

Imagine the result

RCRA Corrective Action

Corrective Measures Study

Plants 2, 3, and 6 Industrial Land Lansing, Michigan

Plants 2 and 3: EPA ID MID 980 700 827 Plant 6: EPA ID MID 005 356 928

June 2014

ARCADIS

Jackie Saling, PE - MI Senior Chemical Engineer

Joseph A. Quinnan, PE - WI, P.G. Principal Hydrogeologist/Vice President

Amy L. Hoeksema, C.P.G. Certified Project Manager/Senior Vice President

RCRA Corrective Action

Corrective Measures Study

Plants 2, 3, and 6 Industrial Land Lansing, Michigan

Prepared for: RACER Trust

Prepared by: ARCADIS of Michigan, LLC 10559 Citation Drive Suite 100 Brighton Michigan 48116 Tel 810 229 8594 Fax 810 229 8837

Our Ref.: B0064479.0014 B0064480.0014 B0064481.0014

Date: June 2014

Table of Contents

Ex	ecutive S	Summa	ary		1
1.	Introduction				4
	1.1	Correc	ctive Actio	n Background	4
	1.2	Correc	ctive Actio	n Objectives and Goals	5
2. Site Background			und		6
	2.1	Site Lo	ocation		6
	2.2 Geology and Hydrogeology			6	
		2.2.1 Site Stratigraphy		6	
		2.2.2	Site Hy	drogeology	7
			2.2.2.1	Perched Zone	8
			2.2.2.2	Deep Overburden and Weathered Bedrock	8
	2.3	Land l	Jse		9
	2.4 Summary of the Resource Conservation and Recovery Act Facility Investigation			9	
3.	Summary of Corrective Measures Alternatives				
	3.1	Identification of Corrective Measures Alternatives			11
	3.2	3.2 Site-Wide Management Controls			11
	3.2.1 Land Use Restriction		11		
		3.2.2	Ground	water Use Restriction	12
	3.3	Soil			13
		3.3.1	Caps		13
		3.3.2	Targete	ed Excavation	14
	3.4	Groundwater			14
		3.4.1	Monitor	ed Plume Stability	14
			3.4.1.1	Monitoring	14
			3.4.1.2	Infiltration Barrier	15
			3.4.1.3	Restrictions	16
		3.4.2	In-Situ	Chemical Oxidization	16

ARCADIS

Table of Contents

		3.4.3	Hydraulic Control		17
			3.4.3.1	Perched Zone Hydraulic Control	17
			3.4.3.2	Lower 1,4- Dioxane Hydraulic Containment	18
			3.4.3.3	Lower 1,4-Dioxane Aggressive Pump and Treat	18
			3.4.3.4	Lower 1,4-Dioxane Groundwater Recirculation	18
	3.5	Light N	Non-Aqueous Phase Liquid		19
		3.5.1	Сар		19
		3.5.2	Excavation		19
		3.5.3	Light Non-Aqueous Phase Liquid Recovery (Skimming)		20
		3.5.4	Soil Vapor Extraction		20
		3.5.5	Multi-Pl	hase Extraction	21
4.	Evaluation of Corrective Measures Alternatives			22	
5.	Propos	posed Corrective Measures Alternative		24	
	5.1	Land Use Restrictions		24	
	5.2	Groundwater Use Restrictions		25	
	5.3	Monito	Monitored Plume Stability		26
	5.4	Caps		27	
	5.5	Targeted Excavation		28	
	5.6	Lower	Lower 1,4-Dioxine Groundwater Recirculation		29
	5.7	Five-Y	Year Review		
	5.8	Contin	ntingency Strategies		31
6.	Sched	ule			33
7.	References			34	

Table of Contents

Tables

Table 1	RFI Screening Matrix and CMS Applicable Exceedances
Table 2	Corrective Measures Alternatives Screening Matrix
Table 3	Evaluation of Corrective Measures Alternatives
Table 4	Proposed Final Corrective Measures Alternative for Soil, Groundwater, and LNAPL

Figures

Figure	ES-1	Proposed Perched Zone Corrective Measures	
Figure	ES-2	Proposed Lower 1,4-Dioxane Corrective Measures	
Figure	1	Site Location	
Figure	2	Site Layout	
Figure	3	Potential Soil Corrective Measures for Plants 2, 3, and 6	
Figure	4	Potential Groundwater Corrective Measures for Plants 2, 3, and 6 – In-Situ Chemical Oxidation	
Figure	5	Potential Groundwater Corrective Measures for Plants 2 and 3 – Lower 1,4-Dioxane Hydraulic Containment	
Figure	6	Potential Groundwater Corrective Measures for Plants 2 and 3 – Lower 1,4-Dioxane Aggressive Pump and Treat	
Figure	7	Potential Groundwater Corrective Measures for Plants 2 and 3 – Lower 1,4 Dioxane Groundwater Recirculation	
Figure	8	Potential LNAPL Corrective Measures for Plant 2	
Figure	9	Potential LNAPL Corrective Measures for Plant 3	
Figure	10	Proposed Corrective Measures	
Appendices			
А	A RFI Figure and Table References		

- B Advanced Oxidation Process Treatability Test Results
- C LNAPL Conceptual Site Model Decision Tree
- D Interim Corrective Measures Work Plan
- E Corrective Measures Alternative Cost Estimate Back Up

Acronyms and Abbreviations

AOI	area of interest
ARCADIS	ARCADIS of Michigan, LLC
bgs	below ground surface
CMS	Corrective Measures Study
COC	constituent of concern
DC Criteria	Direct Contact Criteria
DW	Drinking Water
FESL	Flammability and Explosivity Screening Level
GSI	Groundwater Surface Water Interface
ISCO	in-situ chemical oxidation
к	hydraulic conductivity
LNAPL	light non-aqueous phase liquid
MDEQ	Michigan Department of Environmental Quality
MPE	multi-phase extraction
Part 201 Criteria	Part 201 Generic Cleanup Criteria
PCB	polychlorinated biphenyl
PFM	passive flux meter
PSIC	Particulate Soil Inhalation Criteria
RACER	Revitalizing Auto Communities Environmental Response

Acronyms and Abbreviations

RCRA	Resource Conservation and Recovery Act
RCRA CMS Report	Resource Conservation Recovery Act Corrective Action Corrective Measures Study
RFI	RCRA Facility Investigation
RFI Phase 2 Report	Resource Conservation and Recovery Act Facility Investigation (RFI) Phase 2 Activities Summary Report
RFI Supplemental Phase 2 Report	RFI Supplemental Phase 2 Activities Summary Report
Site	RACER Trust Lansing Plants 2, 3, and 6 located in Lansing, Michigan
SVE	soil vapor extraction
USEPA	U.S. Environmental Protection Agency
voc	volatile organic compound

ARCADIS

RCRA Corrective Action Corrective Measures Study

Plants 2, 3, and 6 Lansing, Michigan

Executive Summary

This Resource Conservation Recovery Act Corrective Action Corrective Measures Study (RCRA CMS Report) has been prepared on behalf of the Revitalizing Auto Communities Environmental Response Trust for Lansing Plants 2, 3, and 6 located in Lansing, Michigan (Site). This RCRA CMS Report has been developed in accordance with U.S. Environmental Protection Agency (USEPA) guidance (USEPA 2005) and Part 201 of the Michigan Natural Resources and Environmental Protection Act (Act 451, 1994, as amended). The purpose of this RCRA CMS Report is to develop and evaluate corrective measure alternatives based on the findings of the RCRA Facility Investigation (RFI) and to propose the corrective measure(s) to be taken. Part 201 Generic Cleanup Criteria and Screening Levels (Part 201 Criteria) and Site characteristics were used to establish relevant pathways and applicable criteria. Based on this evaluation and the Environmental Response Trust Consent Decree and Settlement Agreement, cleanup goals for the Site will be non-residential criteria, such that residential criteria will not be exceeded off Site unless restrictions are established.

Tables 1 and 2 identify the areas of interest (AOIs) that have been determined to require corrective measures based on the RFI findings and Part 201 Criteria. Table 2 also identifies corrective measures that were evaluated for each of the targeted AOIs. These corrective measures were screened against RCRA's threshold criteria (protection of human health and the environment, attainment of media cleanup objectives, and controlling the sources or demonstrating plume stability [USEPA 2005]). After screening against the threshold criteria, various corrective measures were combined to form corrective measures alternatives. Corrective measures alternatives developed as a result of the screening process were then measured against the following RCRA evaluation criteria as presented in Table 3: long-term reliability and effectiveness; reduction of toxicity, mobility, and volume of waste; shortterm effectiveness; implementation; community acceptance; state acceptance; and cost (USEPA 2005). In addition, sustainability and the Light Non-Aqueous Phase Liquid (LNAPL) Remedial Decision Tree (developed in collaboration with the Michigan Department of Environmental Quality [MDEQ] Technical Assistance Program Support team) were used to evaluate the alternatives.

After assessing the corrective measures alternatives per the above-described process, the proposed final corrective measures alternative for the Site consists of the elements described below. Figures ES-1 and ES-2 illustrate the locations of each element.

Plants 2, 3, and 6 Lansing, Michigan

- Land Use Restrictions: Limit future use for the entire Site to commercial and/or industrial use, requiring Site-wide contaminated soil management, and incorporating Site-wide vapor exposure restrictions. The restrictions will also include subgrade utility restrictions in Areas 2, 5-1, 5-2, 5-5, 5-6, 5-8, and 17 and health and safety requirements for intrusive activities in Areas 2, 5-1, 5-2, 5-3, 5-5, 5-6, 5-8, 16, 17, 18, 19, 20, and 21.
- Groundwater Use Restrictions: Prohibit the use of groundwater for the entire Site for consumption, irrigation, or any other purpose, with the exception of evaluating groundwater, remediation of subsurface contamination, or short-term dewatering for construction purposes.
- Monitored Plume Stability: Implement a Site-wide monitoring program that provides the data to continue to verify plume stability. In addition, surface cover will be maintained/retained (e.g., building slabs, asphalt, concrete) near soil and groundwater impacts to minimize infiltration and maximize the potential for the perched groundwater plume to remain stable and on Site.
- Targeted Excavations: Removal of soils in Areas 5-7, 7, and 9 to address concentrations of constituents of concern (COCs) that represent a direct contact and/or vapor intrusion risk near the property boundary. In addition, removal of these soils will reduce the potential for off-Site migration of the COCs via groundwater. A targeted excavation within Area 5-2 is being completed as an interim corrective measure to remove a former concrete vault and surrounding LNAPL- and polychlorinated biphenyl-impacted soils. The Interim Corrective Measures Work Plan (Appendix D) has been submitted to the MDEQ and USEPA for a coordinated approval and is currently in review.
- Caps: Utilize caps to reduce the potential for exposure to soils exceeding Direct Contact Criteria, Particulate Soil Inhalation Criteria, and to mitigate potential direct contact risks associated with LNAPL exposure. Existing building slabs will be utilized as caps in Areas 5-1, 5-2, 5-3, 5-8, 19, and 21 (with some extensions in Areas 5-2 and 5-3). Existing cover (i.e., existing soil, gravel, concrete, or asphalt) or placement of clean soil will be used as a cap in Areas 2, 5-5, 5-6, 16, 18, and 20.
- Groundwater Recirculation: This remedy would address the lower 1,4-dioxane plume on Plants 2 and 3. The remedy consists of extraction of groundwater from the plume, above-grade treatment, and reinjection of treated water into the plume.

Plants 2, 3, and 6 Lansing, Michigan

Recirculation of the groundwater enhances pore flushing, making the remedy aggressive and reduces the overall remediation timeframe when compared to other pumping alternatives.

The above approach and associated cost estimates are based on current available information and data. As pre-design information is obtained, the corrective measures and costs will be updated accordingly. Corrective measures will be implemented to meet the cleanup goals or until it is determined to be not technically practical and/or cost prohibitive.

As data is collected, it will be evaluated and actions will be recommended to MDEQ as appropriate. However, the proposed corrective measures specifically include that the selected corrective measures will be reviewed to optimize performance in 2018, after 5 years of monitoring have been completed.

Contingency remedies will be considered in the event of the following:

- Ongoing plume stability evaluation shows that one or more groundwater plume(s) attributable to the Site is not stable and migrating off Site above Part 201 Criteria.
- Pre-design testing shows a perched zone source area near the "coliseum" (Plant 3 Area 11) is contributing to the lower 1,4-dioxane plume above the corrective action objectives.
- Pre-design testing shows that groundwater recirculation is not a feasible remedy for the lower 1,4-dioxane plume.
- Performance monitoring of the groundwater recirculation system shows that the corrective action objectives cannot be met technically and/or cost effectively.

The contingency remedies would likely consist of corrective measures already evaluated in this RCRA CMS Report, as they are considered relevant and applicable methods to meet the corrective action objectives, but could include other measures based on the available information at that time. In the event that a contingency measure is required, additional evaluation and pre-design activities may be required to determine the appropriate corrective measure(s). The Corrective Measures Implementation Work Plan (or subsequent reports) will present these evaluation and pre-design activities, as well as updated cost estimates.

ARCADIS

RCRA Corrective Action Corrective Measures Study

Plants 2, 3, and 6 Lansing, Michigan

1. Introduction

This Resource Conservation Recovery Act Corrective Action Corrective Measures Study Report (RCRA CMS Report) has been prepared on behalf of the Revitalizing Auto Communities Environmental Response (RACER) Trust for Lansing Plants 2 and 3 (U.S. Environmental Protection Agency [USEPA] ID MID 980 700 827) and Plant 6 (USEPA ID MID 005 356 928) located in Lansing, Michigan (Site). RACER Trust was established and assumed the rights, title, and interest of Motors Liquidation Company in and to the Site pursuant to an Environmental Response Trust Consent Decree and Settlement Agreement ("Settlement Agreement") entered by the U.S. Bankruptcy Court for the Southern District of New York on March 29, 2011, in the case of *In re Motors Liquidation Company*, etc. et al, Debtors, Case No. 09-50026 (REG), among the Debtors; the United States of America; certain states, including the State of Michigan; the Saint Regis Mohawk Tribe; and EPLET, LLC, (not individually but solely in its representative capacity as Administrative Trustee of RACER Trust).

This RCRA CMS Report has been developed in accordance with USEPA guidance (USEPA 2005) and Part 201 of the Michigan Natural Resources and Environmental Protection Act (Act 451, 1994, as amended). The purpose of this RCRA CMS Report is to develop and evaluate corrective measures alternatives and recommend a corrective measures alternative for the Site that meets the corrective action objectives, RCRA evaluation criteria, and overall Site strategy. Figure 1 shows the location of the Site. Figure 2 shows the Site Layout.

