA maintained a daily Site logbook for documentation of all activities that occurred at the Site. Other records which were maintained on Site on a daily basis included weather conditions, on-Site personnel visitors work activities conducted, air monitoring, disposal details, and disposal manifests.

3.5 SITE SECURITY

Site security was maintained throughout the duration of the Work Plan implementation by CRA. As part of CRA's operating practices, security guards are posted at the main security gate 24 hours per day, 7 days per week. The security guards maintain a Site visitor log. The Site is surrounded by a 6-foot high chain link fenced. The fence was inspected periodically by CRA's security personnel to determine if the fence has been breached. No security issues occurred during the implementation of the Work Plan.

4.0 TASK 1: REMOVAL OF PCB TRANSFORMERS, BREAKERS, CAPACITORS, AND ELECTRICAL SWITCHGEAR EQUIPMENT

This section includes the removal of liquids in electrical equipment such as transformers, oil-breakers, capacitors, and switchgear reservoirs. This removal work was subcontracted to SunOhio and National Abatement. Everyday a safety tailgate meeting was held to include possible hazards and key points. Also, daily assignments were delegated to working individuals. This portion of the PCB removal began on November 8, 1999 and lasted through January 3, 2000, then again in September **, 2000 through October **, 2000. TCI, who worked closely with SunOhio transported and disposed the bulk liquid and solid electrical equipment. In addition, Adamo Inc. was contracted to salvage the non-PCB transformers. Drawings No. 1 identifies the location of the these removed electrical items. The following sections describe the implemented removal of these items.

4.1 REMOVAL OF PCB TRANSFORMERS

A total of 35 roof top transformers outside on building 44, 5 platform transformers inside building 44, and 8 outside transformers next to the Main Switchyard were removed. As summarized in Table 4.1, the serial number, the location, the weight, and the total amount of liquids from each transformer is presented. In all a total of ******** gallons of oil, and ******* pounds of equipment were disposed.

SunOhio began by working on the roof top transformers then continued on with the platform transformers in Building 44. All the transformers were de-energized, grounded, and locked out. From the rooftop, hatchways were opened up in each substation. TCI and SunOhio built a secondary spill containment in the roof top substations and directly below the hatchways in order to contain potential releases while removing liquids. After CRA field staff confirmed that the tanker truck was properly labeled, it was driven above of the secondary containment and below the hatchway. Personnel wearing the appropriate PPE confirmed that the hoses were placed in plastic sleeves that ran from the transformer spigots to the tanker truck valves were connected and secured. Valve operations was confirmed, and liquids were drained from the unit into the tanker. At all times a two-way radio was used to communicate with personnel on the roof and the main floor. After the completion of draining the unit, the coils and the hoses were capped and then taken on to the next transformer for use.

In addition, SunOhio prepared for the dismantling of the electrical equipment. Beneath each substation a receiving area was prepared by erecting a secondary containment with a perimeter fence. All lifting equipment on the transformers were confirmed secured. Above each substation a lifting device was attached to the overhead rails. Each transformer was jacked up and placed on a skid and rolled to the vicinity of the rails adjacent to the hatchway. Several slings, straps, and harnesses were attached, and each transformer was lowered to floor on to 4" by 4" beams above the secondary containment. During the lowering, radio contact was kept with the technician on the floor and the technician in the substation. The access routes were confirmed clear and no personnel were allowed within 20' of the drop zone. After the each transformer was confirmed secure, the slings, straps, and harnesses were removed. An inspection was performed by CRA for any leaks, fluid spots, and proper labeling.

TCI mobilized flat bed tractor trailers ("Low-Boys") in order to transport the drained equipment, SunOhio picked p each transformer with an appropriate rated skidster (fork lift), and loaded them onto the trailer. The units were properly strapped down and shipped to Pell City Alabama for disposal.

The two overhead electrical transformers inside substation 14 in building 44 did not contain oil. These units were drained and left in place for scrap metal. The four transformers and the four step down regulators in the main switchyard were oil filled. These oil in these unites were collected and analyzed for PCBs. The analytical results indicated that all of the oils in this equipment contained PCBs but less than 10 ppm. These oils were drained by SunOhio and transported to Edwards Oil Facility, Detroit, Michigan for recycling. The electrical was left in place for scrap metal.

4.2 REMOVAL OF PCB CAPACITORS

A total of 319 individual PCB Capacitors were removed from the facility. These banks of capacitors included several of the fan rooms, substations, next to air-units, and in the basement of the Powerhouse.

Before the removal of each capacitor, the location was set-up with secondary containment, and the appropriate equipment. Each unit was de-energized, and electrical contacts were disconnected. The oil from capacitors were drained into 55-gallons drums, while the housing for each unit was placed into another 55-gallon drum. Once each drum was sealed and labeled, it was transported over to the temporary staging area. As soon as CRA field personnel arranged for transportation, the loading of the drained electrical equipment was approved and carried out.

A description of the quantity and location of the PCB capacitors that were removed are summarized in table 4.3. The transportation and disposal of this material is described in Section 15.0.

4.3 REMOVAL OF PCB BREAKERS AND RELATED SWITCHGEAR ITEMS

Each substation housed several pieces of electrical equipment that used oil for cooling, insulating, and surge protecting purposes. A total of 12 potential transformers, 79 potheads, 21 bushings and 15 oil-breakers were drained, removed, and disposed. After the removal of this equipment all of the items were staged and sampled.

A description of the potential transformers, potheads, bushings, and oil-breakers that were removed are summarized in Table 4.3 The transportation and disposal of this material is described in Section 15.0.

4.4 LOCATING CHARACTERIZATION/VERIFICATION SAMPLES

Indicator wipe sampling was performed after the removal of the transformers, capacitors, bushings potential transformers, potheads, and oil circuit breakers. These wipe samples were collected prior to any characterization sampling took place. Collecting these wipe samples were relatively easy which saved on time and money. In addition, these samples indicated if PCBs were present at specific locations. As mentioned before, these wipe sample results are summarized in Table 1.3. According to the analytical results, the indicator wipe samples dictated that characterization sampling be necessary to delineate these potential areas.

The following summarizes areas and Figure numbers in which characterization cores were collected based upon indicator wipe sample analytical results:

Figure Numbers	Area of Characterization/Verification Sampling
Figure 4.1	Substation 1 Transformer Pad-Building 44(2 nd floor)
Figure 4.2	Substation 2 Transformer Pad-Building 44(2 nd floor)
Figure 4.3	Substation 4 Transformer Pad-Building 44(2 nd floor)
Figure 4.4	Substation 6 Transformer Pad-Building 44(2 nd floor)
Figure 4.5	Substation 7 Transformer Pad-Building 44(2 nd floor)
Figure 5.0	Basement Fan Room- Building 44
Figure 7.0	Fan Room 3- Building 44(2 nd floor)
Figure 8.0	Fan Room 13- Building 44(2 nd floor)
Figure 9.0	Bay P16- Building 44
Figure 10.0	Master Switchyard- Primary Substation
Figure 11.0	Substation 1A-Building 44(2nd floor)

A confirmation grid was established in each Substation Transformer Pad in Building 44. Samples were collected at five-foot interval over the six hundred square foot surface area of each Pad. According to the analytical results, the Substation Transformer Pads in Building 44 were not impacted by PCBs and could be left in place. The analytical results of these samples are summarized in Table 4.4 the locations of these samples are shown on Tables 4.1 through Table 4.5.

Once it was determined what areas were impacted, additional items were removed (i.e. concrete) and verification samples were collected to demonstrate the effectiveness of performance based disposal of PCB remediation waste activities in accordance with 40 CFR Part 761.61 ((b)). These activities are described in Sections 5.0, 7.0, 8.0, 9.0, 20, and 11.0.

5.0 TASK 2: SAMPLING AND THE REMOVAL OF PCB IMPACTED CONCRETE IN THE BASEMENT FAN ROOM

The Basement Fan room is located underneath building 44. A total of six capacitors were hung on the southern cinder-block wall. These items were removed from this location. After removal of these units, characterization samples were collected to identify if there were any historical spills. It was identified that PCB's impacted an area on the concrete floor. The concrete was removed, and verification sampling indicated that the removal was a success. The analytical results and locations are summarized in Table 5.0. Figure 5.0 displays the location of these samples.

5.1 CHARACTERIZATION SAMPLING (40 CFR SUBPART N)

On December 12, 1999, six concrete core samples were taken directly beneath each capacitor on the concrete floor. The samples described are samples 214, 215, 216, 217, 218, and 219.

The concrete verification consisted of 1 inch diameter cores drilled to a depth of approximately 1-inch below the surfaces using a hammer drill and a 1-inch drill bit. The drill bits were decontaminated between each sample. The concrete samples were collected, placed in pre-cleaned sample jars, labeled, and submitted to CT&E for PCB analysis.

Sample C-12636-121799-MM-219 had an analytical result of 2.8 ppm that exceeded the 1.0 ppm criteria for the PCB removal standard for this location. According to this data, concrete on the floor within the basement Fan Room had to be removed. The concrete identified was approximately 5 feet by 10 feet by 6 inches thick.

5.2 REMOVAL OF CONCRETE IN THE BASEMENT FAN ROOM

Inland Waters Marine Pollution Controls, Inc., sub-contracted this portion of the work to Entech Services. The work began and ended on March 1, 2000. Entech Services built an encapsulating secondary containment for dust control. The encapsulation was built with plastic tarps and a wooden frame.

Several technicians cut out a 5' by 10' section of concrete flooring using a concrete-saw. A vacuum with a HEPA filter was attached to the front end of the saw in order to minimize dust. All associated PPE, secondary containment, and concrete dust collected

by the vacuum were placed inside the USPCI roll-off boxes. The equipment was decontaminated as described in Section 14.0.

5.3 VERIFICATION SAMPLING (40 CFR 761 SUBPART O)

Several verification samples were collected after the removal of the PCB impacted concrete in the Basement Fan Room. Four samples were collected within the concrete that remained in place adjacent to the removed concrete. On March 2, 2000, a total of 4 concrete core samples were collected. One sample on west, another on the east, and two just north. The concrete verification samples consisted of 1-inch diameter cores drilled to a depth of approximately 1-inch below the surfaces using a hammer drill and a 1-inch drill bit. The drill bits were decontaminated between each sample. The concrete samples were collected, placed in pre-cleaned sample jars, labeled, and submitted to CT&E for PCB analysis.

In addition to the concrete sampling, three sand samples were collected to identify if any penetration of PCB oils impacted the sand underneath the concrete flooring. According to the analytical results, both the sand and concrete cores were below the PCB removal standard of ≤ 1 mg/kg and met the criteria for this location. This indicated that the removal of the concrete was successfully completed. Information on transportation and disposal is described in Section ##.

6.0 TASK 3: REMOVAL OF PCB LIGHT BALLASTS

A contract was awarded to Inland Waters Marine Pollution Controls for the removal of PCB Light Ballasts from Building 44, Building 63, and the Powerhouse. Inland Waters sub-contracted the second story of Building 44 to National Abatement. The work began on February 11, 2000, and ended on April 23, 2000. A total of 8,461 individual light ballasts were removed, packaged, temporary stored, and transported and disposed by Safety Kleen to an approved facility. Appendix C contains a copy of the fully executed waste manifests. The summaries of 55-gallon drum unique ID's total shipping weight, and out of service dates are summarized in Table 6.0.

6.1 <u>REMOVAL, STORAGE, TRANSPORTATION, AND DISPOSAL</u>

To complete the work, Inland Waters mobilized six man-lifts in order to reach the light fixtures. Every single light fixture was manually removed from the ceiling and brought down to the ground floor. There the fixtures were collected, land loaded onto a state truck. Once the truck was full it was driven over to a designated area with secondary containment where the ballasts could be manually separated from the fixtures.

Each 55-gallon drum was prepared by pouring about 2 lbs. of floor dry on the bottom, and then ballasts were placed into the drum not to exceed 750-lbs. total weight for each drum. If leaky ballast was found, it was placed into two polyethylene bags, then placed into a separate drum marked "leakers". Note that no leakers were found. More floor dry was sprinkled on the top of the drum, then the drum was sealed and labeled.

A unique identification was given to every drum that was sealed and labeled. Also, the drum was given an "out of service" date for the ballasts that were placed inside that drum. On the average, around 16 drums were completed a day. A total of 370 drums were filled with PCB ballasts.

When a total of 40 drums were filled and logged in, CRA contacted Safety Kleen to load, transport, and dispose of them. Safety Kleen made various trips to the site during this portion of the project. The fully executed waste manifests for the PCB Ballast removal is summarized in Appendix D. The detailed transportation and disposal is described in section 14.0.