1.1 Corrective Action Background

From 2011 through 2013, ARCADIS of Michigan, LLC (ARCADIS) completed Phases 1 and 2 of the RCRA Facility Investigation (RFI) at Plants 2, 3, and 6. Phase 1 of the RFI targeted areas of interest (AOIs) identified at the Site based on historical land use and previous investigation results. The AOIs investigated during Phase 1 were agreed upon by RACER Trust and the Michigan Department of Environmental Quality (MDEQ) as the most likely areas of the Site to be impacted by former Site activities. Based on the results of Phase 1, ARCADIS completed Phase 2 of the RFI to characterize and delineate soil and groundwater impacts identified during Phase 1. The results of the RFI were summarized in the *Resource Conservation and Recovery Act Facility Investigation (RFI) Phase 1 Activities Summary Report* (ARCADIS 2012), the *Resource Conservation and Recovery Act Facility Investigation (RFI) Phase 2 Activities Summary Report* (RFI Phase 2 Report; ARCADIS 2013), and the *RFI*

Plants 2, 3, and 6 Lansing, Michigan

Supplemental Phase 2 Activities Summary Report (RFI Supplemental Phase 2 Report; ARCADIS 2014a).

ARCADIS has prepared this RCRA CMS Report on behalf of RACER Trust to present the identification and evaluation of corrective measures alternatives and describe the proposed corrective measures alternative for the Site for MDEQ consideration. This RCRA CMS Report references information that can be found in the RFI Phase 2 Report (ARCADIS 2013), RFI Supplemental Phase 2 Report (ARCADIS 2014a), *Preliminary Groundwater Geochemical and Plume Stability Assessment* (ARCADIS 2014b), *Revised Interim Groundwater Monitoring Work Plan* (ARCADIS 2014c), *Passive Flux Meter and Transducer Study Memorandum* (ARCADIS 2014d), and in other documents submitted to the MDEQ during the RCRA Corrective Action process as cited herein.

1.2 Corrective Action Objectives and Goals

The corrective action objective for the Site is to protect human health and the environment by achieving industrial/commercial closure (i.e., non-residential closure per MDEQ standards) in accordance with the Settlement Agreement.

Part 201 Generic Cleanup Criteria and Screening Levels (Part 201 Criteria) and Site characteristics were used to establish relevant pathways and applicable criteria. Based on this evaluation and the Settlement Agreement, cleanup goals for the Site will be non-residential criteria, such that residential criteria will not be exceeded off Site unless restrictions are established. Corrective measures alternatives will be implemented to meet the cleanup goals or until it is determined to be cost prohibitive.

Plants 2, 3, and 6 Lansing, Michigan

2. Site Background

2.1 Site Location

The Site (Plants 2, 3, and 6) is located in western Lansing and occupies an area of approximately 250 acres. Figure 1 shows the locations of Plants 2, 3, and 6 relative to the greater Lansing area. The construction of the three plants was completed between the early 1900s (Plant 2), 1920s (Plant 6), and the 1930s (Plant 3), and operations were focused on various aspects of automobile assembly and manufacturing. Plants 2 and 3 are located in Lansing Township, and Plant 6 is located within the City of Lansing. The *Current Conditions Report* (ARCADIS 2008) provides a detailed description of the Site's history and operations.

2.2 Geology and Hydrogeology

The following provides a brief description of the Site hydrogeologic setting for reference. Additional details, including cross-sections and output from a three-dimensional model, are available as part of the RFI Phase 2 Report (ARCADIS 2013) and RFI Supplemental Phase 2 Report (ARCADIS 2014a).

2.2.1 Site Stratigraphy

The complex sedimentary environment present at the Site includes a thick sequence of "glaciofluvial" and glacial till sediments consisting predominantly of clays and silts, with discontinuous layers of sand, silty sand, and occasional gravel. Appendix A provides the RFI cross-sections for reference. For discussion purposes, the geology of the Site is divided into six general hydrostratigraphic units (from shallow to deep):

- Shallow fill Typically 1 to 10 feet thick consisting of sand and gravel mixes brought to the Site as part of construction activities. The shallow fill occasionally contains shallow perched water when present above a clay layer.
- Interbedded zone Typically interbedded soft clay, glacial tills, and isolated lenses of silt and sand. Sand and silt lenses are typically saturated, forming thin discontinuous zones of perched groundwater. This unit is primarily encountered on Plants 2, 6, and the southern portion of Plant 3. Saturated soils within the shallow fill and interbedded zone are generally referred to as the "perched water" or collectively as the "perched zone."

Plants 2, 3, and 6 Lansing, Michigan

- Glacial till A compact, dense, and mostly dry silt/sand/gravel/clay mix that creates a vertical barrier to groundwater flow and separates the perched water above from the deep overburden and weathered bedrock. Occasionally contains layers of saturated sand, especially in the central portion of Plant 6.
- Deep overburden Consists of a mix of sand layers and sand-silt-clay till located above the bedrock. The deep overburden is dry beneath the glacial till but becomes saturated where encountered (deeper than 65 to 70 feet below ground surface [bgs]). Saturated deep overburden is only observed at Plant 3 where a southwest-northeast trending bedrock valley dips below the regional water table.
- Weathered bedrock The transition from glacial overburden to consolidated rock is gradational, with a weathered bedrock layer typically ranging from 5 to 20 feet thick. The weathered bedrock zone, especially the weathered sandstone portion, is a preferential pathway for groundwater flow. Weathered bedrock is typically encountered between 60 to 75 feet bgs, except in the bedrock valley located across the northwestern portion of Plant 3, where bedrock can be encountered at depths greater than 100 feet bgs.
- Bedrock Consists of the Grand River and Saginaw Formations. The Grand River Formation is a fine- to medium-grained sandstone that occupies erosional valleys within the Saginaw Formation (United States Geological Survey and National Parks Service 2000). Beneath the Site, the Saginaw Formation consists primarily of fine-grained sandstone with shale lenses of varying thickness. More significant layers of shale are encountered within the Saginaw Formation that can be up to 15 feet thick.

2.2.2 Site Hydrogeology

There are two water-bearing zones at the Site relevant to this RCRA CMS Report: 1) the perched water – occurring within the fill, interbedded zone, or occasionally within the glacial till and 2) the deep overburden and weathered bedrock where the lower 1,4-dioxane plume is present. The RFI Phase 2 Report (ARCADIS 2013) and RFI Supplemental Phase 2 Report (ARCADIS 2014a) provides additional detail regarding the water-bearing zones. The following provides a summary of the perched zone and deep overburden and weathered bedrock.

Plants 2, 3, and 6 Lansing, Michigan

2.2.2.1 Perched Zone

Due to the predominance of clay-rich sediments, the interbedded zone has an overall low permeability and is characterized by isolated sand zones within layers of silt and clay. The lower hydraulic conductivity (K) clays and silts result in high horizontal gradients and reflect the discontinuous nature of the conductive sand zones.

Slug tests were completed at several locations within the perched zone. The results of the slug testing indicate that wells screened within permeable units of the perched zone have a K ranging from 0.07 to 40 feet per day. Based on the range of K, variable hydraulic gradients, and porosity associated with the sand-silt-clay soils, it is expected that groundwater flow velocities will range several orders of magnitude in the heterogeneous perched zone.

2.2.2.2 Deep Overburden and Weathered Bedrock

The lower 1,4-dioxane plume is present in the deep overburden and weathered bedrock. The lower 1,4-dioxane plume, extending from the Plant 3 coliseum area to the south-central portion of Plant 2, has been delineated with numerous vertical aquifer profiling borings and monitoring wells. Groundwater elevation measurements collected from the monitoring wells installed along the lower 1,4-dioxane plume reflect a complex heterogeneous aquifer structure. Due to large vertical gradients observed at certain areas of the Site, the observed groundwater elevation is variable depending on the specific depth of a well. Based on the evaluation presented in the RFI Phase 2 Supplemental Report (ARCADIS 2014a), as well as analysis completed in March and April 2014 utilizing passive flux meters (PFMs; EnviroFlux, Inc.), the groundwater flow along the lower 1,4-dioxane plume appears southerly, consistent with the plume morphology. The *Passive Flux Meter and Transducer Study Memorandum* (ARCADIS 2014d) presents a summary of the PFM study and results.

The measured hydraulic conductivity of the three aquifer hydrostratigraphic units ranges over several orders of magnitude. This result, coupled with the variability of the hydraulic gradient, resulted in a large range of possible groundwater velocities for the aquifer as reported in the RFI Phase 2 Supplemental Report (ARCADIS 2014a). Additional characterization of groundwater velocity was completed during the PFM study completed in March and April 2014. The actual measured groundwater velocity within the deep overburden and weathered bedrock ranges from 25 to 80 feet per year. Based on the length of the lower 1,4-dioxane plume (approximately 2,400 feet), the

Plants 2, 3, and 6 Lansing, Michigan

plume has been in place, or otherwise migrating, for a minimum of 30 years (ARCADIS 2014d).

In addition to the PFM study, a transducer survey was completed at the Site to evaluate the hydraulic connection between the monitoring wells installed along the lower 1,4-dioxane plume and the municipal pumping wells. The results of the study show a hydraulic response at several bedrock wells located near the lower 1,4-dioxane source area. The highest amplitude of response was observed due to the pumping of Lansing Township Well #4 located approximately 1,000 feet west of the coliseum area. However, the bedrock at the Site is not impacted and operation of the municipal wells does not appear to effect the distribution of the lower 1,4-dioxane plume (ARCADIS 2014d).

2.3 Land Use

Currently, the Site is vacant, fenced, and a majority of the buildings have been demolished. The Site is currently zoned as heavy industrial, and is likely to be redeveloped for industrial and commercial uses in the future. It is surrounded by residential and commercial properties, parks, and school properties. During the RFI, the Site was evaluated based on a current and future non-residential use. Conditions at the Site were evaluated based on potentially exposed industrial and construction workers. Off-site properties were evaluated based on a residential exposure scenario.

2.4 Summary of the Resource Conservation and Recovery Act Facility Investigation

The Resource Conservation and Recovery Act Facility Investigation (RFI) Phase 1 Activities Summary Report (ARCADIS 2012), the RFI Phase 2 Report (ARCADIS 2013), and the RFI Supplemental Phase 2 Report (ARCADIS 2014a) summarized the results of the RFI. The RFI to date has adequately characterized the nature and extent of impacts, as well as relevant exposure pathways associated with the Site. The *Preliminary Geochemistry and Plume Stability Assessment* (ARCADIS 2014b) provided additional analysis of site groundwater conditions. Table 1 summarizes the basis for certain exceedances identified during the RFI not addressed as part of the CMS. Based on the work completed to date, the following will be addressed as part of this CMS:

• Impacts in the perched zone, including:

Plants 2, 3, and 6 Lansing, Michigan

- Soil exceedances of Direct Contact Criteria (DC Criteria) and Particulate Soil Inhalation Criteria (PSIC) in Areas 2, 5-1, 5-2, 5-3, 5-8, 5-5, 5-6, 7, 9, 16, 18, 19, 20 and 21.
- Vapor intrusion exceedances in soil and groundwater across the Site, with more aggressive options considered in Areas 5-7, 7, and 9, where concentrations of volatile organic compounds (VOCs) in soil and groundwater represent a vapor intrusion risk near the property boundary.
- Light non-aqueous phase liquid (LNAPL) present in the central portion of Plant 2 (Area 5-2). LNAPL consists of cutting oil that contains elevated concentrations of VOCs and polychlorinated biphenyls (PCBs) in some areas.
- VOC impacts in perched water associated with LNAPL at Plant 2.
- o 1,4-Dioxane impacts in perched water associated with LNAPL at Plant 2.
- LNAPL present within the shallow fill material in the north central portion of Plant 3 (Area 17) associated with a former underground storage tank farm. The LNAPL consists of gasoline with associated soil and groundwater impacts consisting primarily of benzene, toluene, ethylbenzene, and xylenes.
- VOCs in perched water associated with the LNAPL at Plant 3 (Area 17).
- VOC criteria exceedances in soil and perched water at locations throughout the Site.
- Metals exceedances in perched water where metals are known to be Siterelated, in areas near Site boundaries, and in areas where the preliminary stability assessment showed increasing concentration trends (Areas 1, 5-5, 5-6, 5-7, 5-8, 6, 7, 9, 14, 17, and 19).
- Lower 1,4-dioxane plume at Plants 2 and 3. The source area for the lower 1,4-dioxane plume is located near the "coliseum" on the southwestern portion of Plant 3 (Area 11). Other VOCs, including benzene and acetone, exceed criteria at sporadic locations generally coincident with the lower 1,4-dioxane plume. Because the benzene and acetone impacts are co-located with 1,4-dioxane, the CMS strategy for mitigation of 1,4-dioxane will also address benzene and acetone.

Plants 2, 3, and 6 Lansing, Michigan

3. Summary of Corrective Measures Alternatives

There are areas at the Site that exceed MDEQ Part 201 Criteria, including Residential Drinking Water (DW) Criteria, Residential DW Protection Criteria, Groundwater/Surface Water Interface (GSI) Criteria, GSI Protection Criteria, Non-Residential Draft Groundwater Concentrations for Vapor Intrusion, Non-Residential Soil Volatilization to Indoor Air Inhalation Criteria, Non-Residential PSIC, Flammability and Explosivity Screening Levels (FESLs), and/or Non-Residential DC Criteria. Tables 1 and 2 provide a summary of the applicable exceedances for each Plant, Area, and AOI based on the results of the RFI, and corrective measures alternatives were developed to address these applicable exceedances.

3.1 Identification of Corrective Measures Alternatives

Corrective measures for the applicable exceedances of Part 201 Criteria at the Site are detailed in the sections below and summarized in Table 2. The corrective measures have been screened against RCRA's threshold criteria (USEPA 2005), which are as follows:

- Protection of human health and the environment
- Attainment of media cleanup objectives
- · Controlling the sources or demonstrating plume stability

After screening against the threshold criteria, the various corrective measures have been combined to form corrective measures alternatives for further evaluation; these alternatives are presented in Table 2.

3.2 Site-Wide Management Controls

3.2.1 Land Use Restriction

The exposure assessment discussed in Section 3 of the RFI Phase 2 Report (ARCADIS 2013) assumed that future land use at the Site would be industrial and/or commercial under a non-residential closure scenario. To reduce the likelihood of a change in land use and to address other potential exposures, a Restrictive Covenant would be recorded on the deeds and would cover the following:

Plants 2, 3, and 6 Lansing, Michigan

- Site-wide Land Use Restriction: Land use at the entire Site would be limited to industrial and/or commercial uses (non-residential).
- Site-wide Contaminated Soil Management: All Site soils, media, and/or debris will be managed in accordance with the applicable requirements of RCRA and all other relevant state and federal laws.
- Site-wide Vapor Intrusion Exposure Restriction: Restricts the construction of new structures, unless such construction incorporates engineering controls designed to eliminate the potential for subsurface vapor-phase hazardous substances to migrate into the new structure at concentrations greater than applicable criteria; or, unless prior to construction of any structure, an evaluation of the potential for any hazardous substances to volatilize into indoor air assures the protection of persons who may be present in the buildings and is in compliance with all relevant federal, state, and local laws.
- Subgrade Utility Restrictions: Restricts the construction of subgrade utilities in Areas 2, 5-1, 5-2, 5-5, 5-6, 5-8, and 17, unless the construction incorporates engineering controls designed to eliminate the potential for perched water to enter and/or migrate along the utility corridor or for the utility to release fluids that could infiltrate through the subsurface and exacerbate impacts to groundwater.
- Health and Safety Requirement for Intrusive Activities in Areas 2, 5-1, 5-2, 5-3, 5-5, 5-6, 5-8, 7, 9, 16, 17, 18, 19, 20, and 21: Intrusive excavation activities will be conducted following a Site-specific Health and Safety Plan prepared by qualified professionals and intrusive activities are conducted by appropriately trained personnel.

3.2.2 Groundwater Use Restriction

The Restrictive Covenant would also include Site-wide groundwater use restrictions for perched, deep overburden, and bedrock groundwater. The restrictions will include prohibiting the construction and use of wells or other devices on the Site to extract groundwater for consumption, irrigation, or any other purpose, except as provided below:

• Wells and other devices constructed as part of a response activity for the purpose of evaluating groundwater quality or to remediate subsurface contamination associated with a release of hazardous substances into the environment are

Plants 2, 3, and 6 Lansing, Michigan

permitted provided the construction of the wells or devices complies with all applicable local, state, and federal laws and regulations and does not cause or result in a new release, exacerbation of existing contamination, or any other violation of local, state, or federal laws or regulations.

 Short-term dewatering for construction purposes is permitted provided the dewatering, including management and disposal of the groundwater, is conducted in accordance with all applicable local, state, and federal laws and regulations and does not cause or result in a new release, exacerbation of existing contamination, or any other violation of local, state, and federal environmental laws and regulations.

3.3 Soil

3.3.1 Caps

Caps have been evaluated as potential corrective measures for soil exceedances of DC Criteria and PSIC. In Areas 5-1, 5-2, 5-3, 5-8, 19, and 21, existing building slabs currently in place cover (or partially cover) the DC Criteria and PSIC exceedances. Existing surface cover would be extended to cover the entire area of exceedances in Areas 5-2 and 5-3.

In other areas of the Site with soil exceedances of DC Criteria and PSIC where existing building slabs are not present (Areas 2, 5-5, 5-6, 7, 9, 16, 18, and 20), capping would include either placement of a clean surface cover (e.g., soil, gravel) or the utilization of an existing cover (e.g., sufficient existing soil/gravel, concrete, asphalt) to prevent exposure. If existing concrete and/or asphalt is present, it will be inspected and repaired/replaced as needed to prevent exposure. Figure 3 shows the proposed locations of the caps to be used as a potential corrective measure for DC Criteria and PSIC exceedances.

If capping were the (or part of the) selected corrective measures alternative, a Restrictive Covenant would be filed with the deeds to include prohibiting the removal, excavation, or other intrusive activity that could affect the integrity of the caps, except during short-term construction or repair projects, or for purposes of further treating or remediating the subject contamination. In any excavation area or area where other intrusive activities (i.e., removing, altering, or disturbing the caps) that could affect the integrity of the cap have occurred, the cap must be replaced with a cover that provides at least an equivalent degree of protection as the original cap. Repair and/or

Plants 2, 3, and 6 Lansing, Michigan

replacement of the cap would be required unless additional sampling is conducted that demonstrates that a cap in the area is no longer necessary.

3.3.2 Targeted Excavation

Targeted excavation and off-site disposal at a licensed disposal facility was identified as a potentially feasible corrective measure in locations with soil exceedances of DC Criteria and PSIC, including Areas 2, 5-1, 5-2, 5-3, 5-5, 5-6, 5-8, 7, 9, 16, 18, 19, 20, and 21. This option may also include additional characterization to refine the proposed excavation area, if deemed necessary. Figure 3 shows the proposed locations of the excavations to be used as a potential corrective measure for DC Criteria and PSIC exceedances.

Targeted excavation was also considered for Areas 2, 5-7, 7, 9, and 11 where concentrations of constituents of concern (COCs) represent a direct contact and/or vapor intrusion risk near the property boundary. Removal of these soils would also reduce the potential for off-site migration of COCs via groundwater.

3.4 Groundwater

3.4.1 Monitored Plume Stability

Monitored plume stability has been identified as a potential Site-wide corrective measure to meet the corrective action objective. This corrective measure includes ongoing groundwater monitoring to collect the necessary data for evaluating trends and verifying the stability of groundwater impacts, as well as maintaining and retaining existing surface cover (e.g., building slabs, asphalt, concrete), to minimize infiltration and maximize the potential for the plume to remain stable and on Site.

3.4.1.1 Monitoring

If monitored plume stability was the (or part of the) selected corrective measure, ongoing groundwater monitoring would be completed to collect the necessary data for evaluating trends and verifying the stability of impacts. Specifically, data collected during groundwater monitoring would be used to:

• Verify the stability of the perched 1,4-dioxane and VOCs.

Plants 2, 3, and 6 Lansing, Michigan

- Further evaluate metals in areas near Site boundaries, in areas where metals are known to be Site-related (chromium in Area 14), and in areas where the preliminary stability assessment showed increasing concentration trends.
- Determine the stability of 1,4-dioxane in the deep overburden and weathered bedrock.
- Detect vertical or horizontal migration of COCs via a network of sentinel wells.
- Monitor LNAPL thickness in monitoring wells at the Site to verify LNAPL is not migrating.
- Verify that changes to the Site storm sewer system and degradation of slabs across the Site do not result in VOCs, 1,4-dioxane, or metals leaving the Site via the storm sewer system at levels that may impact surface water.

Following each sampling event, ARCADIS would review the analytical results and determine if adjustments need to be made to the monitoring plan. In 2018, after 5 years of monitoring, a comprehensive plume stability analysis would be completed to verify plume stability and optimize the monitoring plan.

3.4.1.2 Infiltration Barrier

Removal of the existing surfaces at the Site has the potential to negatively impact plume stability, as it will result in an immediate increase in recharge to groundwater. Therefore, monitored plume stability includes retaining the existing surface cover (e.g., building slabs, concrete, asphalt) near groundwater impacts to limit infiltration in conjunction with ongoing groundwater monitoring. Two areas of existing building slabs located directly over source material would be maintained to their approximate current condition. Figure 4 identifies the areas for surface cover retention and maintenance.

All surface cover near groundwater impacts but not directly over source areas would be retained (i.e., not removed) but not maintained as part of corrective measures. Slow degradation of this surface cover would result in small changes in infiltration over time and be less likely to negatively impact plume stability. The ongoing groundwater monitoring program would be used to evaluate potential negative impacts on plume stability related to the degradation of the surface cover. Further, future redevelopment at the Site could replace or otherwise account for this surface cover.

Plants 2, 3, and 6 Lansing, Michigan

3.4.1.3 Restrictions

If monitored plume stability is selected as a corrective measures alternative or element of the corrective measures alternative, a Restrictive Covenant would be filed with the deeds to prohibit any activity that would interfere with the function of, or obstruct access to, any monitoring wells and devices located on site or provide for acceptable replacement of any monitoring well. In addition, the Restrictive Covenant would prohibit any excavation or other intrusive activity that could affect the integrity of the surface cover over the source areas, except during short-term construction or repair projects or for purposes of further treating or remediating the subject contamination. Any excavation or other intrusive activity, including removing, altering, or disturbing the surface cover over source areas that could affect the integrity of the surface cover must include the use of engineering controls to prevent the infiltration of water into the contaminated soil underlying the barrier until the existing surface cover is repaired or replaced. The surface cover over source areas must be repaired or replaced with a cover that provides at least an equivalent degree of protection as the original. Repair and/or replacement of the surface cover over source areas would be required unless it is determined that surface cover in the area is no longer necessary to limit infiltration.

3.4.2 In-Situ Chemical Oxidization

In-situ chemical oxidation (ISCO) has been identified as part of a potential corrective measures alternative for Areas 9 and 11 for source treatment. ISCO was not considered for areas with LNAPL. Generally, oxidant reactions occur in the dissolved phase and do not directly treat LNAPL. Results of the RFI indicate that, where present, LNAPL is generally the source of dissolved-phase impacts. Therefore, if LNAPL cannot be effectively treated with ISCO, any temporary dissolved-phase treatment will likely rebound due to the ongoing presence of LNAPL.

For Area 9, ISCO would consist of injection of a chemical oxidant through permanent injection wells targeting the area where groundwater concentrations of xylenes exceed FESLs and Non-Residential Soil Volatilization to Indoor Air Inhalation Criteria. This option would include additional characterization to refine the proposed injection area, as well as field injection pilot testing to further evaluate the feasibility prior to full-scale application. Figure 4 shows the proposed location for ISCO to be used as a potential corrective measure for FESL exceedances in Area 9.

For Area 11, ISCO would consist of injection of a chemical oxidant through permanent injection wells targeting the 1,4-dioxane source area where high groundwater

Plants 2, 3, and 6 Lansing, Michigan

concentrations are contributing to the lower 1,4-dioxane plume. This option would include additional characterization to refine the proposed injection area, as well as field injection pilot testing to further evaluate the feasibility prior to full-scale application. Figure 4 shows the proposed location for ISCO to be used as a potential corrective measure for source mass reduction in Area 11.

3.4.3 Hydraulic Control

Hydraulic control has been considered as part of a corrective measures alternative for perched impacts and the lower 1,4-dioxane groundwater plume. Based on the range of contaminants at the Site, all hydraulic control options (perched or lower) would require an above-grade treatment system that may include equalization, aeration, pH adjustment, filtration, air stripping, advanced oxidation, ion exchange, and granular-activated carbon. The treatment system effluent would be discharged in accordance with a National Pollutant Discharge Elimination System permit or publicly owned treatment works permit.

If hydraulic control is selected to address the 1,4-dioxane plume(s), it would be recommended that pre-design testing (e.g., treatability testing, pump testing) be implemented prior to full-scale application to verify design parameters, performance, and costs. Preliminary treatability testing has been completed for the lower 1,4-dioxane plume to determine the appropriate advanced oxidation treatment technology to meet discharge standards (Appendix B).

The perched water and lower 1,4-dioxane plume have been evaluated separately as discussed in the following sections.

3.4.3.1 Perched Zone Hydraulic Control

Hydraulic control has been considered as part of a corrective measures alternative for the perched zone. Preliminary plume stability assessment results indicate impacts present in perched groundwater are stable. However, perched hydraulic control could be implemented if ongoing groundwater sampling identifies certain plumes are not stable.

For the purposes of this RCRA CMS Report, the area for perched hydraulic control has been assumed to be all locations near property boundaries where perched impacts are present. However, any hydraulic control recovery and treatment would be designed to address the specific shallow plumes that are not stable and where restrictions are not

Plants 2, 3, and 6 Lansing, Michigan

possible. Pumping wells would only be located near the property boundaries to prevent off-site migration, where applicable and where restrictions are not possible.

3.4.3.2 Lower 1,4- Dioxane Hydraulic Containment

Hydraulic containment has been considered as a corrective measure alternative for the lower 1,4-dioxane plume in groundwater. Hydraulic containment would be composed of pumping wells located at Plant 2 near the downgradient (i.e., southern) edge of the lower 1,4-dioxane plume to prevent off-site migration. Figure 5 shows a potential conceptual layout for hydraulic containment extraction wells to be used as a potential corrective measure for the lower 1,4-dioxane plume.

3.4.3.3 Lower 1,4-Dioxane Aggressive Pump and Treat

Aggressive pump and treat has been considered a corrective measures alternative for the lower 1,4-dioxane plume. Aggressive pump and treat would be composed of pumping wells located at Plant 2 near the downgradient edge of the lower 1,4-dioxane plume to prevent off-site migration. In addition, pumping wells would be located along the spine of the plume and in the source area located on Plant 3. Pumping along the entire the plume increases the aggressiveness of the corrective measure and reduces the overall operational timeframe when compared to the containment-only option. Figure 6 shows a potential corrective measure for the lower 1,4-dioxane plume.

3.4.3.4 Lower 1,4-Dioxane Groundwater Recirculation

Groundwater recirculation has been considered a corrective measures alternative for lower 1,4-dioxane plume. The remedy consists of extraction of groundwater from the plume via extraction wells, above-grade treatment of groundwater, and reinjection of treated groundwater back into the plume via injection wells. Recirculation of the groundwater enhances pore flushes and mass removal, making the remedy more aggressive and a shorter timeframe when compared to other pumping-only alternatives. Figure 7 shows a potential conceptual layout for groundwater recirculation injection and extraction wells to be used as a potential corrective measure for the lower 1,4-dioxane plume.

Plants 2, 3, and 6 Lansing, Michigan

3.5 Light Non-Aqueous Phase Liquid

Corrective measures to address LNAPL at the Site have been evaluated as part of following the LNAPL Conceptual Site Model Decision Tree, which was developed in collaboration with the MDEQ Technical Assistance Program Support team. Appendix C provides evaluations utilizing the LNAPL Conceptual Site Model Decision Tree for Areas 5-2 and 17. The following sections detail the corrective measures evaluated for LNAPL.

3.5.1 Cap

Caps have been evaluated as potential corrective measures for the areas with LNAPL to limit infiltration and reduce the potential of exposure. For Area 5-2, capping would include preserving the current condition of the existing surface cover (e.g., building slabs, concrete, asphalt) with some extension to cover the LNAPL footprint. LNAPL in Area 17 is currently covered by concrete and asphalt. Figures 8 and 9 show the proposed cap areas for Area 5-2 and Area 17, respectively.

If capping were the (or part of the) selected corrective measures alternative, a Restrictive Covenant would be filed with the deeds to include prohibiting the removal, excavation, or other intrusive activity that could affect the integrity of the caps, except during short-term construction or repair projects or for purposes of further treating or remediating the subject contamination. In any excavation area or area where other intrusive activities (e.g., removing, altering, disturbing the caps) that could affect the integrity of the cap have occurred, the cap must be replaced with a cover that provides at least an equivalent degree of protection as the original cap. Repair and/or replacement of the caps would be required unless additional evaluation is conducted that demonstrates that a cap in the area is no longer necessary.