7.0 TASK 4: SAMPLING AND REMOVAL OF IMPACTED CONCRTETE IN FAN ROOM 3

Fan room 3 is located on the second story of Building 44. Inside this fan room sat one capacitor mounted to beams secured in the concrete adjacent to the fan ductwork. After removal of these units, indicator wipe samples were collected to identify if there were any historical spills. According to the wipe sampling, it was identified that an area on the floor was impacted by PCB's. The concrete was removed, and verification sampling indicated that the removal was a success. The analytical results and locations are summarized in Table 7.0. Figure 7.0 displays the location of these samples.

7.1 CHARACTERIZATION SAMPLING (40 CFR SUBPART N)

Originally, wipe samples were collected on September 28, 2000. A wipe sample W-12636-092800-MM-053, indicated that additional concrete core sampling would be necessary to qualitatively quantify the contamination.

On November 30, 1999, six concrete core samples were taken directly beneath a large capacitor on the concrete floor. The samples described are samples 187, 188, 189, 190, 191, and 192. In addition to these samples, two other samples were collected to delineate the extent of impacted. These samples (223, 224) were collected on January 27, 2000.

The concrete verification samples consisted of 1-inch diameter cores drilled to a depth of approximately 1-inch below the surfaces using a hammer drill and a 1-inch drill bit. The drill bits were decontaminated between each sample. The concrete samples were collected, placed in pre-cleaned sample jars, labeled, and submitted to CT&E for PCB analysis.

Sample C-12636-113099-MM-187 had an analytical result of 2.6 ppm that exceeded the 1.0 ppm criteria for the PCB removal standard for this location. According to this data, concrete on the floor of Fan Room 13 had to be removed. The concrete identified was approximately 10 feet by 8.5 feet by 6 inches. This fan room was located on the second story of Building 44.

7.2 REMOVAL OF CONCRETE IN FAN ROOM 3

Inland Waters Marine Pollution Controls, Inc., sub-contracted this portion of the work to Entech Services. The work on February 27, 2000, and ended on March 1, 2000. Entech Services built an encapsulating secondary containment for dust control. The encapsulation was built with plastic tarps that were draped around a USPCI roll-off box, an extended all the way to the floor of the second story beneath Fan Room 3.

Several technicians cut out a 10′ by 8.5′ section of concrete flooring using a concrete-saw. A vacuum with a HEPA filter was attached to the front end of the saw in order to minimize dust. The concrete was allowed to free fall down to the roll-off box within the encapsulation that was constructed. All the associated PPE, and dust collected from the sawing was placed in to the roll off box as well. Finally, the encapsulating material (polyethylene) was placed in to the roll-off box last. The equipment was decontaminated as described in Section 14.0.

7.3 VERIFICATION SAMPLING (40 CFR 761 SUBPART O)

Several confirmation samples were collected after the removal of the PCB impacted concrete in Fan Room 3. Three samples were collected along the concrete that remained in place adjacent to the removed concrete. On March 2, 2000, a total of four concrete core samples were collected. One sample on the south, two towards the east, and one to the north (respectively, samples 236, 237, 238, and 239).

The concrete verification samples consisted of 1-inch diameter cores drilled to a depth of approximately 1-inch below the surfaces using a hammer drill and a 1-inch drill bit. The drill bits were decontaminated between each sample. The concrete samples were collected, placed in pre-cleaned sample jars, labeled, and submitted to CT&E for PCB analysis.

According to the analytical results, the concrete cores were below the PCB removal standard of ≤ 1 mg/kg and met the criteria for this location. This indicated that the removal of the concrete was successfully completed. Information on transportation and disposal is described in Section 15.0.

8.0 TASK 5: SAMPLING AND REMOVAL OF IMPACTED CONCRTETE IN FAN ROOM 13

Fan room 13 is located on the second story of Building 44. Inside this fan room sat two capacitors mounted to beams secured in the concrete adjacent to the fan ductwork. After removal of these units, concrete samples were collected to identify if there were any historical spills. According to the verification sampling, it was identified that PCBs impacted an area on the floor. The concrete was removed, and verification sampling indicated that the removal was a success. The analytical results and locations are summarized in Table 8.0. Figure 8.0 displays the location of these samples.

8.1 <u>CHARACTERIZATION SAMPLING (40 CFR SUBPART N)</u>

Originally, wipe samples were collected on September 28, 2000. The sample W-12636-092800-MM-063B indicated that additional concrete core sampling would be necessary to qualitatively quantify the contamination

On November 30, 1999, six concrete core samples were taken directly beneath a large capacitor bank on the concrete floor. The samples described are samples 193, 194, 195, 196, 197, and 198. In addition to these samples,

The concrete verification samples consisted of 1-inch diameter cores drilled to a depth of approximately 1-inch below the surfaces using a hammer drill and a 1-inch drill bit. The drill bits were decontaminated between each sample. The concrete samples were collected, placed in pre-cleaned sample jars, labeled, and submitted to CT&E for PCB analysis.

Sample C-12636-113099-MM-187 had an analytical result of 2.6 ppm that exceeded the 1.0 ppm criteria for the PCB removal standard for the site. According to this data, concrete on the floor of Fan Room 13 had to be removed. The concrete identified was approximately 9 feet by 11 feet by 6 inches.

8.2 REMOVAL OF CONCRETE IN THE BASEMENT FAN ROOM

Inland Waters Marine Pollution Controls, Inc., sub-contracted this portion of the work to Entech Services. The work began on February 25, 2000, and ended on February 28, 2000. Entech Services built an encapsulating secondary containment for dust control. The

encapsulation was built with plastic tarps that were draped around a USPCI roll-off box, an extended all the way to the floor below Fan Room 13.

Several technicians cut out a 9′ by 11′ section of concrete flooring using a concrete-saw. A vacuum with a HEPA filter was attached to the front end of the saw in order to minimize dust. The concrete was allowed to free fall down to the roll-off box within the encapsulation that was constructed. All the associated PPE, and dust collected from the sawing was placed in to the roll off box as well. Finally, the encapsulating material (polyethylene) was placed in to the roll-off box last. The equipment was decontaminated as described in Section 14.0.

8.3 VERIFICATION SAMPLING (40 CFR 761 SUBPART O)

Several confirmation samples were collected after the removal of the PCB impacted concrete in Fan Room 3. Three samples were collected along the concrete that remained in place adjacent to the removed concrete. On March 2, 2000, a total of 3 concrete core samples were collected. One sample on the south, another on the east, and one to the north (respectively, samples 233, 234, and 235). In addition to the concrete core samples, verification samples were collected from the sand that was underneath the removed concrete.

The concrete verification samples consisted of 1-inch diameter cores drilled to a depth of approximately 1-inch below the surfaces using a hammer drill and a 1-inch drill bit. The drill bits were decontaminated between each sample. The concrete samples were collected, placed in pre-cleaned sample jars, labeled, and submitted to CT&E for PCB analysis.

According to the analytical results, the concrete cores and samples were below the PCB removal standard of ≤ 1 mg/kg and met the criteria for this location. This indicated that the removal of the concrete was successfully completed. Information on transportation and disposal is described in Section 15.0.

9.0 TASK 6: SAMPLING AND REMOVAL OF IMPACETED MATERIAL IN BAY P-16 (BUILDING 44)

During the initial Building Decommissioning Assessment, several samples were collected from oil stained wood block flooring and were analyzed for PCB's. On October 14, 1999, sample WB-12636-101499-SM-135 was collected and sent to CT&E for analysis. The results indicated that the wood block flooring contained 2.6 ppm PCB's. On November 30, 1999, three additional samples (183, 184, and 185) were collected to delineate the extent of the concrete underneath the flooring.

According to the data, approximately 13 cubic yards of wood block flooring were identified to have concentrations of polychlorinated biphenyls (PCBs) ranging from 0.54 to 11 parts per million (ppm). The removal will be conducted in accordance with the performance based disposal provisions contained in Title 40 of the Code of Federal Regulations (CFR), Part 761.61 (b). The wood block flooring was located in a 45 x 45-foot bay near column P16 of the main manufacturing building (Building 44).

9.1 WOOD BLOCK FLOORING REMOVAL

Inland Waters was retained to remove the wood block flooring, and load the material into containers suitable for off-Site transportation. A front-end loader was utilized to collect and remove the wood block. Care was taken to minimize the amount of dust generated during the removal process by minimizing agitation during removal. The contractor provided and installed a double layer of polyethylene lining in the disposal container (container provided by REALM). After all wood block flooring was removed, the contractor collected residual dust or debris using mechanical means such as push brooms. The dust and debris were placed in the same container as the wood block for disposal. Any equipment used were properly decontaminated or placed in the container for disposal with the wood block flooring, as described in Section 14.0. Once all wood block flooring and debris were removed, CRA performed confirmation/verification sampling of the underlying concrete.

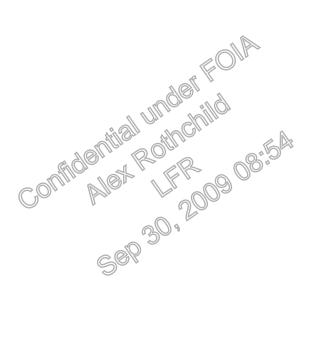
9.2 CHARACTERIZATION SAMPLING OF CONCRETE UNDERNEATH WOOD BLOCK FLOORING IN BAY P-16 (40 CFR 761 SUBPART O AND M)

Confirmation sampling to demonstrate the effectiveness of performance based disposal of PCB remediation waste activities in accordance with 40 CFR Part 761.61(b)) was performed. Wood block flooring with PCB concentrations ranging from 0.54 to 11 parts

per million (ppm) was removed for disposal by Inland Water Pollution Control/MPS Group Inc. in accordance the wood block flooring was contained in a 45x 45-foot bay near column P16 of the main manufacturing building (Building 44). _Verification sampling was performed in accordance with the Toxic Substance Control Act (TSCA), 40 CFR Part 761, and Subpart O.

A sampling grid was established over the 45x 45-foot area near column P16. The grid consisted of 5 x 5-foot squares. Sub-samples were collected from each of the 5x 5-foot squares. Concrete cores will be collected from three vertical strata (3, 6, and 9-inches below the surface of the concrete). The laboratory was instructed to hold the 6 and 9-inch cores pending the analytical results of the 3-inch cores. Nine sub-samples representing a larger 15x 15-foot square will be composited for each vertical strata. The sample locations are indicated in Figure 9.0, where Table 9.0 summarizes the analytical results.

Equal volumes of sub-sample concrete were composited in the field and placed in glass jars. The jars will then be placed on ice in a cooler for transportation to CT&E Environmental Services, Inc. for analysis. Sampling equipment was decontaminated in accordance with 40 CFR 761.79(c)(2). Surfaces were swabbed with a solvent and double wash/rinsed after all nine cores have been collected from each 15x 15-foot square. The concrete samples were analyzed in accordance with SW-846 8082.


After reviewing the analytical data, the samples composited in grid "311" were above the criteria allowed for the site. Also, the additional samples at 6 inches and 9 inches were analyzed and indicated elevated results for PCBs (samples 311A, 311B, and 311C).

9.3 <u>ADDITIONAL CHARACTERIZATION SAMPLING OF CONCRETE</u> NORTH OF BAY P-16

According to the analytical data, concrete had to be removed from bay P-16. Sample area "311" was bounded to the north by concrete that was not sampled. Three additional samples were collected and analyzed to determine the extent of the impacted concrete. To comply, these samples were collected at five foot intervals off the main gird system as an extension of the sampling (samples 480, 481, and 482). This additional concrete was removes using the procedures as above. After the removal of the extra concrete, four final samples (samples 489, 490, 491, and 492) were collected that verified that the horizontal extent of impacted concrete was removed.

In addition to the extra concrete core sampling and removal, samples of the media underneath the concrete were collected to assure there was no vertical penetration

through the concrete. Samples 468 through 476 were located in the same 5-foot grid configuration. According to the analytical results, sample 475 did not meet the clean-up criteria having an analytical result of 7.2 ppm. After the removal of this impacted sand (5-foot by 5-foot by 1-foot deep), two additional samples were collected an analyzed. According to all the analytical results, the concrete cores and sand samples were below the PCB removal standard of ≤ 1 mg/kg for this location. This indicated that the removal of the concrete was successfully completed. Information on transportation and disposal is described in Section 15.0.