3.5.2 Excavation

Excavation and off-site disposal at a licensed disposal facility to remove LNAPL was evaluated as part of a potentially feasible corrective measures alternative for Areas 5-2 and 17. Two alternatives for the excavation option were considered: 1) removal of all LNAPL impacted soils and 2) targeted excavation of LNAPL-impacted soils. For the first alternative, the excavation would extend until all LNAPL was removed. For the targeted excavation option in Area 5-2, the excavation would be limited to specific locations within the LNAPL that have the highest fraction of VOCs to eliminate ongoing potential sources to groundwater. For the targeted excavation option in Area 17, the

Plants 2, 3, and 6 Lansing, Michigan

excavation would be limited to the location where LNAPL is present in shallow soils (i.e., less than 5 feet below ground surface). A targeted excavation within Area 5-2 is being completed as an interim corrective measure to remove a former concrete vault and surrounding LNAPL- and PCB-impacted soils. The Interim Corrective Measures Work Plan is included in Appendix D. The work plan has been submitted to the MDEQ and USEPA for a coordinated approval and is currently in review.

If excavation were the (or part of the) selected corrective measures alternative, additional characterization to refine the proposed excavation area would be completed, if deemed necessary. Figure 8 shows the proposed excavation locations and the planned interim measure excavation in Plant 2, Area 5-2, and Figure 9 shows the proposed excavation locations in Plant 3, Area 17.

3.5.3 Light Non-Aqueous Phase Liquid Recovery (Skimming)

LNAPL skimming has been evaluated to remove LNAPL to the extent practicable. LNAPL skimming would involve installation of skimmers (i.e., belt skimmers or skimmer pumps) in permanent recovery wells to remove free-phase LNAPL that collects in wells. LNAPL would be transferred to an above-grade storage tank or drum and removed and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. Figures 8 and 9 show the proposed LNAPL skimming areas for Area 5-2 and Area 17, respectively.

3.5.4 Soil Vapor Extraction

Soil vapor extraction (SVE) has been evaluated as an appropriate technology to volatilize and enhance aerobic degradation of LNAPL in Area 17 (gasoline) to mitigate compositional concerns of LNAPL. The LNAPL present in Area 5-2 consists of cutting oil with limited volatile components; therefore, SVE has not been evaluated for Area 5-2.

In Area 17, SVE would consist of installation of SVE wells across the perched water table to draw air across the surface of LNAPL to volatize and enhance aerobic degradation of the LNAPL. Pilot testing would be completed to determine the appropriate well spacing, extraction flow rates, wellhead vacuum, extraction equipment requirements, and air treatment requirements (if any). An air permit would be obtained, if required. Figure 9 shows the proposed SVE area for Area 17.

Plants 2, 3, and 6 Lansing, Michigan

3.5.5 Multi-Phase Extraction

Multi-phase extraction (MPE) has been evaluated as a potential corrective measure to remove LNAPL from Areas 5-2 and 17 to the extent practicable, reduce volatile constituent concentrations, and mitigate compositional concerns of the LNAPL. Figures 8 and 9 show the proposed MPE areas for Area 5-2 and Area 17, respectively.

MPE would involve the installation of extraction wells to recover LNAPL and perched groundwater by pumping or high vacuum extraction. Soil vapor would also be removed to enhance recovery of the LNAPL and promote volatilization and aerobic biodegradation, when applicable. The groundwater and LNAPL would be separated above grade and the groundwater would be treated and discharged in accordance with a National Pollutant Discharge Elimination System permit or publicly owned treatment works permit.

Based on the range of contaminants at the Site, the above-grade treatment system may include equalization, aeration, pH adjustment, filtration, air stripping, advanced oxidation, ion exchange, and granular-activated carbon. Treatability testing would be required to determine the appropriate treatment technologies to meet the standards.

If groundwater treatment is required to address 1,4-dioxane in recovered groundwater, it is recommended that an extended field-scale pilot test of a unit treatment system be implemented prior to Site-wide application to verify long-term performance and costs, as operating requirements and costs can be significant for advanced oxidation process treatment units.

Recovered LNAPL would be removed and disposed in accordance with applicable requirements of RCRA and all other relevant federal, state and local laws. Pilot testing would be completed to determine the appropriate well spacing, extraction flow rates, wellhead vacuum, extraction equipment requirements, and air treatment requirements (if any). An air permit would be obtained, if deemed necessary.

Plants 2, 3, and 6 Lansing, Michigan

4. Evaluation of Corrective Measures Alternatives

Table 3 presents evaluation of the corrective measures alternatives that meet the screening criteria for soil, groundwater, and LNAPL, and includes a description of the corrective measures alternative, the proposed treatment area for the corrective measures, evaluation of the corrective measures against the RCRA evaluation criteria (described below), and required pre-design testing.

The RCRA corrective measures alternative evaluation criteria are summarized below. Table 3 summarizes the results of the evaluation for each area.

- <u>Long-Term Reliability and Effectiveness</u>: This criterion considers both the level of threat posed by hazardous constituents remaining in place and the adequacy of the remedial alternative and the risk associated with any treatment residuals compared to untreated waste.
- <u>Reduction of Toxicity, Mobility, or Volumes of Waste</u>: This criterion considers the ability of the remedial alternatives to reduce the toxicity, mobility, or volume of waste significantly and permanently.
- <u>Short-term Effectiveness</u>: This criterion evaluates the effects of the remedial alternatives on human health and the environment during their implementation period. It considers factors such as impacts from remedy construction, transportation, and air quality.
- <u>Implementation</u>: This criterion considers the technical and administrative feasibility of implementing the selected remedial alternative.
- <u>Community Acceptance</u>: This criterion evaluates the issues and concerns the local community may have regarding the alternatives. The USEPA encourages community involvement in remedial alternatives, and community acceptance will be considered in the remedial alternative selection.
- <u>State Acceptance</u>: This criterion evaluates the technical and administrative issues and concerns the state may have regarding the alternatives. The USEPA encourages coordination with state agencies, and state acceptance will be considered in the remedial alternative selection.

Plants 2, 3, and 6 Lansing, Michigan

- <u>Cost</u>: This criterion considers the cost effectiveness of each alternative. Cost effectiveness is evaluated by comparing the costs proportional to the effectiveness achieved by the remedial alternative. The basis for the cost estimates provided in Tables 3, are included in Appendix E.
- <u>Sustainability</u>: This criterion considers the sustainability of each alternative with regard to energy requirements; air emissions; water requirements, including impacts on water resources; land and ecosystem impacts; and material consumption and waste generation. The sustainability evaluation was used in conjunction with the core elements of the RCRA corrective measures alternatives evaluation to identify corrective measures alternatives that would balance effectiveness and sustainability.

In the perched zone where exceedances were limited to DW, DW Protection, GSI, and/or GSI Protection, the corrective measures alternatives considered were: 1) land and groundwater use restrictions with monitored plume stability and 2) hydraulic control. Based on the detailed information presented in Table 3, the variable nature of the perched zone, range of COCs, and geochemical conditions, hydraulic control would be very difficult to reliably implement and would be very costly. Current data indicates impacts in the perched zone are stable and on site. Therefore, land and groundwater use restrictions with monitored plume stability are appropriate corrective measures to mitigate risk, can be readily implemented, and are relatively cost effective.

In the perched zone, caps and excavations were considered for areas with exceedances of DC Criteria and PSIC. Caps are equally protective when compared to excavation, but are easier to implement and are relatively cost effective compared to excavation.

Land use restrictions and targeted excavation were the corrective measures evaluated for vapor intrusion risk present in the perched zone. For areas internal to the Site, land use restrictions will be effective in the short- and long-term to mitigate risk, are easy to implement, and are relatively cost effective. In areas near the property boundary where the potential for off-site impact is higher when compared to areas internal to the Site, excavation is more effective in mitigating short- and long-term risk.

For the lower 1,4-dioxane plume, source area ISCO, hydraulic containment, aggressive pump and treat, and groundwater recirculation were considered. All pumping options effectively mitigate risk associated with off-site migration in the short- and long-term and are implementable. Groundwater recirculation is the most aggressive option, will reduce concentrations in a shorter timeframe, and is relatively cost effective.

Plants 2, 3, and 6 Lansing, Michigan

5. Proposed Corrective Measures Alternative

Table 4 presents the proposed final corrective measures alternative for Plants 2, 3, and 6 based on the evaluation of the potential corrective measures with respect to the RCRA evaluation criteria and is shown on Figure 10. The proposed final corrective measures alternative for the Site includes:

- Land Use Restrictions
- Groundwater Use Restrictions
- Monitored Plume Stability
- Caps
- Targeted Excavation
- Lower 1,4-Dioxane Groundwater Recirculation

5.1 Land Use Restrictions

To meet the corrective action objective, land use restrictions will be implemented as part of the corrective measures alternative. A Restrictive Covenant will be recorded with the deeds and will cover the following:

- Site-wide Land Use Restriction: Land use at the entire Site would be limited to industrial and/or commercial uses.
- Site-wide Contaminated Soil Management: All Site soils, media, and/or debris will be managed in accordance with the applicable requirements of RCRA and all other relevant state and federal laws.
- Site-wide Vapor Intrusion Exposure Restriction: Restricts the construction of new structures, unless such construction incorporates engineering controls designed to eliminate the potential for subsurface vapor-phase hazardous substances to migrate into the new structure at concentrations greater than applicable criteria, or unless prior to construction of any structure, an evaluation of the potential for any hazardous substances to volatilize into indoor air verifies the protection of persons

Plants 2, 3, and 6 Lansing, Michigan

who may be present in the buildings and is in compliance with all relevant federal, state, and local laws.

- Subgrade Utility Restrictions: Restricts the construction of subgrade utilities in Areas 2, 5-1, 5-2, 5-5, 5-6, 5-8, and 17, unless the construction incorporates engineering controls designed to eliminate the potential for perched water to enter and/or migrate along the utility corridor or for the utility to release fluids that could infiltrate through the subsurface and exacerbate impacts to groundwater.
- Health and Safety Requirements for Intrusive Activities in Area 2s, 5-1, 5-2, 5-3, 5-5, 5-6, 5-8, 7, 16, 17, 18, 19, 20, and 21: Intrusive excavation activities will be conducted following a Site-specific Health and Safety Plan prepared by qualified professionals and intrusive activities are conducted by appropriately trained personnel.

5.2 Groundwater Use Restrictions

To meet the corrective action objective, groundwater use restrictions will be recorded on the deeds prohibiting the construction and use of wells or other devices on the Site to extract groundwater for consumption, irrigation, or any other purpose, except as provided below:

- Wells and other devices constructed as part of a response activity for the purpose
 of evaluating groundwater quality or to remediate subsurface contamination
 associated with a release of hazardous substances into the environment are
 permitted, provided the construction of the wells or devices complies with all
 applicable local, state, and federal laws and regulations and does not cause or
 result in a new release, exacerbation of existing contamination, or any other
 violation of local, state, or federal laws or regulations.
- Short-term dewatering for construction purposes is permitted provided the dewatering, including management and disposal of the groundwater, is conducted in accordance with all applicable local, state, and federal laws and regulations and does not cause or result in a new release, exacerbation of existing contamination, or any other violation of local, state, and federal environmental laws and regulations.

Plants 2, 3, and 6 Lansing, Michigan

5.3 Monitored Plume Stability

Site-wide monitored plume stability is an integral part of the corrective measure, as it will provide important data to evaluate plume stability and the effectiveness of the selected corrective measures.

A majority of the investigation work completed at the Site has been completed in the past 2 to 3 years. The *Preliminary Geochemistry and Plume Stability Assessment* (ARCADIS 2014b) provides initial evaluation of existing groundwater sampling data (general four to six data points per well). This evaluation suggests the perched impacts, including 1,4-dioxane and VOCs, are stable, and that generally, metals exceedances are likely the result of slight shifts in the regional mildly reducing geochemical conditions. Monitoring will be completed in accordance with the *Revised Interim Groundwater Monitoring Work Plan* (ARCADIS 2014c), submitted on May 23, 2014, or as otherwise agreed to with MDEQ, beginning the second quarter of 2014. Data collected during the sampling activities will be used to:

- Verify the stability of the perched 1,4-dioxane and VOCs.
- Further evaluate metals in areas near Site boundaries, in areas where metals are known to be Site-related (chromium in Area 14), and in areas where the preliminary stability assessment showed increasing concentration trends.
- Determine stability of the lower 1,4-dioxane plume.
- Detect vertical or horizontal migration of COCs via a network of sentinel wells.
- Monitor LNAPL thickness in monitoring wells at the Site to verify LNAPL is not mobile.
- Verify changes to the Site storm sewer system and degradation of slabs across the Site do not result in VOCs, 1,4-dioxane, or metals leaving the Site via the storm sewer system at levels that may impact surface water.

Following each sampling event, ARCADIS will review the analytical results and determine if adjustments need to be made to the sampling plan or other action is appropriate. In 2018, after 5 years of monitoring a comprehensive plume stability analysis will be completed to optimize the monitoring plan and any other aspects of the corrective measure.

Plants 2, 3, and 6 Lansing, Michigan

A Restrictive Covenant will be filed with the deeds to prohibit any activity that would interfere with the function of or obstruct access to any monitoring wells and devices located on the Site or allow for replacement. If one or more of the plumes are not stable, evaluation of contingency strategies will be initiated as discussed in Section 5.8.

The existing surface cover in the identified areas will be left in place to minimize recharge and to maximize the potential for the groundwater impacts to remain stable. Two areas of existing building slabs located directly over source material at Plant 2 (Areas 5-1, 5-2, 5-3, and 5-5) and Plant 3 (Areas 14, 17, and 18) will be maintained to their approximate current condition. All other surface cover near groundwater impacts will be retained (i.e., not removed) but will not be maintained as part of the corrective measures. Further, future redevelopment at the Site could replace or otherwise account for this surface cover.

A Restrictive Covenant will be filed with the deeds to prohibit any excavation or other intrusive activity that could affect the integrity of the surface cover over source areas, except during short-term construction or repair projects or for purposes of further treating or remediating the subject contamination. Any excavation or other intrusive activity, including removing, altering, or disturbing the surface cover over source areas, that could affect the existing integrity of the surface cover, must include the use of engineering controls to limit the infiltration of water until the surface cover over source areas is repaired or replaced. The surface cover over source areas must be repaired or replaced with a cover that provides at least an equivalent degree of protection as the original cap. Repair and/or replacement of the surface cover over source areas is required unless additional evaluation is conducted, which demonstrates that the surface cover in the area is no longer necessary to limit infiltration.