10.0 TASK 7: REMOVAL OF IMPACTED MATERIAL IN MAIN SWITCHYARD

INCOMPLETE

11.0 TASK 8: SAMPLING AND REMOVAL OF CONCRETE IN SUBSTATION 1A

Substation 1A is located within Substation 1 on the second story of Building 44. During a visual inspection, oil stains were noticed on the concrete floor associated around electrical equipment within Substation 1A. According to the confirmation sampling, it was identified that PCBs impacted an area on the floor. The concrete was removed, and verification sampling indicated that the removal was successful. The analytical results and locations are summarized in Table 11.0. Figure 11.0 displays the location of these samples.

11.1 CHARACTERIZATION SAMPLING (40 CFR SUBPART N)

On March 19, 2000, an indicator wipe sample was collected from the oil stained concrete in Substation 1A. Sample W-12636-031900-BS-270 was collected and sent to CT&E for PCB analysis. In addition to the wipe sample, a confirmation concrete sample was collected within the metal curbed area. Both of these samples indicated that the concrete within the metal secondary containment was impacted. Since substation 1A was completely surrounded by this secondary containment (metal curbing), it was assumed that all the concrete within the curbed area was impacted.

11.2 CONCRETE REMOVAL

Inland Waters Marine Pollution Controls, Inc., sub-contracted this portion of the work to Entech Services. The work began and ended on March 1, 2000. Entech Services built an encapsulating secondary containment for dust control. The encapsulation was built with plastic tarps that were draped around a USPCI roll-off box, an extended all the way to the floor below Substation 1/1A.

Several technicians cut out a 12′ by 9′ section of concrete flooring using a concrete-saw. A vacuum with a HEPA filter was attached to the front end of the saw in order to minimize dust. The concrete was allowed to free fall down to the roll-off box within the encapsulation that was constructed. All of the associated electrical equipment within Substation 1A, PPE, and dust collected from the sawing was placed in to the roll off box as well. Finally, the encapsulating material (polyethylene) was placed in to the roll-off box last. The equipment was decontaminated as described in Section 14.0.

11.3 <u>ADDITIONAL CHARACTERIZATION/VERIFICATION SAMPLING</u> AND CONCRETE REMOVAL (40 CFR 761 SUBPARTS O AND M)

Several verification samples were collected after the removal of the PCB impacted concrete and electrical equipment. On March 3, 2000 four concrete core samples were collected adjacent to the metal curbing that separated Substation 1A from Substation 1 Switchroom.

The concrete verification samples consisted of 1-inch diameter cores drilled to a depth of approximately 1-inch below the surfaces using a hammer drill and a 1-inch drill bit. The drill bits were decontaminated between each sample. The concrete samples were collected, placed in pre-cleaned sample jars, labeled, and submitted to CT&E for PCB analysis.

According to the analytical results, the concrete cores indicated that additional concrete should be removed. Samples C-12636-030300-CK-342 and C-12636-CK-343 directly west of Substation 1A exceeded clean-up criteria. After the removal of another 10-foot by 5-foot section of concrete, three more verification samples were collected and analyzed.

The analytical results of samples C-12636-071100-CK-477, C-12636-071100-CK-478, and C-12636-071100-CK-479 indicated that the concrete cores were below the PCB removal standard of ≤1 mg/kg and met the criteria for this location. This showed that the removal of the concrete and electrical equipment was successfully completed. Information on transportation and disposal is described in Section 15.0.

12.0 TASK 9: SAMPLING OF NATURAL GAS LINES (40 CFR 761 SUBPART M)

Characterization of natural gas pipelines for disposal for salvage or reuses is provided under 40 CFR 761 Subpart M. Before Decommissioning, the natural gas lines were purged and cut in order to terminate the transmission of natural gas. Since the gas lines (pipes) were inactive before abandonment (over 72 hours), wipe samples were collected to indicate if surfaces of these pipes were impacted. A total of four samples were collected based on a total of 4.5 miles of gas piping.

Two wipe samples in the Powerhouse, and two wipe samples in Building 44 were collected and analyzed for PCBs. The standard wipe samples collected consisted of a minimum of 100 cm2 and were collected in accordance with 40 CFR 761.23. These samples were collected from the bottom center of the pipe with equal area on either side of the centerline. The wipe sample analysis was conducted within accordance by Method 3500b/3550B from U.S. EPA's SW-846 Test Methods. The sample locations can be found in Figure 12.0.

13.0 TASK 10: SAMPLING OF MISCELLANEOUS SUSPECT ITEMS

In addition to the entire indicator wipe, confirmation, and verification sampling several other items were sampled for PCBs. These items were included because of the age of the Buildings. Some of the items sampled were felt insulation, electrical packing tape, rinse waters from decontamination, fire protection barriers, and for items that needed to be sampled for waste profiling.

Each waste streams which were generated as part of the Decommissioning Work Plan implementation activities were sampled, if necessary, to determine the waste characterization and appropriate disposal facility. These waste streams included decontamination solvents, wash waters and other decontamination fluids, miscellaneous cleanup debris, solids from pits, equipment used during the implementation such as analy indeptiful under polyther analy confidential under polyther analysis of the confidential under pol liners or berming materials, and PPE. All of the analytical results of these additional

items are summarized in Table 12.0.

14.0 TASK 11: EQUIPMENT DECONTAMINATION

Decontamination of the equipment used during the implementation of the Work Plan was conducted inside the chemical storage area in Building 63. Decontamination of equipment consisted of high-pressure washing to remove visible debris from the surface of the equipment followed by swabbing with diesel fuel. All wash waters used during the equipment decontamination were collected and transferred to container.

Equipment used to pump PCB containing liquids was decontaminated by recalculating the pumping equipment with diesel fuel with a volume equivalent to at least ten times the volume of the piping. The following equipment was decontaminated as part of the Work Plan implementation:

- Loader No. 315;
- Excavator No. 210;
- Loader No. 205;
- Vacuum Trucks; and
- snovels and scrapers. Miscellaneous hand tools such as shovels and scrapers

15.0 TASK 12: TEMPORARY STORAGE ,TRANSPORTATION, AND DISPOSAL

Characterization of the various waste streams to determine the appropriate disposal facility was primarily based on data from confirmatory concrete samples. Supporting documentation for the waste characterization, such as waste profiles and disposal facility approvals are provided in Appendix E.

15.1 RECORD KEEPING

According to 40 CFR 761 Subpart J PCB items that are in service that will be disposed in the future, and PCB items that will be disposed must be monitored until the shipping date. CRA fulfilled this by keeping daily logs. The areas where materials were stored prior to shipping were checked daily. Items included in these daily logs were the following:

- Location of where the bulk and PCB waste came from
- Approximation of weight of the PCB waste per stream
- The date the bulk waste was removed (out of service date)
- The dates the bulk wastewere temporary stored
- The dates of shipments and disposal
- The serial numbers from equipment
- Unique identification numbers identifying each container
- Fully executed manifests

15.2 TRANSPORTATION AND DISPOSAL

Upon notification, Safety Kleen loaded and transported the drums in accordance with 40 CFR 263 - Standards Applicable to Transporters of Hazardous Waste, 49 CFR - Shippers General Requirements for Shipments and Packaging, 49 CFR 174 - Carriage by Rail, and the applicable sections of 40 CFR 761, for disposal. Prior to transportation, all DOT Approved Vehicles were inspected to ensure that the material securely loaded. The PCB containers used during the removal were be marked according to the requirements of 40 CFR 761.40 as:

CAUTION CONTAINS PCBs

(Polychlorinated Biphenyls)

A toxic environmental container requiring special Handling and disposal with U.S. EPA
Regulations 40 CFR 761 - For disposal Information

<u>Contact the nearest EPA Office</u>
In case of an accident or spill, call toll free the U.S.

Coast Guard National Response Center:

800-424-8802

Solid materials removed from the Site were loaded onto roll-off boxes and were shipped off Site for disposal at a TSCA permitted landfill or sent for incineration at a TSCA permitted incinerator. The disposal facilities permitted to dispose of the materials removed included the following:

- Safety-Kleen (Aragonite), Inc, Aragonite Utal incinerator (UTD 981 552 177);
- Safety-Kleen (Deer Park), Inc. Deer Park, Texas, incinerator (TXD 055 141 378);
- Grassy Mountain Facility Knolls, Utah, landfill (UTD 991 301 748); and

Material sent to the two Safety-Kleen incinerators and the Grassy Mountain Facility was sent via roll-off or state truck then loaded on to rail. The rail cars, associated manifest, and shipping information for these facilities are summarized in Table **. Manifests and disposal certifications are provided in Appendix F.

16.0 ADDITIONAL CONSIDERATION

The Administrative Building south of Building 44 was not involved with the removal of PCB light Ballasts. If this building is to remain, it is recommended that at some point in time these ballasts be removed. It was estimated that 140 individual active light fixtures remain in this building.

Confidential umder following confidential co

17.0 SUMMARY, CONCLUSIONS, AND CERTIFICATION

The following summarizes the activities conducted to comply with the U.S. EPA approved Work Plan:

- removal and disposal at TSCA permitted landfill of over 8,000 individual PCB light ballasts;
- removal and disposal at TSCA permitted landfill of ##### kilograms of impacted PCB concrete, sand, and limestone gravel;
- collection and analysis of one hundred and forty two (142) indicator wipe samples;
- collection and analysis of ### characterization concrete samples to confirm the penetration of the external surfaces;
- collection of ### sand and concrete verification samples underneath and adjacent to impacted concrete to assure complete removal of PCB impacted materials;

Under penalty of law, I certify that, to the best of my knowledge, after appropriate Inquiries of all relevant persons involved in the implementation of the Work Plan and preparation of this Report, the information submitted is accurate and complete, and the activities were conducted in accordance and with the requirements of the U.S. EPA approved PCB Rules Self Implementing Clean-up.

TABLETS

ANALYTICAL SUMMARY OF INDICATOR WHE SAMPLES FORMER PEREGRINE FACILITY GENESEE TOWNSHIP, MICHIGAN

Sample ID	W-061099-12636-KMB-002	W-061099-12636-KMB-007	W-12636-092399-MM-012	W-061099-12636-KMB-011	W-12636-092300-MM-021	W-12636-092499-SM-041	W-12636-092499-MM-046	W-12636-092899-MM-051
Sample Location			Building 44		Building 63 Compactor	Powerhouse South Side of Boiler	Powerhouse Main Floor Compressors	Second Floor Fan Room 1
Grid Coordinates	D6	C33	S23	N13		South Side of Botter	Mun I tool Compressors	Tun Koom T
Date Sampled	6/9/1999	6/9/1999	9/23/1999	6/9/1999	9/23/1999	9/23/1995	9/22/1995	9/27/1995
PCBs (mg/kg)								
Aroclor -1016	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1221	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1232	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1242	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1248	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND (0.10)	ND (0.10)	0.14
Aroclor - 1254	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1260	8.2	ND(1.0)	ND (0.10)	ND(1.0)	0.16	ND (0.10)	ND (0.10)	0.54
Sample ID	W-061099-12636-KMB-003	W-061099-12636-KMB-008	W-12636-092399-MM-013	W-061099-12636-KMB-012	W-12636-092499-MM-023	W-12636-092399-MM-042	W-12636-092499-MM-047	W-12636-092899-MM-052
Sample Location			Building 44		Second Floor Penthouse Elevator	Powerhouse South Side of Boiler	Powerhouse Main Floor Compressors	Second Floor Fan Room 2
Grid Coordinates Date Sampled	E5 6/9/1999	D33 6/9/1999	S23 9/23/1999	N5 6/9/1999	9/24/1999	9/23/1999	9/22/1999	9/27/1999
Date Sampiea	0/3/1333	6/3/1399	3/23/1999	0/3/1333	3/24/1555	3/23/1999	3/22/1999	3/21/1999
PCBs (mg/kg)								
Aroclor -1016	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND(1.0)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1221	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND(1.0)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1232	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND(1:0)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1242	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND(1.0)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1248	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	0.29	ND (0.10)	0.2	0.14
Aroclor - 1254	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND(1.0)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1260	ND(1.0)	8.1	ND (0.10)	ND(1.0)	0.19	ND (0.10)	0.23	0.26
				·~	, 44 W			
Samule ID	W-061099-12636-KMB-004	W-061099-12636-KMB-009	W-12636-092399-MM-014	W-12636-092300-MM-018	W-12636-092499-MM-038	W-12636-092399-MM-043	W-12636-092499-MM-048	W-12636-092899-MM-053
Sample ID Sample Location	W-001099-12030-KMB-004	W-001099-12030-KWB-009	W-12030-092399-WW-014 Building 44	Building 63 Compactor	Powerhouse	Powerhouse	Powerhouse	Second Floor
Sample Location			Buttung 44	Buttaing 03 Compactor	Powerhouse	South Side of Boiler	Main Floor Compressors	Fan Room 3
Grid Coordinates	F13	N32	\$23	13/12 32 13/10/3		South State by Botter	Main Floor Compressors	Tun Koom 5
Date Sampled	6/9/1999	6/9/1999	9/23/1999	923/2000	9/24/1999	9/23/1999	9/22/1999	9/27/1999
	4,4,200	4,7	100			-, - ,	7-7	3,2.,
PCBs (mg/kg)								
Aroclor -1016	ND(1.0)	ND(1.0)	ND (0.20)	ND(1.0)	NID(1.0)	ND (0.10)	ND (0.10)	ND (2500)
Aroclor - 1221	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND(1:0)	ND (0.10)	ND (0.10)	ND (2500)
Aroclor - 1232	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND(1.0)	ND (0.10)	ND (0.10)	ND (2500)
Aroclor - 1242	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND(1.0)	ND (0.10)	ND (0.10)	ND (2500)
Aroclor - 1248	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND(1.0)	ND (0.10)	0.65	ND (2500)
Aroclor - 1254	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND(1.0)	ND (0.10)	ND (0.10)	79
Aroclor - 1260	ND(1.0)	ND(1.0)	ND (0.10)	ND(1.0)	ND(1.0)	ND (0.10)	0.66	30
				@(U) 9				
Sample ID	W-061099-1236-KMB-005	W-12636-092399-MM-010	W-12636-092399-MM-015	W-12636-092300-MM-019	W-12636-092499-MM-039	W-12636-092499-MM-044	W-12636-092499-MM-049	W-12636-092899-MM-054
Sample Location	Substation No. 3	Building 44	Building 44	Building 63 Compactor	Powerhouse	Powerhouse	Powerhouse	Second Floor
	Transformer Pad					Main Floor Compressors	Main Floor Compressors	Fan Room 4
Grid Coordinates	D14	S23	S23					
Date Sampled	6/9/1999	9/23/1999	9/23/1999	9/23/1999	9/24/1999	9/24/1999	9/22/1999	9/27/1999
non (mag 2)								
PCBs (mg/100 cm ²)	NT2/22)	NTD (0.10)	NT (0.10)	NT (0.10)	ATDG (II)	NTD (0.10)	NTD (0.10)	NTD (0.10)
Aroclor -1016 Aroclor - 1221	ND(33) ND(33)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND(1.0) ND(1.0)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)
Aroclor - 1221 Aroclor - 1232	ND(33)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND(1.0) ND(1.0)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)
Aroclor - 1232 Aroclor - 1242	ND(33)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND(1.0) ND(1.0)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)
Aroclor - 1242 Aroclor - 1248	ND(33)	ND (0.10)	ND (0.10)	ND (0.10)	ND(1.0)	0.11	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)
Aroclor - 1254	ND(33)	ND (0.10)	ND (0.10)	ND (0.10)	ND(1.0)	ND (0.10)	ND (0.10)	0.77
Aroclor - 1260	2.8	ND (0.10)	ND (0.10)	ND (0.10)	ND(1.0)	0.16	ND (0.10)	0.3
			. (***)	. ()				
Sample ID	W-061099-12636-KMB-006	W-12636-092399-MM-011	W-061099-12636-KMB-010	W-12636-092300-MM-020	W-12636-092499-MM-040	W-12636-092499-MM-045	W-12636-092499-MM-050	W-12636-092899-MM-055A
Sample Location		Building 44		Building 63 Compactor	Powerhouse	Powerhouse	Powerhouse	Second Floor
						Main Floor Compressors	Main Floor Compressors	Fan Room 5
Grid Coordinates	E26 6/9/1999	S23 9/23/1999	N25 6/9/1995	9/23/1999	9/24/1999	9/24/1999	9/22/1999	9/27/1999
Date Sampled	6/9/1999	3/4.3/1999	0/3/1993	3/23/1999	2)/±1/1333	3/24/1999	3/22/1999	3/21/1999
PCBs (ug/100 cm ²)								
Aroclor -1016	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1221	ND(1.0)	ND (0.10)	ND(67)	ND (0.10)	ND(1.0)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1232	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1242	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1248	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND (0.10)	0.12
Aroclor - 1254	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	ND (0.10)	0.92
Aroclor - 1260	ND(1.0)	ND (0.10)	ND(1.0)	ND (0.10)	0.16	0.22	0.35	0.66

TABLE 13

ANALYTICAL SUMMARY OF INDICATOR WHE SAMPLES FORMER PEREGRINE FACILITY GENESEE TOWNSHIP, MICHIGAN

Sample ID	W-12636-092899-MM-055C	W-12636-092899-MM-055B	W-12636-092899-MM-060A	W-12636-092899-MM-062B	W-12636-092899-MM-065A	W-12636-092999-SM-068	W-12636-092999-MM-073	W-12636-101899-MM-155
Sample Location	Second Floor Fan Room 5	Second Floor Fan Room 5	Second Floor Fan Room 10	Second Floor Fan Room 12	Second Floor Fan Room 15	Basement Fan Room North Capacitor	Building 44 North Truck Dock	Building 44 Underneath Interior Transformer
Grid Coordinates						B28		
Date Sampled	9/27/1999	9/27/1995	9/27/1995	9/27/1995	9/27/1995	9/28/1995	9/29/1999	10/18/1999
PCBs (mg/kg)								
Aroclor -1016	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1221	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1232	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1242	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1248	ND (0.10)	0.13	0.12	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1240 Aroclor - 1254	ND (0.10)	ND (0.10)	0.4	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1260	ND (0.10)	0.5	0.37	0.16	0.16	ND (0.10)	0.14	ND (0.10) ND (0.10)
ATOCIOI - 1200	14D (0.10)	0.5	0.57	0.10	0.10	ND (0.10)	0.14	145 (0.10)
Samule ID	W-12636-092899-MM-056A	W-12636-092899-MM-058A	W-12636-092899-MM-060B	W-12636-092899-MM-063A	W-12636-092899-MM-065B	W-12636-092999-SM-069	W-12636-092999-MM-095	W-12636-101899-MM-156
Sample Location	Second Floor	Second Floor	Second Floor	Second Floor	Second Floor	Basement Fan Room	Building 44	Building 44
,	Fan Room 6	Fan Room 8	Fan Room 10	Fan Room 13	Fan Room 15	South Capacitor	Elevator Sump	Underneath Interior Transformer
Grid Coordinates						B28	•	, and the second second
Date Sampled	9/27/1999	9/27/1999	9/27/1999	9/27/1999	9/27/1999	9/28/1999	9/29/1999	10/18/1999
PCBs (mg/kg)								
Aroclor -1016	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (10)	ND (0.10)	ND (0.10)
Aroclor - 1221	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (10)	ND (0.10)	ND (0.10)
Aroclor - 1232	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND_(0/20(())	ND (10)	ND (0.10)	ND (0.10)
Aroclor - 1242	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.00)	ND (10)	ND (0.10)	ND (0.10)
Aroclor - 1248	0.15	ND (0.10)	0.11	ND (0.10)	ND (0.10)	ND (10)	ND (0.10)	0.14
Aroclor - 1254	0.36	0.18	0.31	ND (0.10)	ND (0.10)	3.8	ND (0.10)	ND (0.10)
Aroclor - 1260	0.24	0.12	0.24	0.21	0.2	1.1	ND (0.10)	0.52
ATOCIOI - 1200	0.24	0.12	0.24	0.21		1.1	ND (0.10)	0.52
Sample ID	W-12636-092899-MM-056B	W-12636-092899-MM-058B	W-12636-092899-MM-061A	W-12636-092899-MM-063B	W-12636-092899-MM-066A	W-12636-092999-MM-070	W-12636-101599-MM-152	W-12636-112499-MM-167
					Second Floor			
Sample Location	Second Floor	Second Floor	Second Floor	Second Floor		Building 44	Building 44	Substation No. 6
	Fan Room 6	Fan Room 8	Fan Room 11	Fan Room 13	Fan Room 16	North Truck Dock	Cargo Elevator Room	Capacitor Bank
Grid Coordinates					3/7/1 11			on Floor
Date Sampled	9/27/1999	9/27/1999	9/27/1999	9/27/1999	9/27/1999	9/29/1999	10/15/1999	11/23/1999
PCBs (mg/kg)			40			07 0		
Aroclor -1016	ND (0.10)	ND (0.10)	ND (0.10)	ND(50	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1221	ND (0.10)	ND (0.10)	ND (0.10)	() () () () () () () () () ()	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1221 Aroclor - 1232	ND (0.10)	ND (0.10)		NB/50)	ND (0.10)	ND (0.10)	ND (0.10) ND (0.10)	ND (0.10)
		()	ND (0.10)					()
Aroclor - 1242	ND (0.10)	ND (0.10)	ND (0.10)	ND (50)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1248	ND (0.10)	ND (0.10)	0.12	ND (50)	ND (0.10)	ND (0.10)	ND (0.10)	0.28
Aroclor - 1254	0.76	0.14	ND (0.10)	2.4	0.12	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1260	0.4	0.21	0.3	1	0.15	ND (0.10)	0.27	0.21
				U.Z.				
Sample ID	W-12636-092899-MM-057A	W-12636-092899-MM-059A	W-12636-092899-MM-061B	W-12636-092899-MM-064A	W-12636-092899-MM-066B	W-12636-092999-MM-071	W-12636-101599-MM-153	W-12636-112499-MM-168
Sample Location	Second Floor	Second Floor	Second Floor	Second Floor	Second Floor	Building 44	Building 44	Substation No. 6
	Fan Room 7	Fan Room 9	Fan Room 12	Fau Room 14	Fan Room 16	North Truck Dock	Cargo Elevator Room	Capacitor Bank
Grid Coordinates						0.00.000	40 # 5 # 000	on Floor
Date Sampled	9/27/1999	9/27/1999	9/27/1999	9/27/1999	9/27/1999	9/29/1999	10/15/1999	11/23/1995
PCBs (mg/100 cm 2)								
Aroclor -1016	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1221	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1232	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1242	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1248	0.12	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	0.37
Aroclor - 1254	0.28	0.12	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1260	0.41	0.11	0.21	0.45	0.14	ND (0.10)	0.77	0.39
Sample ID	W-12636-092899-MM-057B	W-12636-092899-MM-059B	W-12636-092899-MM-062A	W-12636-092899-MM-064B	W-12636-092899-MM-067	W-12636-092999-MM-072	W-12636-101899-MM-154	W-12636-113099-MM-185
Sample Location	Second Floor	Second Floor	Second Floor	Second Floor	Second Floor	Building 44	Building 44	Bay P16
	Fan Room 7	Fan Room 9	Fan Room 12	Fan Room 14	Fan Room Kitchen	North Truck Dock	Powerhouse Sump	
Grid Coordinates Date Sampled	9/27/1995	9/27/1999	9/27/1999	9/27/1999	9/27/1999	9/29/1999	10/18/1999	11/30/1999
	3/21/1393	3/21/1333	3/21/1333	3/21/1333	3/21/1333	1/2/1/1777	10/10/1777	11/34/1999
PCBs (ug/100 cm ²)	NTD (0.70)	NID (0.30)	NID (0.10)	NID (0.70)	NTD (0.30)	NTD (0.70)	NID (0.70)	NID (0.70)
Aroclor -1016	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1221	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1232	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1242	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1248	ND (0.10)	0.11	ND (0.10)	ND (0.10)	0.11	ND (0.10)	ND (0.10)	6.7
Aroclor - 1254	0.22	0.14	ND (0.10)	ND (0.10)	0.24	0.22	ND (0.10)	2.2
Aroclor - 1260	ND (0.10)	0.33	0.15	0.5	0.15	0.18	ND (0.10)	0.54