5.4 Caps

Caps have been selected as part of the proposed corrective measures alternative to meet various needs at the Site. As previously discussed, the existing surface cover will be left in place over all areas of the Site where perched impacts have been observed and will be maintained as part of the corrective measures in areas directly over perched source areas. This has been incorporated into the monitored plume stability corrective measure to limit infiltration and maximize the potential to maintain a stable perched groundwater plume.

In addition, capping will be incorporated to reduce the potential for exposure to soils exceeding DC Criteria and PSIC. In Areas 5-1, 5-2, 5-3, 5-8, 19, and 21, existing

Plants 2, 3, and 6 Lansing, Michigan

building slabs currently in place cover (or partially cover) the DC Criteria and PSIC exceedances. Existing building slabs will be extended to cover the entire area of exceedances in Areas 5-2 and 5-3. In Areas 2, 5-5, 5-6, 7, 16, 18, Area 20, where existing building slabs are not present, capping will include either placement of clean surface cover (e.g., soil, gravel) or utilizing existing cover (i.e., sufficient existing soil/grave, concrete, or asphalt) to prevent exposure. If existing concrete and/or asphalt is present, it will be inspected and repaired/replaced as needed.

Based on the evaluation of LNAPL present in Areas 5-2 and 17, utilizing the LNAPL Conceptual Site Model Decision Tree provided in Appendix C, caps are appropriate to mitigate the risk associated with LNAPL for these areas. The existing building slab in Area 5-2 will be extended to cover the extent of LNAPL in this area, with the objective of minimizing infiltration of precipitation and providing an exposure barrier. Existing concrete and asphalt present in Area 17 will be inspected, repaired, and/or replaced as deemed necessary to minimize infiltration and provide an exposure barrier.

A Restrictive Covenant will be filed with the deeds to include prohibiting the removal, excavation, or other intrusive activity that could affect the integrity of the caps, except during short-term construction or repair projects or for purposes of further treating or remediating the subject contamination. Any excavation or other intrusive activity, including removing, altering, or disturbing the caps, that could affect the integrity of the barrier, must be replaced with a cover that provides at least an equivalent degree of protection as the original barrier. Repair and/or replacement of the caps would be required unless additional sampling is conducted that demonstrates a cap in the area is no longer necessary.

5.5 Targeted Excavation

Targeted excavations have been selected as part of the proposed corrective measures alternative for Areas 5-7, 7, and 9 where concentrations of COCs represent a vapor intrusion risk near the property boundary. In addition, removal of these soils will also reduce the potential for off-site migration of the COCs via groundwater. Excavated soils will be transported and disposed at a licensed disposal facility.

A targeted excavation within Area 5-2 is being completed as an interim corrective measure to remove a former concrete vault and surrounding LNAPL- and PCB-impacted soils. The Interim Correctives Measures Work Plan (Appendix D) has been submitted to, and currently being reviewed by, the MDEQ and USEPA for a coordinated approval.

ARCADIS

RCRA Corrective Action Corrective Measures Study

Plants 2, 3, and 6 Lansing, Michigan

5.6 Lower 1,4-Dioxine Groundwater Recirculation

Groundwater recirculation is the remedy selected to address the lower 1,4-dioxane plume because it is cost-effective and the most aggressive alternative and will remediate the plume in the shortest timeframe. The remedial objective of the groundwater recirculation system is to reduce groundwater concentrations of 1,4-dioxane in the aquifer on site to a concentration that will not migrate off site above the current Part 201 Criteria, unless restrictions are instituted. This objective is consistent with the corrective action objective for the Site of achieving industrial/commercial closure (i.e., non-residential closure per MDEQ standards) in accordance with the Settlement Agreement.

The remedy will consist of groundwater extraction from the plume via extraction wells and above-grade treatment of groundwater at a central location. Based on the contaminants present and geochemical conditions, the above-grade treatment system may include equalization, aeration, pH adjustment, filtration, air stripping, advanced oxidation, ion exchange, and granular-activated carbon. The treated groundwater will be re-injected back into the plume via injection wells. If the treated water cannot be reinjected, the excess groundwater will be discharged in accordance with a National Pollutant Discharge Elimination System permit or publicly owned treatment works permit.

Performance data associated with the groundwater recirculation system will be routinely evaluated so that ongoing optimization can be implemented during operation. The groundwater recirculation system will be designed to allow for adaptive operation over time.

Preliminary treatability testing has been completed to determine the appropriate advanced oxidation treatment technology to meet discharge standards (Appendix B). Treatability test results indicated that the advanced oxidation process can effectively reduce concentrations of 1,4-dioxane to less than 1 microgram per liter. Additional predesign investigation and testing is currently planned to be completed in summer 2014.

The CMS was prepared based on the information available from the RFI. It was, therefore, assumed that no significant source mass was present in the perched zone soils near the coliseum (Plant 3, Area 11) that continues to contribute to the lower 1,4-dioxane plume. The initial phase of pre-design work involves additional characterization of the source area in Plant 3 to determine if a significant source remains in the perched zone. If perched source mass is present at concentrations high

Plants 2, 3, and 6 Lansing, Michigan

enough to contribute to groundwater with the potential to migrate off site above residential criteria, other measures may be evaluated.

In addition, a successful remedy will largely depend on the size, depth, and accessibility of the 1,4-dioxane source mass present within the deep overburden and weathered bedrock zone and the ability to re-inject into the deep overburden and weathered bedrock. Additional characterization of the deep overburden and weathered bedrock zone will be completed to determine the size and hydraulic character of the lower 1,4-dioxane source mass. Assuming that the hydrogeology of the aquifer allows for adequate circulation of injected water, the source mass in the deep overburden and weathered bedrock would be incorporated into the recirculation system. Alternately, ISCO may be considered as a potential source treatment option if the source mass is small enough for ISCO to be cost effectively implemented.

In addition to the source area characterization, pumping tests and injection testing will be completed along the axis of the lower 1,4-dioxane plume to confirm conceptual groundwater recirculation design assumptions. Tests will be completed at two to three locations to assess the hydraulic variability along the lower 1,4-dioxane plume.

If the pre-design testing shows that groundwater recirculation is not a technically feasible and/or a cost effective remedy, the data collected during the pre-design characterization and testing will be utilized to re-evaluate potential corrective measures to address the lower 1,4-dioxane plume. Potential contingency measures are discussed in Section 5.8.

5.7 Five-Year Review

Initial analysis after the first full year of interim groundwater monitoring indicates groundwater impacts are generally stable (ARCADIS 2014b), with the possible exception of the lower 1,4-dioxane plume (ARCADIS 2014d). Interim groundwater monitoring is in progress and will continue to collect data required to verify plume stability per the *Revised Interim Groundwater Monitoring Work Plan* (ARCADIS 2014c), submitted on May 23, 2014.

In 2018, after 5 years of monitoring have been completed), the selected corrective measures alternative will be reviewed to verify and optimize performance. The 5-year review may include, but is not limited to the following:

Plants 2, 3, and 6 Lansing, Michigan

- Evaluation of the caps to determine if they are effective and/or necessary in all areas to meet the corrective action objective.
- Review of the surface cover and cap inspection and maintenance plan.
- Review of storm sewer monitoring to determine if ongoing sampling is required to verify surface water is protected.
- Evaluate if Site redevelopment could result in changes to the Site-wide corrective measures and/or objectives.
- Assessment of the revised interim monitoring plan to determine if the frequency, analytes, and/or number of wells can be optimized during future routine sampling events.

5.8 Contingency Strategies

This RCRA CMS Report has been prepared based on the data currently available. A contingency remedy may be considered if:

- Ongoing plume stability evaluation shows that one or more groundwater plume(s) is not stable, is migrating off Site above Part 201 Criteria, and is attributable to the Site.
- Pre-design testing shows a perched zone source area near the coliseum (Plant 3 Area 11) is contributing to the lower 1,4-dioxane plume above the corrective action objectives.
- Pre-design testing shows that groundwater recirculation is not a feasible remedy for the lower 1,4-dioxane plume.
- Performance monitoring of the groundwater recirculation system shows that the corrective action objectives cannot be met technically and/or cost effectively.

If any of these triggers are met, further evaluation of alternative corrective measures included in this CMS or other measures identified as potentially applicable may be completed. The contingency remedy could consist of corrective measures evaluated in this CMS, as they are considered relevant and applicable methods to control the groundwater plume(s) and reduce source concentrations, if required, to meet the

Plants 2, 3, and 6 Lansing, Michigan

corrective action objectives. Additional evaluation and pre-design activities will be required to determine the appropriate corrective measure(s). The evaluation may include one or more of the following:

- Feasibility of off-site groundwater restrictions or ordinances
- Investigation(s) to further refine potential excavation area(s)
- Investigation to further refine potential ISCO area(s)
- Implementation of field injection testing to understand the injection hydraulics for a potential injection-based remedy in the perched zone
- Implementation of the SVE pilot test to evaluate the feasibility of vapor extraction

A.

ARCADIS

RCRA Corrective Action Corrective Measures Study

Plants 2, 3, and 6 Lansing, Michigan

6. Schedule

A Corrective Measures Implementation Work Plan will be submitted to the MDEQ within 90 days of approval of the corrective measures alternative. The work plan will include detailed descriptions of implementation activities and associated schedules.

ORAF

Plants 2, 3, and 6 Lansing, Michigan

7. References

ARCADIS. 2008. Current Conditions Report for GM Lansing Plants 2, 3 & 6. August 1.

- ARCADIS. 2012. Resource Conservation and Recovery Act Facility Investigation (RFI) Phase 1 Activities Summary Report. RACER Trust, Lansing, Michigan Plants 2, 3 & 6 Industrial Land. January 30.
- ARCADIS. 2013. Resource Conservation and Recovery Act Facility Investigation (RFI) Phase 2 Activities Summary Report. Michigan Plants 2, 3 & 6 Industrial Land. April.
- ARCADIS. 2014a. RFI Supplemental Phase 2 Activities Summary Report. RACER Trust, Lansing, Michigan Plants 2, 3 & 6 Industrial Land. February 26.
- ARCADIS, 2014b. Preliminary Groundwater Geochemical and Plume Stability Assessment. Plants 2, 3, and 6, Industrial Land, Lansing, Michigan. April 24.
- ARCADIS, 2014c. Revised Interim Groundwater Monitoring Work Plan. RACER Trust, Plants 2, 3, & 6, Lansing, Michigan. May 23.
- ARCADIS. 2014d. Passive Flux Meter and Transducer Study Memorandum. RACER Trust, Lansing, Michigan Plants 2, 3, &6 Industrial Land. June 3.
- Michigan Department of Environmental Quality. 2007. RRD Operational Memorandum No. 1, Technical Support Document – Attachment 7, Part 201 Generic Soil Inhalation Criteria for Ambient Air, Part 213 Tier I Soil Inhalation Risk-Based Screening Levels for Ambient Air. July.
- State of Michigan. 1994. Natural Resources and Environmental Protection Act. Act 451 of 1994. Including all amendments. Last amended May 8, 2013.
- U.S. Environmental Protection Agency. 2005. Risk Management Strategy for Corrective Action Projects. EPA Region 5 RCRA Program. May.
- United Stated Geological Survey and National Parks Service (USGS), 2000. Geologic Provinces of the United States. Retrieved April 21, 2006 from: www2.nature.ups..gov/geology/usgenpa/province.

Tables

Plant and Investigation Area	Subarea	Associated AOI	RFI Identified Exceedances	CMS Applicable Exceedances	Exceedances that do not Require a Corrective Measure
Lower 1,4-Dioxane Plants 2 and 3	NA	Lower 1,4- Dioxane Plants 2 and 3	GW: 1,4-dioxane and VOCs >DW Metals>DW	GW: 1,4-dioxane > Proposed DW (8.5 μg/L) and DW	• Metals > DW: Exceedances in groundwater are attributed to natural fluctuations in geochemical conditions; therefore, metals in this area will not be address CMS (ARCADIS 2014b).
			SOIL: SVOCs > GSIP Metals > DWP and GSIP	SOIL: SVOCs > GSIP Metals > DWP and GSIP	• NA
Plant 2 AREA 1	NA	AOI 2-16	GW: VOCs & SVOCs > GSI Metals > DW and GSI	GW: VOCs > GSI Metals > DW and GSI	• SVOCs > GSI: The SVOC exceedance(s) in this area were phthalates. Phthalates are a common laboratory contaminant and were detected in blanks. The of corrective measures for SVOCs in this area are not required (ARCADIS 2014c).
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present
			SOIL: VOCs > DWP, GSIP, and SVIIC Metals > DWP, GSIP, DC and PSIC	SOIL: VOCs > DWP, GSIP, and SVIIC Metals > DWP, GSIP, DC, and PSIC	• NA
Plant 2 AREA 2	NA	AOI 2-12 AOI 2-52 AOI ID 2-26	GW: VOCs >DW, GSI, and draft GW _{VI-nr} Metals>DW	GW: VOCs >DW, GSI, and draft GW _{VI-nr}	• Metals > DW: Exceedances in groundwater are attributed to natural fluctuations in geochemical conditions; therefore, metals in this area will not be addres CMS (ARCADIS 2014b).
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present
Plant 2 AREA 3			SOIL: No constituents exceed Part 201 Criteria	SOIL: No applicable exceedances of Part 201 Criteria	SOIL: No constituents exceed Part 201 Criteria.
	NA	AOI 2-11	GW: 1,4-dioxane > Proposed DW (8.5 µg/L) Metals > DW and GSI	GW: No applicable exceedances of Part 201 Criteria	 1,4-dioxane > Proposed DW (8.5 μg/L): Included in lower 1,4-Dioxane AOI (ARCADIS 2014a). Metals > DW and GSI: Exceedances in groundwater are attributed to natural fluctuations in geochemical conditions; therefore, metals in this area will not be part of the CMS (ARCADIS, 2014b).
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present
	NA		SOIL: Metals > DWP and GSIP	SOIL: Metals > DWP and GSIP	• NA
Plant 2 AREA 4		AOI 2-8	GW: Metals > DW	GW: No applicable exceedances of Part 201 Criteria	• Metals > DW: Exceedances in groundwater are attributed to natural fluctuations in geochemical conditions; therefore, metals in this area will not be address CMS(ARCADIS 2014b).
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present
		AOI 2-11	SOIL: SVOCs > DWP, GSIP, and DC Metals > DWP and GSIP	SOIL: SVOCs > DWP, GSIP, and DC Metals > DWP and GSIP	• NA
Plant 2 AREA 5-1	5-1	AOI ID 2-31 ID 2-32 ID 2-33 ID 2-34 ID 2-35 ID 2-49	GW: VOCs > DW 1,4-dioxane > Proposed DW (8.5 µg/L) and DW SVOCs > DW Metals > DW and GSI	GW: VOCs > DW 1,4-dioxane > Proposed DW (8.5 μg/L) and DW	 SVOCs > DW: The SVOC exceedance(s) in this area were phthalates. Phthalates are a common laboratory contaminant and were detected in blanks. The of corrective measures for SVOCs in this area are not required (ARCADIS 2014c). Metals > DW and GSI: Exceedances in groundwater are attributed to natural fluctuations in geochemical conditions; therefore, metals in this area will not be part of the CMS (ARCADIS 2014b).
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present
Plant 2 AREA 5-2			SOIL: VOCs > DWP, GSIP, and SVIIC SVOCs > DWP, GSIP, VSIC, and DC PCBs > DC Metals > DWP, GSIP, DC, and PSIC	SOIL: VOCs > DWP, GSIP, and SVIIC SVOCs > DWP, GSIP, and DC PCBs > DC Metals > DWP, GSIP, DC, and PSIC	• SVOCs > VSIC: The concentrations did not exceed the generic Infinite Source VSIC for a ½-acre source area and, therefore, will not be addressed as part (ARCADIS 2013).
	5-2	AOI 2-6 AOI 2-14 AOI ID 2-36	GW: VOCs > DW and GSI 1,4-dioxane > Proposed DW (8.5 µg/L) and DW SVOCs > DW, GSI, GC, and Sol PCBs > DW, GSI, GW _{VI-nr} , GC, and Sol Metals > DW and GSI	GW: VOCs > DW and GSI 1,4-dioxane > Proposed DW (8.5 μg/L) and DW PCBs > DW, GC, and Sol	 SVOCs > DW, GSI, GC, and SoI: There has only been one historical SVOC exceedance in this area, the corrective measures driver in this area is LNAPL, VOCs. Corrective measures implemented to address these drivers will address the SVOCs. Therefore, SVOCs are not separately evaluated in the CMS (AI Metals > DW and GSI: Exceedances in groundwater are attributed to natural fluctuations in geochemical conditions; therefore, metals in this area will not b part of the CMS (ARCADIS 2014b).
			LNAPL: Present	LNAPL: Present	• NA