TABLETS

ANALYTICAL SUMMARY OF INDICATOR WHE SAMPLES FORMER PEREGRINE FACILITY GENESEE TOWNSHIP, MICHIGAN

Sample ID	W-12636-112499-MM-169	W-12636-031900-BS-250	W-12636-031900-BS-255	W-12636-031900-BS-260	W-12636-031900-BS-265	W-12636-031900-BS-270	W-12636-032100-BS-275	W-12636-032100-BS-280
Sample Location	Substation No. 5	Substation 2 Transformer Pad	Substation 2 Transformer Pad	Substation 3 Transformer Pad	Substation 4 Transformer Pad	Substation 1/1a Transformer Pad	Substation 6 Transformer Pad	Substation 7 Transformer Pad
Grid Coordinates	Capacitor Bank on Floor							
Date Sampled	11/23/1999	3/19/2000	3/19/2000	3/19/2000	3/19/2000	3/19/2000	3/21/2000	3/21/2000
PCBs (mg/kg)								
Aroclor -1016	ND (0.10)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (10)	ND (0.1)	ND (0.1)
Aroclor - 1221	ND (0.10)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (10)	ND (0.1)	ND (0.1)
Aroclor - 1232	ND (0.10)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (10)	ND (0.1)	ND (0.1)
Aroclor - 1242	ND (0.10)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (10)	ND (0.1)	ND (0.1)
Aroclor - 1248 Aroclor - 1254	ND (0.10) ND (0.10)	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	ND (10) ND (10)	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)
Aroclor - 1254 Aroclor - 1260	0.3	0.28	ND (0.1)	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	ND (10) 640	1.3	0.76
					, , , ,		**	
Sample ID Sample Location	W-12636-113099-MM-183 Bay P16	W-12636-031900-BS-251 Substation 2 Transformer Pad	W-12636-031900-BS-256 Substation 3 Transformer Pad	W-12636-031900-BS-261 Substation 3 Transformer Pad	W-12636-031900-BS-266 Substation 4 Transformer Pad	W-12636-032100-BS-271 Substation 5 Transformer Pad	W-12636-032100-BS-276 Substation 6 Transformer Pad	W-12636-032100-BS-281 Substation 7 Transformer Pad
Grid Coordinates Date Sampled	11/30/1999	3/19/2000	3/19/2000	3/19/2000	3/19/2000	3/21/2000	3/21/2000	3/21/2000
PCBs (mg/kg)								
Aroclor -1016	ND (0.10)	ND (0.1)	ND (0.1)	ND (0.1)	ND.(0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Aroclor - 1221	ND (0.10)	ND (0.1)						
Aroclor - 1232	ND (0.10)	ND (0.1)						
Aroclor - 1242 Aroclor - 1248	ND (0.10) 8.9	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Aroclor - 1248 Aroclor - 1254	1.8	ND (0.1) ND (0.1)						
Aroclor - 1254 Aroclor - 1260	ND (0.10)	ND (0.1) ND (0.1)	0.34	0.18	0.2	0.18	0.4	2.1
Alociol - 1200	140 (0.10)	14D (0.1)	ULDE		~1 A	0.10	0.4	2.1
Sample ID	W-12636-113099-MM-184	W-12636-031900-BS-252	W-12636-031900-BS-257	w recessarillally acc	W-12636-031900-BS-267	W-12636-032100-BS-272	W-12636-032100-BS-277	W-12636-032100-BS-282
Sample Location	W-12636-113099-MM-184 Bay P16	Substation 2 Transformer Pad	Substation 3 Transformer Pad	W-12636-031900-BS-262 Substation 4 Transformer Pad	Substation 4 Transformer Pad	Substation 5 Transformer Pad	Substation 6 Transformer Pad	W-12636-032100-BS-282 Substation 7 Transformer Pad
Sumple Escurion	Day 1 10	Shoshillon 2 Transjornici T ili	Substitute of Franky or Mer 1 am	100	Substitute 1 Transporates 1 am	Substitute of Transformer T and	Substitute Transformer Tall	Shoshilon / Transjormer I am
Grid Coordinates				14 11 Co 14 11 11 11 11 11 11 11 11 11 11 11 11				
Date Sampled	11/30/1999	3/19/2000	3/19/2000	3/19/2000	3/19/2000	3/21/2000	3/21/2000	3/21/2000
					@° ``J			
PCBs (mg/kg)			ND (0.4)	1 TOL	~ (MO) *			
Aroclor -1016	ND (0.10)	ND (0.1)		ND (0.1)	ND 0:0	ND (0.1)	ND (0.1)	ND (0.1)
Aroclor - 1221	ND (0.10)	ND (0.10)	ND (0.1)	ND (0.1)	NB(0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Aroclor - 1232	ND (0.10)	ND (0.1)	(NP(0.1))	ND (0.1)				
Aroclor - 1242 Aroclor - 1248	ND (0.10) 11	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	ND (0.1) 0.56	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)
Aroclor - 1248 Aroclor - 1254	2.9	ND (0.1) ND (0.1)	ND (0.1)	ND (0.1) ND (0.1)	ND (0.1)	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)
Aroclor - 1254 Aroclor - 1260	0.87	0.13	0.41	3.1	0.28	ND (0.1) ND (0.1)	0.29	4.9
A10Cl01 - 1200	0.07	0.13	0.41		0.20	140 (0.1)	0.29	1.7
				(1) 1				
Sample ID Sample Location	W-12636-031900-BS-253 Substation 2 Transformer Pad	W-12636-031900-BS-258 Substation 3 Transformer Pad	W-12636-031900-BS-263 Substation 4 Transformer Pad	W-12636-031900-BS-268 Substation 1 Transformer Pad	W-12636-032100-BS-273 Substation 5 Transformer Pad	W-12636-032100-BS-278 Substation 6 Transformer Pad	W-12636-032100-BS-283 Substation 7 Transformer Pad	W-12636-031900-BS-288 Substation 8 Transformer pad
Grid Coordinates								
Date Sampled	3/19/2000	3/19/2000	3/19/2000	3/19/2000	3/21/2000	3/21/2000	3/21/2000	3/19/2000
PCBs (mg/100 cm ²)								
Aroclor -1016	ND (0.1)							
Aroclor - 1221	ND (0.1)							
Aroclor - 1232	ND (0.1)							
Aroclor - 1242	ND (0.1)							
Aroclor - 1248	ND (0.1)							
Aroclor - 1254	ND (0.1)							
Aroclor - 1260	1.1	0.13	0.85	0.82	ND (0.1)	ND (0.1)	1.4	0.46
Sample ID	W-12636-031900-BS-254	W-12636-031900-BS-259	W-12636-031900-BS-264	W-12636-031900-BS-269	W-12636-032100-BS-274	W-12636-032100-BS-279	W-12636-032100-BS-284	W-12636-031900-BS-291
Sample Location	Substation 2 Transformer Pad	Substation 3 Transformer Pad	Substation 4 Transformer Pad	Substation 1 Transformer Pad	Substation 6 Transformer Pad	Substation 6 Transformer Pad	Substation 7 Transformer Pad	Substation 8 Transformer Pad
Grid Coordinates Date Sampled	3/19/2000	3/19/2000	3/19/2000	3/19/2000	3/21/2000	3/21/2000	3/21/2000	3/19/2000
PCBs (ug/100 cm ²)								
Aroclor -1016	ND (0.1)							
Aroclor - 1221	ND (0.1)							
Aroclor - 1232	ND (0.1)							
Aroclor - 1242	ND (0.1)							
Aroclor - 1248	ND (0.1)							
Aroclor - 1254	ND (0.1)							
Aroclor - 1260	0.38	ND (0.1)	0.11	0.93	ND (0.1)	0.14	0.36	ND (0.1)

TABLETS

ANALYTICAL SUMMARY OF INDICATOR WIFE SAMPLES FORMER PERFORMS FACILITY GENESEE TOWNSHIP, MICHIGAN

Sample ID Sample Location	W-12636-032100-BS-285 Substation 7 Transformer Pad	W-12636-031900-BS-292 Substation 5 Transformer Pad	
Sumple Location	Substition / Transformer Paa	Substitution 3 Transjorner Pau	
Grid Coordinates			
Date Sampled	3/21/2000	3/19/2000	
PCBs (mg/kg)			
Aroclor -1016	ND (0.1)	ND (0.1)	
Aroclor - 1221	ND (0.1)	ND (0.1)	
Aroclor - 1232	ND (0.1)	ND (0.1)	
Aroclor - 1242	ND (0.1)	ND (0.1)	
Aroclor - 1248 Aroclor - 1254	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	
Aroclor - 1260	0.24	ND (0.1)	
		()	
Sample ID	W-12636-031900-BS-286	W-12636-031900-BS-293	
Sample Location	Substation 8 Transformer Pad	Substation 5 Transformer Pad	
Grid Coordinates			
Date Sampled	3/19/2000	3/19/2000	
nen (#)			
PCBs (mg/kg) Aroclor -1016	ND (0.1)	ND (0.1)	
Aroclor - 1016 Aroclor - 1221	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	
Aroclor - 1232	ND (0.1)	ND (0.1)	
Aroclor - 1242	ND (0.1)	ND (0.1)	
Aroclor - 1248	ND (0.1)	ND (0.1)	
Aroclor - 1254	ND (0.1)	ND (0.1)	
Aroclor - 1260	0.49	ND (0.1)	
Sample ID	W-12636-031900-BS-287	W-12636-031900-BS-289	
Sample Location	Substation 8 Transformer Pad	Substation 8 Transformer Pad	
Grid Coordinates			
Date Sampled	3/19/2000	3/19/2000	_
			Colligia
PCBs (mg/kg)			En Olle
Aroclor -1016	ND (0.1)	ND (0.1)	
Aroclor - 1221 Aroclor - 1232	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	SKIII.
Aroclor - 1242	ND (0.1)	ND (0.1)	$\sim (O)_{\rho}$
Aroclor - 1248	ND (0.1)	ND (0.1)	
Aroclor - 1254	ND (0.1)	ND (0.1)	
Aroclor - 1260	0.29	ND (0.1)	
Sample ID	W-12636-031900-BS-290		
Sample Location	Substation 8 Transformer Pad		
Grid Coordinates			
Date Sampled	3/19/2000		
PCBs (mg/100 cm 2)			
Aroclor -1016	ND (0.1)		
Aroclor - 1221	ND (0.1)		
Aroclor - 1232	ND (0.1)		
Aroclor - 1242	ND (0.1)		
Aroclor - 1248	ND (0.1)		
Aroclor - 1254	ND (0.1)		
Aroclor - 1260	0.41		
	W-12636-031900-BS-294		
Sample ID	W-12636-031900-BS-294 Substation 5 Transformer Pad		
Sample Location			
Sample Location			
Sample Location Grid Coordinates Date Sampled	3/19/2000		
Grid Coordinates Date Sampled	3/19/2000		
Grid Coordinates Date Sampled PCBs (ug/100 cm²)			
Grid Coordinates Date Sampled PCBs (ug/100 cm²) Aroclor -1016	ND (0.1)		
Grid Coordinates Date Sampled PCBs (ug/100 cm²)	ND (0.1) ND (0.1)		
Grid Coordinates Date Sampled PCBs (ug/100 cm²) Aroclor -1016 Aroclor -1221	ND (0.1)		
Grid Coordinates Date Sampled PCBs (ug/100 cm²) Aroclor -1016 Aroclor - 1221 Aroclor - 1232 Aroclor - 1242 Aroclor - 1248	ND (0.1) ND (0.1) ND (0.1) ND (0.1) ND (0.1)		
Grid Coordinates Date Sampled PCBs (ug/100 cm²) Aroclor -1016 Aroclor -1221 Aroclor -1232 Aroclor -1242	ND (0.1) ND (0.1) ND (0.1) ND (0.1)		

Confidential under Follow Confidence of the Conf

TABLE 4.1 Sep 30, 2009 08:54

INVENTORY SUMMARY OF TRANSFORMERS FORMER PEREGRINE FACILITY GENESEE TOWNSHIP, MICHIGAN

17!4	Culturation	Serial	Landin	C - 11	Total
Unit	Substation	Number	Location	Gallons	Weight
1	4	6179018	Roof Outside	342	8,910 lbs
2	4	C-184095	Roof Outside	420	10,200 lbs
3	4	6179014	Roof Outside	342	8,910 lbs
4	4	6178998	Roof Outside	342	8,910 lbs
5	2	6179021	Roof Outside	342	8,910 lbs
6	2	6179017	Roof Outside	342	8,910 lbs
7	2	6179004	Roof Outside	342	8,910 lbs
8	2	6178997	Roof Outside	342	8,910 lbs
9	1A	5937	Roof Outside	450	15,100 lbs
10	1	6179019	Roof Outside	342	8,910 lbs
11	1	6179024	Roof Outside	342	8,910 lbs
12	1	6178996	Roof Outside	342	8,910 lbs
13	1	6179012	Roof Outside	342	8,910 lbs
14	3	6179008	Roof Outside	342	8,910 lbs
15	3	6179023	Main Switchyard	342	8,910 lbs
16	3	6179016	Main Switchyard	342	8,910 lbs
17	3	6179020	Main Switchyard	342	8,910 lbs
18	Main (Stepdown Regulators)	B502119	Main Switchyard	1,065	22,600 lbs
19	Main (Stepdown Regulators)	B502117	Main Switchyard	1,065	22,600 lbs
20	Main (Stepdown Regulators)	B502118	Main Switchyard	1,065	22,600 lbs
21	Main (Stepdown Regulators)	C255946	Main Switchyard	1,065	22,600 lbs
22	Main	C184333	Main Switchyard	2,575	63,200 lbs
23	Main	B502116	Main Switchyard	2,575	63,200 lbs
24	Main	B502115	Main Switchyard	2,575	63,200 lbs
25	Main	B502114	Main Switchyard	2,575	63,200 lbs
26	6	6179010	Roof Outside	342	8,910 lbs
27	6	6179005	Roof Outside	342	8,910 lbs
28	6	6179003	Roof Outside	342	8,910 lbs
29	6	6178999	Roof Outside	342	8,910 lbs
30	8	6179007	Roof Outside	342	8,910 lbs
31	8	6178995	Roof Outside	342	8,910 lbs
32	8	6179009	Roof Outside	342	8,910 lbs
33	8	6179001	Roof Outside	342	8,910 lbs
34	7	6179013	Roof Outside	342	8,910 lbs
35	7	6179000	Roof Outside	342	8,910 lbs
36	7	6179025	Roof Outside	342	8,910 lbs
37	7	6179002	Roof Outside	342	8,910 lbs
38	5	6179006	Roof Outside	342	8,910 lbs
39	5	6179011	Roof Outside	342	8,910 lbs
40	5	6179015	Roof Outside	342	8,910 lbs
41	5	6179022	Roof Outside	342	8,910 lbs
42	9	C-175295	Inside Platform	425	14,500 lbs
43	10	C-173197	Inside Platform	342	17,100 lbs
44	10	C-173196	Inside Platform	342	17,100 lbs
45	14	*****	Inside Platform	342	17,100 lbs
46	14	*****	Inside Platform	342	17,100 lbs

Total Gallons
27,825 galllons
27,825 galllons disposed
316,010 lbs disposed
411,600 lbs recycled

TABLE 4.1 Sep 30, 2009 08:54

INVENTORY SUMMARY OF TRANSFORMERS FORMER PEREGRINE FACILITY GENESEE TOWNSHIP, MICHIGAN

Confidential under Follo 08:5A

TABLE 4.2 Sep 30, 2009 08:54

INVENTORY SUMMARY OF CAPACITORS FORMER PEREGRINE FACILITY GENESEE TOWNSHIP, MICHIGAN

Quantity	Location
1	E-3 Fan Room 1
1	K-3 Fan Room 2
1	E-8 Fan Room 3
1	K-8 Fan Room 4
3	E-12 Fan Room 5
2 2 2 3 2 2 2 2 2 2	K-12 Fan Room 6
2	E-17 Fan Room 7
2	K-17 Fan Room 8
2	E-21 Fan Room 9
3	K-22 Fan Room 10
2	E-26 Fan Room 11
2	K-26 Fan Room 12
2	É-30 Fan Room 13
2	K-30 Fan Room 14
2	E-30 Fan Room 13 K-30 Fan Room 14 E-35 Fan Room 15 K-35 Fan Room 16 B-27 Basement Fan Room K-1 Ad Bidg Fan Room Basement Power House E-23 Substation 5 K-23 Substation 7
2	K-35 Fan Room 16
	B-27 Basement Fan Room
2	K-1 Ad Bldg Fan Room
11	Basement Power House
72	123 Substation 5
72	K-23 Substation 6
60	E-32 Substation 7
60	K-32 Substation 8
1	E-34UP Air Unit
1	H-35UP Air Unit
1	G-33UP Air Unit
1	J-35UP Air Unit
1	J-33UP Air Unit
1	H-37DWN Air Unit

Total Capacitors

319

TABLE 4.3 Sep 30, 2009 08:54

SUMMARY OF SWITCHGEAR ELECTRICAL ITEMS FORMER PEREGRINE FACILITY GENESEE TOWNSHIP, MICHIGAN

	Potential Transformers	Oil Blast Breakers	Potheads (Switches)
<u>Building 44</u>			
Substation 1			
Substation 2			
Substation 3			
Substation 4			
Substation 5			
Substation 6			
Substation 7			
Substation 8	The state of the s	W.	
Sub Total:	Confidential under		
Main Swithyard (Primary Substation		. 08:5A	
Outside		·	
Inside	COUNTY MOIS THE	<u></u>	
0.1 57 1			
Sub Total:			
<u>Powerhouse</u>	S& 1		
Basement			
Switch Room			

Confidential under FOIA 12636Rpt17-T4:3.xls LFR Sep 30, 2009 08:54

Sub Total:

TOTAL:

TABLE 4.3 Sep 30, 2009 08:54

SUMMARY OF SWITCHGEAR ELECTRICAL ITEMS FORMER PEREGRINE FACILITY GENESEE TOWNSHIP, MICHIGAN

X,Y, Z End Terminators

Confidential under Folido 08:5A;

Confidential under FOIA 12636Rpt17rcT4:3.xls LFR Sep 30, 2009 08:54

TAREES.

ANALYTICAL SUMMARY OF CHARACTERIZATION SAMPLING FROM TRANSFORMER PADS FORMER PERFORMS FACILITY GENESEE TOWNSHIP, MICHIGAN

Sample ID Sample Location	C-12636-061200-NEM-318 Substation 1	C-12636-061200-NEM-317 Substation 1	C-12636-061200-NEM-322 Substation 1	C-12636-061200-NEM-327 Substation 1	C-12636-061200-NEM-332 Substation 1	C-12636-061200-NEM-337 Substation 1	C-12636-061200-NEM-342 Substation 1A	C-12636-061200-NEM-347 Substation 3	C-12636-061200-NEM-352 Substation 3
Grid Coordinates Date Sampled	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000
PCBs (mg/kg)									
Aroclor -1016	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1010 Aroclor - 1221	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1232	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1242	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1248	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1254	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1260	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Sample ID Sample Location	C-12636-061200-NEM-315 Substation 1	C-12636-061200-NEM-323 Substation 1	C-12636-061200-NEM-328 Substation 1	C-12636-061200-NEM-333 Substation 1	C-12636-061200-NEM-338 Substation 1	C-12636-061200-NEM-343 Substation 1A	C-12636-061200-NEM-348 Substation 3	C-12636-061200-NEM-353 Substation 3	C-12636-061200-NEM-358 Substation 3
Grid Coordinates Date Sampled	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000
PCBs (mg/kg)	, ,	, ,	, ,	, ,	, ,	1	* * * * * * * * * * * * * * * * * * * *	, ,	, ,
					. (2///2			
Aroclor -1016	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1221	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1232	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1242	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND:(0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1248	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	Nb (010)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1254 Aroclor - 1260	ND (0.10) ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Arocior - 1260	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)		ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Sample ID Sample Location	C-12636-061200-NEM-316 Substation 1	C-12636-061200-NEM-319 Substation 1	C-12636-061200-NEM-324 Substation 1	C-12636-061200-NEM-329 Substation 1	C-12636-061200-NEM-334 Substation 1	C-12636-061200-NEM-339 Substation 1	C-12636-061200-NEM-344 Substation 1A	C-12636-061200-NEM-349 Substation 3	C-12636-061200-NEM-354 Substation 3
Grid Coordinates Date Sampled	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000
PCBs (mg/kg)			M						
Aroclor -1016	ND (0.10)	ND (0.10)	ND (0.10)	ND (0:10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1221	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0,40)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1232 Aroclor - 1242	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND-(010) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)
Aroclor - 1242 Aroclor - 1248	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1254	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10) ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor - 1260	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Sample ID	C-12636-061200-NEM-320	C-12636-061200-NEM-325	C-12636-061200-NEM-330	C-12636-061200-NEM-335	C-12636-061200-NEM-340	C-12636-061200-NEM-345	C-12636-061200-NEM-350	C-12636-061200-NEM-355	C-12636-061200-NEM-360
Sample Location	Substation 1	Substation 1	Substation 1	Substation 2	Substation 1	Substation 1A	Substation 3	Substation 3	Substation 3
Grid Coordinates									
Date Sampled	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000
PCBs (ug/100 cm ²)									
Aroclor -1016	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1221	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1232	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1242	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1248	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1254	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1260	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Sample ID Sample Location	C-12636-061200-NEM-321 Substation 1	C-12636-061200-NEM-326 Substation 1	C-12636-061200-NEM-331 Substation 1	C-12636-061200-NEM-336 Substation 1	C-12636-061200-NEM-341 Substation 1	C-12636-061200-NEM-346 Substation 3	C-12636-061200-NEM-351 Substation 3	C-12636-061200-NEM-356 Substation 3	C-12636-061200-NEM-361 Substation 3
Grid Coordinates Date Sampled	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000
,	W12/2000	0/12/2000	0/12/2000	0/12/2000	Q12/2000	Q12/2000	Q12/2000	0/12/2000	Q12/2000
PCBs (ug/100 cm ²)									
Aroclor -1016 Aroclor - 1221	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10)	ND (0.10) ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10) ND (0.10)
					ND (0.10)		ND (0.10)	ND (0.10)	
Aroclor - 1232 Aroclor - 1242	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
Aroclor - 1242 Aroclor - 1248	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)					
Aroclor - 1248 Aroclor - 1254	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)					
Aroclor - 1254 Aroclor - 1260	ND (0.10) ND (0.10)		ND (0.10) ND (0.10)	ND (0.10) ND (0.10)					
A10Clof - 1200	1412 (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)

TAREES.

ANALYTICAL SUMMARY OF CHARACTERIZATION SAMPLING FROM TRANSFORMER PADS FORMER PERFORMS FACILITY GENESEE TOWNSHIP, MICHIGAN

C-12636-061200-NEM-357 Substation 3	C-12636-061200-NEM-362 Substation 3	C-12636-061200-NEM-367 Substation 3	C-12636-061200-NEM-372 Substation 3	C-12636-061200-NEM-377 Substation 7	C-12636-061200-NEM-382 Substation 7	C-12636-061200-NEM-387 Substation 7	C-12636-061200-NEM-392 Substation 7	C-12636-061200-NEM-397 Substation 7	C-12636-061200-NEM-402 Substation 2	C-12636-061200-NEM-407 Substation 2
6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000
ND (0.10)										
ND (0.10)										
ND (0.10)										
ND (0.10)										
ND (0.10)										
ND (0.10)										
ND (0.10)										
C-12636-061200-NEM-363 Substation 3	C-12636-061200-NEM-368 Substation 3	C-12636-061200-NEM-373 Substation 7	C-12636-061200-NEM-378 Substation 7	C-12636-061200-NEM-383 Substation 7	C-12636-061200-NEM-388 Substation 7	C-12636-061200-NEM-393 Substation 7	C-12636-061200-NEM-398 Substation 7	C-12636-061200-NEM-403	C-12636-061200-NEM-408 Substation 2	C-12636-061200-NEM-413 Substation 2
6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000
ND (0.10)	ND (010)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
ND (0.10)										
ND (0.10)										
ND (0.10)										
ND (0.10)										
ND (0.10)	D (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)					
ND (0.10)										
C-12636-061200-NEM-359	C-12636-061200-NEM-364	C-12636-061200-NEM-369	C-12636-061200-NEM-374	C-12636-061200-NEM-379	C-32636-061200-NEM-384	C-12636-061200-NEM-389	C-12636-061200-NEM-394	C-12636-061200-NEM-399	C-12636-061200-NEM-404	C-12636-061200-NEM-409
Substation 3	Substation 3	Substation 3	Substation 7	Substation 2	Substation 2					
6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000
ND (0.10)										
ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10) ND (0.10)	ND (0.10)	ND (0.10) ND (0.10)
ND (0.10)										
ND (0.10)										
ND (0.10) ND (0.10)										
ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10)	ND (0.10) ND (0.10)	ND (0.10)	ND (0.10) ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)
145 (0.10)	145 (0.10)	145 (0.10)	142 (0.10)	145 (0.10)		145 (0.10)	145 (0.10)	145 (0.10)	145 (0.10)	112 (0.10)
C-12636-061200-NEM-365	C-12636-061200-NEM-370	C-12636-061200-NEM-375	C-12636-061200-NEM-380	C-12636-061200-NEM-385	C-12636-061200-NEM-390	C-12636-061200-NEM-395	C-12636-061200-NEM-400	C-12636-061200-NEM-405	C-12636-061200-NEM-410	C-12636-061200-NEM-415
Substation 3	Substation 3	Substation 7	Substation 2	Substation 2	Substation 2	Substation 2				
6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000
ND (0.10)										
ND (0.10)										
ND (0.10)										
ND (0.10)										
ND (0.10)										
ND (0.10)										
ND (0.10)										
C-12636-061200-NEM-366 Substation 3	C-12636-061200-NEM-371 Substation 3	C-12636-061200-NEM-376 Substation 3	C-12636-061200-NEM-381 Substation 3	C-12636-061200-NEM-386 Substation 7	C-12636-061200-NEM-391 Substation 7	C-12636-061200-NEM-396 Substation 7	C-12636-061200-NEM-401 Substation 2	C-12636-061200-NEM-406 Substation 2	C-12636-061200-NEM-411 Substation 2	C-12636-061200-NEM-416 Substation 2
6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000
ND (0.10)										
ND (0.10)										
ND (0.10)										
ND (0.10)										
ND (0.10)										
ND (0.10)										
ND (0.10)										

TAREES.