essed as part of the
Therefore, evaluation
essed as part of the
t be addressed as
essed as part of the
Therefore, evaluation
t be addressed as
art of the CMS
PL, 1,4-dioxane, and (ARCADIS 2014c). t be addressed as

Plant and Investigation Area	Subarea	Associated AOI	RFI Identified Exceedances	CMS Applicable Exceedances	Exceedances that do not Require a Corrective Measure		
			VOCs > DWP, GSIP, and SVIIC SVOCs > DWP, GSIP, and DC	SOIL: VOCs > DWP, GSIP, and SVIIC SVOCs > DWP, GSIP, and DC Metals > DWP, GSIP, and PSIC	• NA		
Plant 2 AREA 5-3	5-3	Miscellaneous Data Gap Borings	GW: VOCs > GSI 1,4-dioxane > Proposed DW (8.5 µg/L) and DW Metals > DW and GSI		• Metals > DW and GSI: Exceedances in groundwater are attributed to natural fluctuations in geochemical conditions; therefore, metals in this area will not be addressed as part of the CMS (ARCADIS 2014b).		
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present		
			SOIL: No constituents exceed Part 201 Criteria	SOIL: No constituents exceed Part 201 Criteria	• SOIL: No constituents exceed Part 201 Criteria		
Plant 2 AREA 5-4	5-4	AOI ID 2-39	GW: Metals > DW and GSI		• Metals > DW and GSI: Exceedances in groundwater are attributed to natural fluctuations in geochemical conditions; therefore, metals in this area will not be addressed as part of the CMS (ARCADIS 2014b).		
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present		
			VOCs > DWP SVOCs > GSIP and DC		• Metals > PSIC: Manganese exceedance of the PSIC is deep (56 to 57 feet) and, therefore, is not a concern, as soil this deep is not likely to be brought to the surface (ARCADIS 2013).		
Plant 2 AREA 5-5	5-5		GW: 1,4-dioxane > Prop DW (8.5 µg/L) SVOCs > DW Metals > DW and GSI	GW: 1,4-dioxane > Prop DW (8.5 μg/L) Metals > DW and GSI	• SVOCs > DW: The SVOC exceedance(s) in this area were phthalates. Phthalates are a common laboratory contaminant and were detected in blanks. Therefore, evaluation of corrective measures for SVOCs in this area are not required (ARCADIS 2014c).		
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present		
		AOI 6-18 AOI 6-48	VOCs > DWP and GSIP	SOIL: VOCs > DWP and GSIP Metals > DWP, GSIP, and DC	• NA		
Plant 6 AREA 5-6	5-6		GW: VOCs > DW and GSI 1,4-dioxane > Prop DW (8.5 μg/L) Metals > DW and GSI	GW: VOCs > DW and GSI 1,4-dioxane > Prop DW (8.5 μg/L) Metals > DW and GSI	• NA		
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present		
							• VOCs > VSIC: The concentrations did not exceed the generic Infinite Source VSIC for a ½-acre source area and, therefore, are not likely to be a concern for the Site (ARCADIS 2013).
Plant 6 AREA 5-7	h /	AOI 6-88	GW: VOCs > DW, GSI, and GW _{VI-nr} SVOCs > GSI 1,4-dioxane > Proposed DW (8.5 µg/L) Metals > DW and GSI		• SVOCs > GSI: The SVOC exceedance(s) in this area were phthalates. Phthalates are a common laboratory contaminant and were detected in blanks. Therefore, evaluation of corrective measures for SVOCs in this area are not required (ARCADIS 2014c).		
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present		
				SOIL: Metals > GSIP and PSIC	• NA		
Plant 6 AREA 5-8	5-8	AOI 6-81	GW: 1,4-dioxane > Proposed DW (8.5 µg/L) Metals > DW and GSI	GW: 1,4-dioxane > Proposed DW (8.5 µg/L) Metals > DW and GSI	• NA		
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present		
		AOI 6-16/6-33 AOI 6-59	SOIL: No constituents exceed Part 201 Criteria	SOIL: No constituents exceed Part 201 Criteria	SOIL: No constituents exceed Part 201 Criteria		
Plant 6 AREA 6	NA	AOI ID 6-36 ID 6-38			• 1,4-dioxane > Prop DW (8.5 μg/L): One historical detection of 1,4-dioxane was detected above the proposed drinking water standard at MWBP-12-UST5-6 at a concentration of 9 μg/L in October 2011. MWBP-UST5-6 has been sampled quarterly since October 2011 and no exceedances have been detected since that date.		
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present		

Plant and Investigation Area	Subarea	Associated AOI	RFI Identified Exceedances	CMS Applicable Exceedances	Exceedances that do not Require a Corrective Measure
			SOIL: VOCs > DWP, GSIP, SVIIC, DC, GCP, and C _{sat} SVOCs > GSIP and DC Metals > GSIP	SOIL: VOCs > DWP, GSIP, DC, SVIIC, and C _{sat} SVOCs > GSIP and DC Metals > GSIP	• VOCs > GCP: GCP is no longer an MDEQ criteria (ARCADIS 2014a).
Plant 6 NA AREA 7 NA	AOI 6-17 AOI 6-47	GW: VOCs > DW and GSI SVOCs > DW Metals > DW and GSI	GW: VOCs > DW and GSI Metals > DW and GSI	 SVOCs > DW: The SVOC exceedance(s) in this area were phthalates. Phthalates are a common laboratory contaminant and were detected in blanks. The of corrective measures for SVOCs in this area are not required (ARCADIS 2014c). 	
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present
			SOIL: SVOCs > DWP and GSIP Metals > DWP and GSIP	SOIL: SVOCs > DWP & GSIP Metals > DWP & GSIP	• NA
Plant 2 AREA 8	NA	AOI 2-7 AOI ID 2-37 AOI ID 2-38	GW: SVOCs > GSI Metals > DW and GSI	GW: No applicable exceedances of Part 201 Criteria	 SVOCs > GSI: The SVOC exceedance(s) in this area were phthalates. Phthalates are a common laboratory contaminant and were detected in blanks. The of corrective measures for SVOCs in this area are not required (ARCADIS 2014c). Metals > DW and GSI: Exceedances in groundwater are attributed to natural fluctuations in geochemical conditions; therefore, metals in this area will not be part of the CMS (ARCADIS 2014b).
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present
			SOIL: VOCs > DWP, GSIP, DC, SVIIC, GCP, and C _{sat} SVOCs > DWP, GSIP, VSIC, and DC	SOIL: VOCs > DWP, GSIP, DC, SVIIC, and C _{sat} SVOCs > DWP, GSIP, and DC	 VOCs > GCP: GCP is no longer an MDEQ criteria (ARCADIS 2013). SVOCs > VSIC: The concentrations did not exceed the generic Infinite Source VSIC for a ½-acre source area and, therefore, are not likely to be a concern (ARCADIS 2013).
Plant 6 AREA 9	NA	AOI 6-60 IA Miscellaneous data gap	GW: VOCs > DW, GSI, FESL, and GW _{VI-nr} SVOCs > GSI Metals > DW and GSI	GW: VOCs > DW, GSI, FESL, and GW _{VI-nr} Metals > DW & GSI	• SVOCs > GSI: The SVOC exceedance in this area were phthalates. Phthalates are a common laboratory contaminant and were detected in blanks. There corrective measures for SVOCs in this area are not required (ARCADIS 2014c).
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present
	NA	AOI 6-19	SOIL: Metals > GSIP and PSIC	SOIL: Metals > GSIP	• Metals > PSIC: Manganese (historical sample) exceeded the PSIC for a 100-acre source, but not a 5-acre source. Therefore, likely not a concern for the Si 2013).
Plant 6 AREA 10		AOI 6-63 AOI 6-82	GW: No constituents exceed Part 201 Criteria	GW: No constituents exceed Part 201 Criteria	GW: No constituents exceed Part 201 Criteria.
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present
		AOI ID 3-54	SOIL: VOCs > DWP, GSIP, and SVIIC SVOCs > GSIP Metals > DWP and GSIP	SOIL: VOCs > DWP, GSIP, and SVIIC SVOCs > GSIP Metals > DWP and GSIP	• NA
Plant 3 AREA 11	NA		GW: VOCs > DW and GSI 1,4-dioxane > Proposed DW (8.5 µg/L) and DW Metals > DW	GW: VOCs > DW and GSI 1,4-dioxane > Proposed DW (8.5 μg/L) and DW	 Metals > DW: Exceedances in groundwater are attributed to natural fluctuations in geochemical conditions; therefore, metals in this area will not be address CMS (ARCADIS 2014b).
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present
			SOIL: No applicable exceedances of Part 201 Criteria	SOIL: No applicable exceedances of Part 201 Criteria	SOIL: No applicable exceedances of Part 201 Criteria
Plant 3 AREA 12	NA	MW-04-02 (TD=132.7') MW-04-03 (TD=88.25')	GW: VOCs > DW	GW: No applicable exceedances of Part 201 Criteria	• VOCs > DW: Based on the general lack of a chlorinated volatile organic compound (CVOC) source at Plant 3 and the known regional vinyl chloride impacts vinyl chloride identified at Plant 3 is attributed to off-site source(s) and will not be addressed as part of the CMS (ARCADIS, 2014b).
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present
			SOIL: No applicable exceedances of Part 201 Criteria	SOIL: No constituents exceed Part 201 Criteria	SOIL: No applicable exceedances of Part 201 Criteria
Plant 3 AREA 13	NA	Background Sample	GW: No applicable exceedances of Part 201 Criteria	GW: No applicable exceedances of Part 201 Criteria	GW: No applicable exceedances of Part 201 Criteria
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present
		4010.40	SOIL: Metals > DWP, GSIP, DC, and PSIC	SOIL: Metals > DWP and GSIP	• Metals > DC and PSIC: Arsenic exceeds the DC in the northern portion of Area 14 at a depth of 43.5 to 45 feet bgs, due to the depth of the exceedance ex likely. Nickel did not exceed the PSIC for a ½-acre. Total chromium (as hexavalent chromium) did; however, it was determined that total chromium should be chromium 3 and, therefore, it does not exceed PSIC (ARCADIS 2013).
Plant 3 AREA 14	NA	AOI 3-10 Misc. Data Gap Borings	GW: Metals > DW and GSI	GW: Metals > DW and GSI	• NA
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present

Table 1 RFI Screening Matrix and CMS Applicable Exceedances

Therefore, evaluation
Therefore, evaluation t be addressed as
ern for the Site
erefore, evaluation of
e Site (ARCADIS
ressed as part of the
acts to bedrock, the
exposure is not be compared to