ANALYTICAL SUMMARY OF CHARACTERIZATION SAMPLING FROM TRANSFORMER PADS FORMER PERFORMS FACILITY GENESEE TOWNSHIP, MICHIGAN

C-12636-061200-NEM-412	C-12636-061200-NEM-417	C-12636-061200-NFM-422	C-12636-061200-NEM-427	C-12636-061200-NEM-432	C-12636-061200-NEM-437	C-12636-061200-NEM-442	C-12636-061200-NEM-447	C-12636-061200-NEM-452	C-12636-071700-CK-479	C-12636-072500-CK-484
C-12636-061200-NEM-412 Substation 2	Substation 2	Substation 2	Substation 6	Substation 6	C-12636-061200-NEM-437 Substation 6	Substation 6	C-12636-061200-NEM-44/ Substation 6	C-12636-061200-NEM-432	C-12636-0/1/00-CR-4/9	C-12630-072300-CK-484
6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	7/17/2000	7/25/2000
ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)							
ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)							
ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)							
ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)							
ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)							
ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)							
ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)							
C-12636-061200-NEM-418 Substation 2	C-12636-061200-NEM-423 Substation 2	C-12636-061200-NEM-428	C-12636-061200-NEM-433 Substation 6	C-12636-061200-NEM-438 Substation 6	C-12636-061200-NEM-443 Substation 6	C-12636-061200-NEM-448 Substation 6	C-12636-061200-NEM-453 Substation 6	C-12636-071700-CK-480	C-12636-072500-CK-485	C-12636-072500-CK-490
6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	7/17/2000	7/25/2000	7/25/2000
ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)							
ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)							
ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)							
ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)							
ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)							
ND (0.10) ND (0.10)	ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)						
ND (0.10)	ND(03D)	[NA(0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)				
C-12636-061200-NEM-414 Substation 2	C-12636-061200-NEM-419 Substation 2	C-12636-061200-NEM-424 Substation 2	C-12636-061200-NEM-429 Substation 6	C-12636-061200-NEM-434 Substation 6	C-12636-061200-NEM-439 Substation 6	C-12636-061200-NEM-444 Substation 6	C-12636-061200-NEM-449 Substation 6	C-12636-061200-NEM-313c	C-12636-071700-CK-481	C-12636-072500-CK-486
6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	7/17/2000	7/25/2000
NP (848)		NO. 00-00					NT- 00 - 00	ATT (0.40)	NT- (0.40)	
ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)							
ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)							
ND (0.10)	ND (0.10) (()	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)				
ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)							
ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)							
C-12636-061200-NEM-420	C-12636-061200-NEM-425	C-12636-061200-NEM-430	C-12636-061200-NEM-435	C-12636-061200-NEM-440	C-12636-061200-NEM-445	C-12636-061200-NEM-450	C-12636-061200-NEM-314c	C-12636-071700-CK-482	C-12636-072500-CK-487	
Substation 2	Substation 2	Substation 6								
6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	7/17/2000	7/25/2000	
ND (0.10)	ND (0.10)	ND (0.10)								
ND (0.10)	ND (0.10)	ND (0.10)								
ND (0.10)	ND (0.10)	ND (0.10)								
ND (0.10)	ND (0.10)	ND (0.10)								
ND (0.10)	ND (0.10)	ND (0.10)								
ND (0.10)	ND (0.10)	ND (0.10)								
ND (0.10)	ND (0.10)	ND (0.10)								
C-12636-061200-NEM-421 Substation 2	C-12636-061200-NEM-426 Substation 2	C-12636-061200-NEM-431 Substation 6	C-12636-061200-NEM-436 Substation 6	C-12636-061200-NEM-441 Substation 6	C-12636-061200-NEM-446 Substation 6	C-12636-061200-NEM-451 Substation 6	C-12636-071700-CK-478	C-12636-072500-CK-483	C-12636-072500-CK-488	
6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	6/12/2000	7/17/2000	7/25/2000	7/25/2000	
ND (0.10)	ND (0.10)	ND (0.10)								
ND (0.10) ND (0.10)	ND (0.10) ND (0.10)	ND (0.10) ND (0.10)								
ND (0.10)	ND (0.10)	ND (0.10)								
ND (0.10)	ND (0.10)	ND (0.10)								
ND (0.10)	ND (0.10)	ND (0.10)								
ND (0.10)	ND (0.10)	ND (0.10)								
ND (0.10)	ND (0.10)	ND (0.10)								

TARTERS.

ANALYTICAL SUMMARY OF GHARAC TERIZATION SAMPLING FROM TRANSFORMER PADS FORMER PEREGRINE FACILITY GENESEE TOWNSHIP, MICHIGAN

C-12636-072500-CK-489

7/25/2000

ND (010) ND (0.10)

ND (0.10)

ND (0.10) ND (0.10)

ND (0.10)

ND (0.10)

C-12636-072500-CK-491

7/25/2000

ND (0.10)

ND (0.10) ND (0.10)

ND (0.10) ND (0.10)

ND (0.10) ND (0.10)

C-12636-080800-CK-507

8/9/2000

ND (0.10) ND (0.10) ND (0.10) ND (0.10) ND (0.10) ND (0.10)

ND (0.10)

Confidential under Folder Gentle Child

TABLE 5.0

ANALYTICAL SUMMARY OF INIDCATOR WIPE, CHARACTERIZATION, AND VERIFICATION SAMPLING IN THE BASEMENT FAN ROOM FORMER PEREGRINE FACILITY GENESEE TOWNSHIP, MICHIGAN

Sample ID Sample Location	W-12636-092999-SM-068 Basement Fan Room	W-12636-092999-SM-069 Basement Fan Room	C-12636-121799-MM-214 Basement Fan Room	C-12636-121799-MM-215 Basement Fan Room	C-12636-121799-MM-216 Basement Fan Room	C-12636-121799-MM-217 Basement Fan Room
Sample Purpose Date Sampled	Indicator Wipe 9/29/1999	Indicator Wipe 9/29/1999	Characterization Concrete Core 12/17/1999	Characterization Concrete Cor. 12/17/1999	Confirmation Concrete Core 12/17/1999	Chararterization Concrete Core 12/17/1999
PCBs (mg/kg)						
Aroclor -1016	ND(0.10)	ND(0.10)	ND(1.0)	ND(0.2)	ND(0.2)	ND(0.2)
Aroclor - 1221	ND(0.10)	ND(0.10)	ND(1.0)	ND(0.2)	ND(0.2)	ND(0.2)
Aroclor - 1232	ND(0.10)	ND(0.10)	ND(1.0)	ND(0.2)	ND(0.2)	ND(0.2)
Aroclor - 1242	ND(0.10)	ND(0.10)	ND(1.0)	ND(0.2)	ND(0.2)	ND(0.2)
Aroclor - 1248	ND(0.10)	ND(0.10)	ND(1.0)	ND(0.2)	ND(0.2)	ND(0.2)
Aroclor - 1254	ND(0.10)	3.8	29	ND(0.2)	ND(0.2)	ND(0.2)
Aroclor - 1260	ND(0.10)	1.1	3.3	ND(0.2)	ND(0.2)	ND(0.2)
	, ,		_ 1 /2	_	` '	, ,
c 1 ID	C 12626 121700 MM 210	C 12(2)(121700 MM 210	C-12636-030200-CK-240	C-12636-030200-CK-241	C 12626 020200 CV 242	C 12/2/ 020200 CV 242
Sample ID	C-12636-121799-MM-218 Basement Fan Room	C-12636-121799-MM-219 Basement Fan Room	Basement Fan Room	Basement Fan Room	C-12636-030200-CK-242 Basement Fan Room	C-12636-030200-CK-243
Sample Location	<i>Баѕетені ған Коот</i>	<i>Биѕетені ғин Коот</i>	Off II	Бизетен і Fин Коот	<i>Баѕетені</i> ған Коот	Basement Fan Room
Sample Purpose	Characterization Concrete Core	Characterization Concrete Core	Characterization Concrete Core	Verification Concrete Core	Verification Concrete Core	Verification Concrete Core
Date Sampled	12/17/1999	12/17/1999	Characterization Concrete Core	3/2/2000	3/2/2000	3/2/2000
•	, ,	• •				
PCBs (mg/kg)			III On Skilling			
0 0		12				
Aroclor -1016	ND(0.20)	ND(0.20)	ND(0.67)	ND(0.67)	ND(0.67)	ND(0.67)
Aroclor - 1221	ND(0.20)	ND(0.20)	ND(0.67)	ND(0.67)	ND(0.67)	ND(0.67)
Aroclor - 1232	ND(0.20)	ND(0.20)	ND(0.67)	ND(0.67)	ND(0.67)	ND(0.67)
Aroclor - 1242	ND(0.20)	ND(0.20)	ND(0.67)	ND(0.67)	ND(0.67)	ND(0.67)
Aroclor - 1248	ND(0.20)	ND(0.20)	ND(0.67)	ND(0.67)	ND(0.67)	ND(0.67)
Aroclor - 1254	ND(0.20)	ND(0.20)	0.73	0.32	ND(0.67)	0.076
Aroclor - 1260	ND(0.20)	ND(0.20)	ND(0.67)	ND(0.67)	ND(0.67)	ND(0.67)
	. ((3. 3)		(4.4.)	(333)	(4.4.7)
			@W 9			
Sample ID	S-12636-080800-CK-506	S-12636-080800-CK-506	S-12636-080800-CK-506			
Sample Location	Basement Fan Room	Basement Fan Room	Basement Fan Room			
Sample Purpose	Verification Sand/Beneath Concrete	Verification Sand/Beneath Concrete	Verification Sand/Beneath Concrete			
Date Sampled	8/8/2000	8/8/2000	8/8/2000			
Dute sumpted	99200	0,0,2000	9,9,2000			
PCBs (mg/kg)						
Aroclor -1016	ND(0.10)	ND(0.10)	ND(0.10)			
Aroclor - 1221	ND(0.10)	ND(0.10)	ND(0.10)			
Aroclor - 1232	ND(0.10)	ND(0.10)	ND(0.10)			
Aroclor - 1242	ND(0.10)	ND(0.10)	ND(0.10)			
Aroclor - 1248	ND(0.10)	ND(0.10)	ND(0.10)			
Aroclor - 1254	ND(0.10)	ND(0.10)	ND(0.10)			
Aroclor - 1260	ND(0.10)	ND(0.10)	ND(0.10)			
	, ,	` '	, ,			

TABLE 5.0

ANALYTICAL SUMMARY OF INIDCATOR WIPE, CHARACTERIZATION, AND VERIFICATION SAMPLING IN THE BASEMENT FAN ROOM FORMER PEREGRINE FACILITY
GENESEE TOWNSHIP, MICHIGAN

Confidential under Folla

Confidential under FOIA

12636Rpt17-T5.0.xls LFR Sep 30, 2009 08:54

TABLE 7.0

ANALYTICAL SUMMARY OF INDICATOR WIPE, CHARATERIZATION, AND VERIFICATION SAMPLES FORMER PERECRINE FACILITY GENESEE TOWNSHIP, MICHIGAN

Sample ID Sample Location	W-12636-092899-SM-053 Basement Fan Room	C-12636-113099-MM-187 Fan Room 3	C-12636-113099-MM-188 Fan Room 3	C-12636-113099-MM-189 Fan Room 3	C-12636-113099-MM-190 Fan Room 3	C-12636-113099-MM-191 Fan Room 3
Sample Purpose Date Sampled	Indicator Wipe 9/28/1999	Characterization Concrete Core 11/30/1999	Characterization Concrete Core 11/30/1999	Characterization Concrete Core 11/30/1999	Characterization Concrete Core 11/30/1999	Characterization Concrete Core 11/30/1999
PCBs (mg/kg)						
Aroclor -1016 Aroclor - 1221 Aroclor - 1232 Aroclor - 1242 Aroclor - 1248 Aroclor - 1254 Aroclor - 1260	ND(2.50) ND(2.50) ND(2.50) ND(2.50) ND(2.50) ND(2.50) 7.9	ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) 2.6 0.62	ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) 0.29 ND(0.20)	ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) 0.34 ND(0.20)	ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20)	ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) 0.5 ND(0.20)
Sample ID Sample Location	C-12636-030200-CK-233 Fan Room 3	C-12636-030200-CK-234 Fan Room 3	C-12636-030200-CK-235 Fan Room 3			
Sample Purpose Date Sampled	Verification Concrete Core 3/2/2000	Verification Concrete Core 3/2/2000	Verification Concrete Core 3/2/2000			
PCBs (mg/kg)				NOT		
Aroclor -1016 Aroclor - 1221 Aroclor - 1232 Aroclor - 1242 Aroclor - 1248 Aroclor - 1254 Aroclor - 1260	ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) 0.15 ND(0.20)	ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) O.68 ND(0.20)	ND(0.67) ND(0.67) ND(0.67) ND(0.67) ND(0.67) ND(0.67) ND(0.67)	08:5 ^A		
			30,			

TABLE 8.0 Sep 30, 2009 08:54 ANALYTICAL SUMMARY OF INDICATOR WIPE, VERIFICATION, AND CHARACTERIZATION SAMPLES FROM FAN ROOM 13 FORMER PEREGRINE FACILITY GENESEE TOWNSHIP, MICHIGAN

Sample ID Sample Location	W-12636-092999-MM-063A Fan Room 13	W-12636-092999-MM-063B Fan Room 13	C-12636-113099-MM-193 Fan Room 13	C-12636-113099-MM-194 Fan Room 13	C-12636-113099-MM-195 Fan Room 13	C-12636-113099-MM-196 Fan Room 13
Sample Purpose Date Sampled	Indicator Wipe 9/29/1999	Indicator Wipe 9/29/1999	Confirmation Concrete Core 11/30/1999	Confirmation Concrete Core 11/30/1999	Confirmation Concrete Core 11/30/1999	Confirmation Concrete Core 11/30/1999
PCBs (mg/kg)						
Aroclor -1016 Aroclor - 1221 Aroclor - 1232 Aroclor - 1242 Aroclor - 1248 Aroclor - 1254 Aroclor - 1260	ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) 0.21	ND(0.5) ND(0.5) ND(0.5) ND(0.5) ND(0.5) ND(0.5)	ND(0.2) ND(0.2) ND(0.2) ND(0.2) ND(0.2) ND(0.2) 0.61 ND(0.2)	ND(0.2) ND(0.2) ND(0.2) ND(0.2) ND(0.2) ND(0.2) ND(0.2)	ND(0.2) ND(0.2) ND(0.2) ND(0.2) ND(0.2) ND(0.2) ND(0.2)	ND(0.2) ND(0.2) ND(0.2) ND(0.2) ND(0.2) ND(0.2) ND(0.2)
Sample ID Sample Location	C-12636-113000-MM-197 Fan Room 13	C-12636-113099-MM-198 Fan Room 13	C-12636-030200-CK-236 Fan Room 13	C-12636-030200-CK-237 Fan Room 13	C-12636-030200-CK-238 Fan Room 13	C-12636-030200-CK-239 Fan Room 13
Sample Purpose Date Sampled	Confirmation Concrete Core 11/30/1999	Confirmation Concrete Core 11/30/1999	Verification Concrete Core 3/2/2000	Verification Concrete Core 3/2/2000	Verification Concrete Core 3/2/2000	Verification Concrete Core 3/2/2000
PCBs (mg/kg)		A.	i All Oin Chilling	Λ.		
Aroclor -1016 Aroclor - 1221 Aroclor - 1232 Aroclor - 1242 Aroclor - 1248 Aroclor - 1254 Aroclor - 1260	ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20)	ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20) ND(0.20)	ND(0.67) ND(0.67) ND(0.67) ND(0.67) ND(0.67) O.074 ND(0.67)	ND(0.67) ND(0.67) ND(0.67) ND(0.67) ND(0.67) ND(0.67) 0.43 ND(0.67)	ND(0.67) ND(0.67) ND(0.67) ND(0.67) ND(0.67) ND(0.67) 0.9 ND(0.67)	ND(0.67) ND(0.67) ND(0.67) ND(0.67) ND(0.67) 0.45 ND(0.67)
			209			

12636Rpt17-T8.0

Sample ID Sample Location	WB-12636-101499-SM-135 Bay P-16	C-12636-061200-NEM-306A Bay P-16
Sample Purpose Date Sampled	Wood Block Flooring 10/14/1999	Confirmation Concrete Core 6/12/2000
PCBs (mg/kg)		
Aroclor -1016 Aroclor - 1221 Aroclor - 1232 Aroclor - 1242 Aroclor - 1248 Aroclor - 1254 Aroclor - 1260	ND (0.2) ND (0.2) ND (0.2) ND (0.2) 2.6 ND (0.2) ND (0.2)	ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10)
Sample ID Sample Location	C-12636-061200-NEM-307C Bay P-16	C-12636-061200-NEM-308A Bay P-16
Sample Purpose Date Sampled	Confirmation Concrete Core 6/12/2000	Confirmation Concrete Core 6/12/2000
PCBs (mg/kg)		5A
Aroclor -1016 Aroclor - 1221 Aroclor - 1232 Aroclor - 1242 Aroclor - 1248 Aroclor - 1254 Aroclor - 1260	ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10)	ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10)
Sample ID	C-12636-061200-NEM-309C	C-12636-061200-NEM-310A
Sample Location Sample Purpose Date Sampled	Bay P-16 Confirmation Concrete Core 6/12/2000	Bay P-16 Confirmation Concrete Core 6/12/2000
PCBs (mg/kg)	NT (0.40)	A TT (0.10)
Aroclor -1016 Aroclor - 1221 Aroclor - 1232 Aroclor - 1242 Aroclor - 1248 Aroclor - 1254 Aroclor - 1260	ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10)	ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10)

Sample ID Sample Location	C-12636-061200-NEM-311C Bay P-16	C-12636-061200-NEM-311C Bay P-16
Sample Purpose Date Sampled	Confirmation Concrete Core 6/12/2000	Confirmation Concrete Core 6/12/2000
PCBs (mg/kg)		
Aroclor -1016		ND(0.10)
Aroclor - 1221		ND(0.10)
Aroclor - 1232		ND(0.10)
Aroclor - 1242		ND(0.10)
Aroclor - 1248		ND(0.10)
Aroclor - 1254		ND(0.10)
Aroclor - 1260		ND(0.10)
Sample ID Sample Location	C-12636-061200-NEM-313A Bay P-16	C-12636-061200-NEM-313B Bay P-16
Sample Purpose Date Sampled	Confirmation Concrete Core 6/12/2000	Confirmation Concrete Core 6/12/2000
PCBs (mg/kg)		5A
Aroclor -1016	ND(0.10)	ND(0.10)
Aroclor - 1221	ND(0.10)	ND(0.10)
Aroclor - 1232	ND(0.10)	ND(0.10)
Aroclor - 1242 Aroclor - 1248	ND(0.10) ND(0.10)	ND(0.10) ND(0.10)
Aroclor - 1254	ND(0.10)	ND(0.10)
Aroclor - 1260	ND(0.10)	ND(0.10)
Sample ID Sample Location	C-12636-061200-NEM-313A Bay P-16	C-12636-061200-NEM-313B Bay P-16
Sample Purpose Date Sampled	Confirmation Concrete Core 6/12/2000	Confirmation Concrete Core 6/12/2000
PCBs (mg/kg)		
Aroclor -1016 Aroclor - 1221 Aroclor - 1232 Aroclor - 1242 Aroclor - 1248 Aroclor - 1254 Aroclor - 1260		

ND(0.10	C-12636-061200-NEM-306B Bay P-16	C-12636-061200-NEM-306C Bay P-16	C-12636-061200-NEM-307A Bay P-16
ND(0.10)			
ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
ND(0.10)			
ND(0.10) ND(0.10) ND(0.10)			
C-12636-061200-NEM-308B Bay P-16 Confirmation Concrete Core 6/12/2000 ND(0.10)			
Bay P-16 Bay P-16 Bay P-16 Bay P-16	110 (0.10)	112 (0.10)	112 (0.10)
Bay P-16 Bay P-16 Bay P-16 Bay P-16	C-12636-061200-NEM-308B	C-12636-061200-NEM-3086	C-12636-061200-NEM-309A
ND(0.10)			
ND(0.10)	3		3
ND(0.10)		Confirmation Concrete Core 6/12/2000	V
ND(0.10)			
ND(0.10)		TOUR SOUTH	0.5 P
ND(0.10)	ND(0.10)	ND(0 19)	ND(0.10)
ND(0.10)	ND(0.10)	ND(0.10)	
ND(0.10)			
C-12636-061200-NEM-310B Bay P-16 Confirmation Concrete Core 6/12/2000 ND(0.10)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	140(0.10)	14D(0.10)	140(0.10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-12636-061200-NEM-310B	C-12636-061200-NEM-310C	C-12636-061200-NEM-311A
6/12/2000 6/12/2000 ND(0.10) ND(0.10)	Bay P-16	Bay P-16	Bay P-16
ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10)			
ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10)			
ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10)	ND(0.10)	ND(0.10)	
ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10) ND(0.10)			
ND(0.10) ND(0.10) ND(0.10)	ND(0.10)		
ND(0.10) ND(0.10) ND(0.10)	ND(0.10)	ND(0.10)	
ND(0.10) ND(0.10)			
	ND(0.10)	ND(0.10)	

C-12636-061200-NEM-311C Bay P-16	C-12636-061200-NEM-312A Bay P-16	C-12636-061200-NEM-312B Bay P-16
Confirmation Concrete Core 6/12/2000	Confirmation Concrete Core 6/12/2000	Confirmation Concrete Core 6/12/2000
ND(0.10)	ND(0.10)	ND(0.10)
C-12636-061200-NEM-313C	C-12636-061200-NEM-314A	C-12636-061200-NEM-314B
Bay P-16	Bay P-16	Bay P-16
Confirmation Concrete Core 6/12/2000	Confirmation Concrete Core 6/12/2000	Confirmation Concrete Core 6/12/2000
		0/12/2000
	ND(0.10) ND(0.10) ND(0.10) ND(0.10)	
ND (0.10)	A BUTTO DOGS	
ND(0.10) ND(0.10)	ND(0.10) ND(0.10)	ND(0.10) ND(0.10)
ND(0.10) ND(0.10)	ND(0.10) ND(0.10)	ND(0.10) ND(0.10)
ND(0.10)	ND(0.10)	ND(0.10)
110(0.10)	1112(0.20)	ND(0.10)
ND(0.10)	ND(0.10)	ND(0.10)
ND(0.10)	SND(0.10)	ND(0.10)
C-12636-061200-NEM-313C Bay P-16	C-12636-061200-NEM-314A Bay P-16	C-12636-061200-NEM-314B Bay P-16
Confirmation Concrete Core 6/12/2000	Confirmation Concrete Core 6/12/2000	Confirmation Concrete Core 6/12/2000

C-12636-061200-NEM-307B Bay P-16

Confirmation Concrete Core 6/12/2000

ND(0.10)

ND(0.10)

ND(0.10)

ND(0.10)

ND(0.10)

ND(0.10)

ND(0.10)

C-12636-061200-NEM-309B Bay P-16

Confirmation Concrete Core 6/12/2000

ND(0.10)

ND(0.10)

ND(0.10)

ND(0.10)

ND(0.10)

ND(0.10)

ND(0.10)

C-12636-061200-NEM-311B Bay P-16

Confirmation Concrete Core 6/12/2000

30, 2009 08:5A

C-12636-061200-NEM-312C **Bay P-16**

Confirmation Concrete Core 6/12/2000

ND(0.10)

ND(0.10)

ND(0.10)

ND(0.10)

ND(0.10)

ND(0.10)

ND(0.10)

C-12636-061200-NEM-314C Bay P-16

Confirmation Concrete Core 6/12/2000

Confidential under Follows Sep 30, 2009 08:5A ND(0.10) ND(0.10)ND(0.10)ND(0.10) ND(0.10)ND(0.10)ND(0.10)

C-12636-061200-NEM-314C Bay P-16

Confirmation Concrete Core 6/12/2000