Plant and Investigation Area	Subarea	Associated AOI	RFI Identified Exceedances	CMS Applicable Exceedances	Exceedances that do not Require a Corrective Measure	
			SOIL: VOCs > DWP and VSIC SVOCs > GSIP Metals > GSIP	SOIL: VOCs > DWP SVOCs > GSIP Metals > GSIP	• VOCs > VSIC: The concentrations did not exceed the generic Infinite Source VSIC for a ½-acre source area and, therefore, are not likely to be a concern for th (ARCADIS 2013).	
Plant 3 AREA 15	NA	AOI ID 3-15	GW: 1,4-dioxane > Proposed DW (8.5 µg/L) SVOCs > DW Metals > DW and GSI	GW: 1,4-dioxane > Proposed DW (8.5 μg/L)	 SVOCs > DW: The SVOC exceedance(s) in this area were phthalates. Phthalates are a common laboratory contaminant and were detected in blanks. Therefore of corrective measures for SVOCs in this area are not required (ARCADIS 2014c). Metals > DW & GSI: Exceedances in groundwater are attributed to natural fluctuations in geochemical conditions; therefore, metals in this area will not be address of the CMS (ARCADIS 2014b). 	
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present	
			SOIL: SVOCs > DWP, GSIP, and DC Metals > DWP, GSIP, DC, and PSIC	SOIL: SVOCs > DWP, GSIP, and DC Metals > DWP, GSIP, and DC	• Metals > PSIC: The concentration did not exceed the 5-acre source area and, therefore, are not likely to be a concern for the Site (ARCADIS 2013).	
Plant 3 AREA 16	NA	AOI 3-11	GW: Metals > DW and GSI	GW: No constituents exceed Part 201 Criteria	• Metals > DW and GSI: Exceedances in groundwater are attributed to natural fluctuations in geochemical conditions; therefore, metals in this area will not be ac part of the CMS (ARCADIS 2014b).	
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present	
		AOI 3-3 AOI 3-4 AOI 3-9	SOIL: VOCs > DWP, GSIP, and SVIIC SVOCs > GSIP Metals > GSIP	SOIL: VOCs > DWP, GSIP, and SVIIC SVOCs > GSIP Metals > GSIP	• NA	
Plant 3 AREA 17	NA		GW: VOCs > DW, GSI, and GW _{VI-nr} 1,4-dioxane > Proposed DW (8.5 µg/L) SVOCs > DW Metals > DW and GSI	GW: VOCs > DW, GSI, and GW _{VI-nr} Metals > DW and GSI	• SVOCs > DW, GSI, GC, and Sol: There has only been one historical SVOC exceedance in this area, the corrective measures driver in this area is LNAPL and Corrective measures implemented to address these drivers will address the SVOCs. Therefore, SVOCs are not separately evaluated in the CMS (ARCADIS 20)	
			LNAPL: Present	LNAPL: Present	• NA	
		AOI 3-2 AOI 3-6		SOIL: SVOCs > DWP, GSIP, and DC Metals > DW and GSI	SOIL: SVOCs > DWP, GSIP, and DC Metals > DWP and GSIP	• NA
Plant 3 AREA 18	NA		GW: 1,4-dioxane > Proposed DW (8.5 µg/L) Metals > DW and GSI	GW: 1,4-dioxane > Proposed DW (8.5 μg/L)	• Metals > DW and GSI: Exceedances in groundwater are attributed to natural fluctuations in geochemical conditions; therefore, metals in this area will not be ac part of the CMS (ARCADIS 2014b).	
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present	
		A AOI ID 3-17		SOIL: SVOCs > GSIP Metals > DWP, GSIP, and DC	SOIL: SVOCs > GSIP Metals > DWP, GISP, and DC	• NA
Plant 3 AREA 19	NA		GW: Metals > DW and GSI	GW: Metals > DW and GSI	• NA	
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present	
Plant 3			SOIL: SVOCs > GSIP Metals > DWP, GSIP, and PSIC	SOIL: SVOCs > GSIP Metals > DWP, GSIP, and PSIC	• NA	
AREA 20	NA	AOI 3-51	GW: No constituents exceed Part 201 Criteria	GW: No constituents exceed Part 201 Criteria	GW: No constituents exceed Part 201 Criteria	
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present	
Plant 3			SOIL: Metals > DWP, GSIP, and DC	SOIL: Metals > DWP, GSIP, and DC	• NA	
AREA 21	NA	AOI 3-51	GW: No constituents exceed Part 201 Criteria	GW: No constituents exceed Part 201 Criteria	GW: No constituents exceed Part 201 Criteria	
			LNAPL: NA, not present	LNAPL: NA, not present	LNAPL: NA, not present	

n for the Site
Therefore, evaluation
e addressed as part
t be addressed as
PL and VOCs. DIS 2014c).
t be addressed as

Acronyms and Abbreviations:

> = greater than

AOI = area of interest

bgs = below ground surface

CMS = Corrective Measures Study

C_{sat} = Soil Saturation Concentration Criteria

DC = Direct Contact Criteria

DW = Residential Drinking Water Criteria

DWP = Drinking Water Protection Criteria

FESL = Flammability and Explosivity Screening Level

GC = groundwater contact

GCP = groundwater contact protection

GSI = Groundwater/Surface Water Interface

GSIP = Groundwater/Surface Water Interface Protection Criteria

GW = groundwater

GW_{VI-nr} = draft Groundwater Concentrations for Vapor Intrusion

LNAPL = light non-aqueous phase liquid

MDEQ = Michigan Department of Environmental Quality

NA = not applicable

Part 201 Criteria = Part 201 Generic Cleanup Criteria

PCB = polychlorinated biphenyl

Prop = proposed

PSIC = Particulate Soil Inhalation Criteria

RCRA = Resource Conservation and Recovery Act

RFI = RCRA Facility Investigation

Sol = solubility

SVIIC = Soil Volatilization to Indoor Air Inhalation Criteria

SVOC = semivolatile organic compound

μg/L = micrograms per liter

VOC = volatile organic compound

VSIC = volatile soil inhalation criteria

References:

ARCADIS. 2013. Resource Conservation and Recovery Act Facility Investigation (RFI) Phase 2 Activities Summary Report. Michigan Plants 2, 3 & 6 Industrial Land. April. ARCADIS. 2014a. RFI Supplemental Phase 2 Activities Summary Report. RACER Trust, Lansing, Michigan Plants 2, 3 & 6 Industrial Land. February 26. ARCADIS. 2014b. Preliminary Groundwater Geochemical and Plume Stability Assessment. Plants 2, 3, and 6, Industrial Land, Lansing, Michigan. April 24. ARCADIS. 2014c. Revised Interim Groundwater Monitoring Work Plan. RACER Trust, Plants 2, 3, & 6, Lansing, Michigan. May 23.

Table 1 RFI Screening Matrix and CMS Applicable Exceedances

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan DRAFT

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Plant and Investigation Area	Subarea	Associated AOI	Summary of Applicable Exceedances	Identified Corrective Measures	Protective of Human Health and the Environment (Yes/No)	Attain Media Cleanup Objectives (Yes/No)	Control the Source or Demonstrate Plume Stability (Yes/No)
				Groundwater Use Restrictions	Yes	Yes	No
				Monitored Plume Stability	Yes	No	Yes
Lower 1,4-Dioxane			GW:	Source Area ISCO	Yes	Yes	Yes
Plants 2 and 3	NA	NA	1,4-dioxane > Proposed DW (8.5 µg/L) and DW	Hydraulic Containment	Yes	Yes	Yes
				Aggressive Pump and Treat	Yes	Yes	Yes
				Groundwater Recirculation	Yes	Yes	Yes
			001	Land Use Restriction	Yes	Yes	No
			SOIL: SVOCs > GSIP	Groundwater Use Restrictions	Yes	Yes	No
			Metals > DWP and GSIP	Monitored Plume Stability	Yes	No	Yes
Plant 2 AREA 1	NA	AOI 2-16	GW:	Groundwater Use Restrictions	Yes	Yes	No
,				Monitored Plume Stability	Yes	No	Yes
			Metals > DW and GSI	Perched Hydraulic Control	Yes	Yes	Yes
			LNAPL: NA, not present	NA	NA	NA	NA
	NA		SOIL: VOCs > DWP, GSIP, and SVIIC Metals > DWP, GSIP, DC, and PSIC	Land Use Restriction	Yes	Yes	No
				Groundwater Use Restrictions	Yes	Yes	No
				Monitored Plume Stability	Yes	No	Yes
		AOI 2-12 AOI 2-52		Сар	Yes	Yes	Yes
Plant 2				Targeted Excavation	Yes	Yes	Yes
AREA 2		AOI ID 2-26	GW: VOCs >DW, GSI, and draft GW _{VI-nr}	Land Use Restrictions	Yes	Yes	No
				Groundwater Use Restrictions	Yes	Yes	No
		VOCs >DW, GSI, and draft GW _{VI-nr}		Monitored Plume Stability	Yes	No	Yes
				Perched Perched Hydraulic Control	Yes	Yes	Yes
			LNAPL: NA, not present	NA	NA	NA	NA
			SOIL: No constituents exceed Part 201 Criteria	NA	NA	NA	NA
Plant 2 AREA 3	NA	AOI 2-11	GW: No applicable exceedances of Part 201 Criteria	NA	NA	NA	NA
			LNAPL: NA, not present	NA	NA	NA	NA
				Land Use Restriction	Yes	Yes	No
			SOIL: Metals > DWP & GSIP	Groundwater Use Restrictions	Yes	Yes	No
Plant 2 AREA 4	NA	AOI 2-8		Monitored Plume Stability	Yes	No	Yes
			GW: No applicable exceedances of Part 201 Criteria	NA	NA	NA	NA
			LNAPL: NA, not present	NA	NA	NA	NA

See notes on page 7.

Potential Corrective Measures Alternatives for Further Evaluation
1) Groundwater Use Restrictions, Monitored Plume Stability, and Source Area ISCO
2) Groundwater Use Restrictions, Monitored Plume Stability, and On-site Hydraulic Containment
3) Groundwater Use Restrictions, Monitored Plume Stability, and Aggressive Pump and Treat
4) Groundwater Use Restrictions, Monitored Plume Stability, and Groundwater Recirculation
1) Land Use Restrictions, Groundwater Use Restrictions, and Monitored Plume Stability
1) Groundwater Use Restrictions and Monitored Plume Stability
2) Perched Hydraulic Control
NA
 Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
 Land Use Restrictions, Groundwater Use Restrictions, and Monitored Plume Stability Perched Perched Hydraulic Control
NA
NA
NA
NA
1) Land Use Restrictions, Groundwater Use Restrictions, and Monitored Plume Stability
NA
NA

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Plant and Investigation Area	Subarea	Associated AOI	Summary of Applicable Exceedances	Identified Corrective Measures	Protective of Human Health and the Environment (Yes/No)	Attain Media Cleanup Objectives (Yes/No)	Control the Source of Demonstrate Plume Stability (Yes/No)	
				Land Use Restriction	Yes	Yes	No	l
			SOIL:	Groundwater Use Restrictions	Yes	Yes	No	ĺ
		AOI 2-11	SVOCS > DWP, GSIP, and DC Metals > DWP and GSIP	Monitored Plume Stability	Yes	No	Yes	
		AOI ID 2-31 ID 2-32		Сар	Yes	Yes	Yes	
Plant 2 AREA 5-1	5-1	ID 2-32 ID 2-33 ID 2-34		Targeted Excavation	Yes	Yes	Yes	
		ID 2-35 ID 2-49	0.00	Groundwater Use Restrictions	Yes	Yes	No	
		10 2-40	GW: VOCS > DW	Monitored Plume Stability	Yes	No	Yes	
			1,4-dioxane > Proposed DW (8.5 µg/L) and DW	Perched Hydraulic Control	Yes	Yes	Yes	
			LNAPL: NA, not present	NA	NA	NA	NA	
				Land Use Restrictions	Yes	Yes	No	
			SOIL:	Groundwater Use Restrictions	Yes	Yes	No	
			VOCs > DWP, GSIP, and SVIIC SVOCs > DWP, GSIP, and DC	Monitored Plume Stability	Yes	No	Yes	
			GW: VOCs > DW and GSI 1,4-dioxane > Proposed DW (8.5 µg/L) and DW PCBs > DW, GC, and Sol	Сар	Yes	Yes	Yes	ĺ
				Targeted Excavation	Yes	Yes	Yes	l
				Land Use Restrictions	Yes	Yes	No	ĺ
	5-2			Groundwater Use Restrictions	Yes	Yes	No	ĺ
Plant 2		AOI 2-6		Monitored Plume Stability	Yes	No	Yes	ĺ
AREA 5-2		AOI 2-14 AOI ID 2-36		Perched Hydraulic Control	Yes	Yes	Yes	
				Land Use Restrictions	Yes	Yes	No	ĺ
				Groundwater Use Restrictions	Yes	Yes	No	
				Monitored Plume Stability	Yes	No	Yes	
			LNAPL: Present	Сар	Yes	Yes	Yes	l
				LNAPL Recovery (Skimmers)	Yes	Yes	Yes	l
				Multi-Phase Extraction	Yes	Yes	Yes	l
				Excavation	Yes	Yes	Yes	
				Land Use Restrictions	Yes	Yes	No	ĺ
			SOIL:	Groundwater Use Restrictions	Yes	Yes	No	l
			VOCs > DWP, GSIP, and SVIIC SVOCs > DWP, GSIP, and DC Metals > DWP, GSIP, and PSIC	Monitored Plume Stability	Yes	No	Yes	ĺ
		AOI 2-1		Сар	Yes	Yes	Yes	l
Plant 2 AREA 5-3	5-3	AOI ID 2-59 Miscellaneous		Targeted Excavation	Yes	Yes	Yes	l
		Data Gap Borings	rings	Groundwater Use Restrictions	Yes	Yes	No	ĺ
			GW: VOCs > GSI 1.4-dioxane > Proposed DW (8.5 μg/L) & DW	Monitored Plume Stability	Yes	No	Yes	ĺ
			T,+-uovalle > Floposed DW (6.5 µg/c) & DW	Perched Hydraulic Control	Yes	Yes	Yes	
			LNAPL: NA, not present	NA	NA	NA	NA	Í
			SOIL: No constituents exceed Part 201 Criteria	NA	NA	NA	NA	Í
Plant 2 AREA 5-4	5-4	AOI ID 2-39	GW: No applicable exceedances of Part 201 Criteria	NA	NA	NA	NA	
			LNAPL: NA, not present	NA	NA	NA	NA	ĺ

Potential Corrective Measures Alternatives for Further Evaluation
1) Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap 2) Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
1) Groundwater Use Restrictions and Monitored Plume Stability 2) Perched Perched Hydraulic Control
NA
 Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
1) Land Use Restrictions, Groundwater Use Restrictions, and Monitored Plume Stability 2) Perched Hydraulic Control
 Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, a Cap, and Targeted Excavation LNAPL Recovery (Skimmers) Multi-Phase Extraction Excavation
 Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
1) Groundwater Use Restrictions and Monitored Plume Stability 2) Perched Hydraulic Control
NA
NA
NA
NA

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Plant and Investigation Area	Subarea	Associated AOI	Summary of Applicable Exceedances	Identified Corrective Measures	Protective of Human Health and the Environment (Yes/No)	Attain Media Cleanup Objectives (Yes/No)	Control the Source o Demonstrate Plume Stability (Yes/No)		
				Land Use Restrictions	Yes	Yes	No	Ī	
			SOIL:	Groundwater Use Restrictions	Yes	Yes	No		
			VOCs > DWP SVOCs > GSIP and DC	Monitored Plume Stability	Yes	No	Yes		
			Metals > DWP and GSIP	Сар	Yes	Yes	Yes		
Plant 2 AREA 5-5	5-5	AOI 2-15		Targeted Excavation	Yes	Yes	Yes		
				Groundwater Use Restrictions	Yes	Yes	No		
			GW: 1,4-dioxane > Prop DW (8.5 µg/L) Metals > DW and GSI	Monitored Plume Stability	Yes	No	Yes	1	
				Perched Hydraulic Control	Yes	Yes	Yes		
			LNAPL: NA, not present	NA	NA	NA	NA		
				Land Use Restrictions	Yes	Yes	No		
				Groundwater Use Restrictions	Yes	Yes	No		
			Metals > DWP, GSIP, and DC	Monitored Plume Stability	Yes	No	Yes		
				Сар	Yes	Yes	Yes		
Plant 6 AREA 5-6	5-6	AOI 6-18 AOI 6-48		Targeted Excavation	Yes	Yes	Yes		
/			GW: VOCs > DW and GSI 1,4-dioxane > Prop DW (8.5 μg/L) Metals > DW and GSI	Groundwater Use Restrictions	Yes	Yes	No		
				Monitored Plume Stability	Yes	No	Yes		
				Perched Hydraulic Control	Yes	Yes	Yes		
			LNAPL: NA, not present	NA	NA	NA	NA		
				Land Use Restrictions	Yes	Yes	No		
				SOIL: VOCs > DWP, GSIP, and SVIIC	Groundwater Use Restrictions	Yes	Yes	No	
			Metals > DWP and GSIP	Monitored Plume Stability	Yes	No	Yes		
				Targeted Excavation	Yes	Yes	Yes		
Plant 6 AREA 5-7	5-7	AOI 6-43 AOI 6-88		Land Use Restrictions	Yes	Yes	No		
			GW: VOCs > DW, GSI, and GW _{VI-nr}	Groundwater Use Restrictions	Yes	Yes	No		
			1,4-dioxane > Proposed DW (8.5 µg/L) Metals > DW and GSI	Monitored Plume Stability	Yes	No	Yes		
				Perched Hydraulic Control	Perched Hydraulic Control	Yes	Yes	Yes	
			LNAPL: NA, not present	NA	NA	NA	NA		
				Land Use Restrictions	Yes	Yes	No		
			SOIL: Metals > GSIP and PSIC	Groundwater Use Restrictions	Yes	Yes	No		
				Monitored Plume Stability	Yes	No	Yes		
				Сар	Yes	Yes	Yes		
Plant 6 AREA 5-8	5-8	AOI 6-49 AOI 6-81		Targeted Excavation	Yes	Yes	Yes		
			GW:	Groundwater Use Restrictions	Yes	Yes	No		
			1.4-dioxane > Proposed DW (8.5 µg/L) Metals > DW and GSI	Monitored Plume Stability	Yes	No	Yes		
				Perched Hydraulic Control	Yes	Yes	Yes		
			LNAPL: NA, not present	NA	NA	NA	NA		

Potential Corrective Measures Alternatives for Further Evaluation
 Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
1) Groundwater Use Restrictions and Monitored Plume Stability 2) Perched Hydraulic Control
NA
 Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
 Groundwater Use Restrictions and Monitored Plume Stability Perched Hydraulic Control
NA
 Land Use Restrictions, Groundwater Use Restrictions, and Monitored Plume Stability Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
1) Land Use Restrictions, Groundwater Use Restrictions, and Monitored Plume Stability 2) Perched Hydraulic Control
NA
 Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
2) Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Plant and Investigation Area	Subarea	Associated AOI	Summary of Applicable Exceedances	Identified Corrective Measures	Protective of Human Health and the Environment (Yes/No)	Attain Media Cleanup Objectives (Yes/No)	Control the Source or Demonstrate Plume Stability (Yes/No)	
		AOI 6-16/6-33	SOIL: No constituents exceed Part 201 Criteria	NA	NA	NA	NA	
		AOI 6-59 AOI ID 6-36		Groundwater Use Restrictions	Yes	Yes	No	
Plant 6 AREA 6	NA	ID 6-38 ID 6-39	GW: Metals > DW and GSI	Monitored Plume Stability	Yes	No	Yes	
		ID 6-75		Perched Hydraulic Control	Yes	Yes	Yes	
			LNAPL: NA, not present	NA	NA	NA	NA	
				Land Use Restrictions	Yes	Yes	No	
			SOIL:	Groundwater Use Restrictions	Yes	Yes	No	
			VOCs > DWP, GSIP, DC, SVIIC, and C _{sat} SVOCs > GSIP & DC	Monitored Plume Stability	Yes	No	Yes	
			Metals > GSIP	Сар	Yes	Yes	Yes	
Plant 6 AREA 7	NA	AOI 6-17 AOI 6-47		Targeted Excavation	Yes	Yes	Yes	
			CW.	Groundwater Use Restrictions	Yes	Yes	No	
			GW: VOCS > DW and GSI	Monitored Plume Stability Yes No		Yes		
			Metals > DW and GSI	Perched Hydraulic Control	Yes	Yes	Yes	
			LNAPL: NA, not present	NA	NA	NA	NA	
	NA	AOI 2-7 AOI ID 2-37 AOI ID 2-38		Land Use Restrictions	Yes	Yes	No	
			Metals > DWP and GSIP	Groundwater Use Restrictions	Yes	Yes	No	
Plant 2 AREA 8				Monitored Plume Stability	Yes	No	Yes	
				NA	NA	NA	NA	
			LNAPL: NA, not present	NA	NA	NA	NA	
					Land Use Restrictions	Yes	Yes	No
			SOIL:	Groundwater Use Restrictions	Yes	Yes	No	
			VOCs > DWP, GSIP, DC, SVIIC, and C _{sat} SVOCs > DWP, GSIP, and DC Cap Targeted Excavation		Yes	No	Yes	
					Yes	Yes	Yes	
					Yes	Yes	Yes	
Plant 6 AREA 9	NA	AOI 6-60 Miscellaneous		Land Use Restrictions	Yes Yes		No	
		Data Gap	ow.	Groundwater Use Restrictions	Yes	Yes	No	
			GW: VOCs > DW, GSI, FESL, and GW _{VI-nr}	Monitored Plume Stability	Yes	No	Yes	
				In-Situ Chemical Oxidation	Yes	Yes	Yes	
				Perched Hydraulic Control	Yes	Yes	Yes	
			LNAPL: NA, not present	NA	NA	NA	NA	
		AOI 6-19	SOIL: Metals > GSIP	Monitored Plume Stability	Yes	No	Yes	
Plant 6 AREA 10	NA	AOI 6-63 AOI 6-82	GW: No constituents exceed Part 201 Criteria	NA	NA	NA	NA	
			LNAPL: NA, not present	NA	NA	NA	NA	

Potential Corrective Measures Alternatives for Further Evaluation
NA
1) Groundwater Use Restrictions and Monitored Plume Stability
2) Perched Hydraulic Control
NA
1) Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap
 Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
1) Groundwater Use Restrictions and Monitored Plume Stability
2) Perched Hydraulic Control
NA
1) Land Use Restrictions, Groundwater Use Restrictions, and Monitored Plume Stability
NA
NA
 Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
1) Land Use Restrictions, Groundwater Use Restrictions, and Monitored Plume Stability
2) Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and In-Situ Chemical Oxidation
3) Perched Hydraulic Control
NA
1) Monitored Plume Stability
NA
NA

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Plant and Investigation Area	Subarea	Associated AOI	Summary of Applicable Exceedances	Identified Corrective Measures	Protective of Human Health and the Environment (Yes/No)	Attain Media Cleanup Objectives (Yes/No)	Control the Source o Demonstrate Plume Stability (Yes/No)				
						L	Land Use Restrictions	Yes	Yes	No	
			SOIL: VOCs > DWP, GSIP, and SVIIC	Groundwater Use Restrictions	Yes	Yes	No				
	Plant 3 NA (TD=132		SVOCs > GSIP Metals > DWP and GSIP	Monitored Plume Stability	Yes	No	Yes				
Plant 3				Targeted Excavation	Yes	Yes	Yes				
		AOI ID 3-54		Groundwater Use Restrictions	Yes	Yes	No				
			GW: VOCs > DW and GSI	Monitored Plume Stability	Yes	No	Yes				
				Perched Hydraulic Control	Yes	Yes	Yes				
			LNAPL: NA, not present	NA	NA	NA	NA	Ĩ			
		MW-04-02	SOIL: No applicable exceedances of Part 201 Criteria	NA	NA	NA	NA	Ĩ			
Plant 3 AREA 12	NA	(TD=132.7') MW-04-03	GW: No applicable exceedances of Part 201 Criteria	NA	NA	NA	NA	Ī			
	MW-04-03 (TD=88.25')			LNAPL: NA, not present	NA	NA	NA	NA	Ĩ		
						SOIL: No constituents exceed Part 201 Criteria	NA	NA	NA	NA	Ī
Plant 3 AREA 13		Sample				GW: No applicable exceedances of Part 201 Criteria	NA	NA	NA	NA	
						LNAPL: NA, not present	NA	NA	NA	NA	
	EA 12 NA MW-04-03 (TD=88.25) GW: N LNAPL ant 3 EA 13 NA Background Sample GW: N LNAPL ant 3 EA 13 NA Background Sample GW: N LNAPL ant 3 EA 14 NA Background Sample GW: N LNAPL AOI 3-10 Misc. Data Gap Borings GW: GW: Metals SOIL: Metals Image: Solution of the second						Land Use Restrictions	Yes	Yes	No	
					SOIL: Metals > DWP and GSIP	Groundwater Use Restrictions	Yes	Yes	No		
Plant 3		NA					Monitored Plume Stability	Yes	No	Yes	
AREA 14					Groundwater Use Restrictions	Yes	Yes	No			
			Metals > DW & GSI	Monitored Plume Stability	Yes	No	Yes				
			LNAPL: NA, not present	NA	NA	NA	NA	es/No) I No 1/2 No 1/2 Yes 2/2 No 1/2 Yes 1/2 Yes 1/2 Yes 1/2 Yes 1/2 Yes 1/2 NA 1/2 No 1/2 Yes 1/2 No 1/2 Yes 1/2			
			SOIL:	Land Use Restrictions	Yes	Yes	No				
			VOCs > DWP SVOCs > GSIP	Groundwater Use Restrictions	Yes	Yes	No				
			Metals > GSIP	Monitored Plume Stability	Yes	No	Yes				
Plant 3 AREA 15	NA	AOI ID 3-15	AOI ID 3-15		Groundwater Use Restrictions	Yes	Yes	No			
			GW: 1,4-dioxane > Proposed DW (8.5 μg/L)	Monitored Plume Stability	Yes	No	Yes				
				Perched Hydraulic Control	Yes	Yes	Yes	ĺ			
			LNAPL: NA, not present	NA	NA	NA	NA				

Potential Corrective Measures Alternatives for Further Evaluation
1) Land Use Restrictions, Groundwater Use Restrictions, and Monitored Plume Stability
 Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
1) Groundwater Use Restrictions and Monitored Plume Stability
2) Perched Hydraulic Control
NA
NA
ΝΑ
ΝΑ
ΝΑ
NA
NA
1) Land Use Restrictions, Groundwater Use Restrictions, and Monitored Plume Stability
1) Groundwater Use Restrictions and Monitored Plume Stability
NA
1) Land Use Restrictions, Groundwater Use Restrictions, and Monitored Plume Stability
1) Groundwater Use Restrictions and Monitored Plume Stability 2) Perched Hydraulic Control
NA

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Plant and Investigation Area	Subarea	Associated AOI	Summary of Applicable Exceedances	Identified Corrective Measures	Protective of Human Health and the Environment (Yes/No)	Attain Media Cleanup Objectives (Yes/No)					
							Land Use Restrictions	Yes	Yes	No	T
		coll.	Groundwater Use Restrictions	Yes	Yes	No	1				
			SVOCs > DWP, GSIP, and DC	Monitored Plume Stability	Yes	No	Yes	Plume spilityIIo1Io2Io2Io1Io			
Plant 3 AREA 16	NA	AOI 3-11	inetais > DwP, GSIP, and DC	Сар	Yes	Attain Media Cleanup Objectives/No)Demonstrate Plume Stability (Yes/No)YesNoYesNoYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNANANAYesNoYesNoYesNoYesNoYesNoYesNoYesNoYesNoYesYesYesNoYesYesYesYesYesNoYes<					
		NA AOI3-11 Groundwater Use Re Monitored Plume Stat Cap Targeted Excavation MA AOI3-11 Groundwater Use Re Monitored Plume Stat Cap MA AOI3-11 GW: No constituents exceed Part 201 Criteria Cap MA GW: No constituents exceed Part 201 Criteria Image: Cap Cap MA Cap Cap Cap MA SOIL: Constituents exceed Part 201 Criteria Image: Cap MA Cap Cap Cap MA Soil: VOCs > DWP, GSIP, and SVIIC Cap VOCs > DWP, GSIP, and SVIIC SVOCs > SGIP Groundwater Use Re Metals > GSIP Cap Matis > GSIP Groundwater Use Re Metals > GSIP Cap Cap NA AOI 3-3 AOI 3-4 AOI 3-9 GSI and GW 	Targeted Excavation	Yes	Yes	Yes					
			GW: No constituents exceed Part 201 Criteria	NA	NA	NA	NA				
l			LNAPL: NA, not present	NA	NA	NA	NA				
				Land Use Restrictions	Yes	Yes	No				
				Groundwater Use Restrictions	Yes	Yes	No	1)			
			Metals > GSIP	Monitored Plume Stability	Yes	No	Yes				
				Land Use Restrictions	Yes	Yes	No	1) 2) E: E: 1) 1) 2) Ta 1) 2) Ta 1) 2) Ta 1) 2) 1) 1) 2) 1) 1) 2) 1) 1) 2) 1) 1) 2) 1) 1) 2) 1) 1) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2			
				Groundwater Use Restrictions	Yes	Yes	No	1)			
				Monitored Plume Stability	Yes	No	Yes	''ume 1) 2) 2) 1) 2) 1) 1)			
				Perched Hydraulic Control	Yes	Yes	Yes				
Plant 3 AREA 17	NA	AOI 3-4		Land Use Restriction	Yes	Yes	No				
	3 3 16 NA 3 17 NA 3 17 NA 3 17 NA	AOI 3-9		Groundwater Use Restrictions	Yes	Yes	No	ate Plume ility 0 1) 0 2) 25 2) 28 2) 29 2) 29 2) 28 2) 29 2) 20 2) 20 1) 20 1) 20 1) 20 1) 20 2) 21			
						Monitored Plume Stability	Yes	No	Yes		
				NAPI · Present	Сар	Yes	Yes	Yes	3)		
				Mary of Applicable ExceedancesMathemate and programDemonstrate Plums (YeaNo)Demonstrate Plums (
				LNAPL Recovery (Skimmers)	Yes	Yes	Yes	1) 2) 5) 1) 2) 5) 1) 1) 2) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
				Multi-Phase Extraction	Yes	Yes	Yes				
				Excavation	Yes	Yes	Yes				
				Land Use Restrictions	Yes	Yes	No	- 1) - 2) - 5) - 1) - 1) - 1) - 1) - 2) - 1) - 1) - 2) - 1) - 2) - 1) - 2) - 1) - 1) - 2) - 2)			
			2011 -	Groundwater Use Restrictions	Yes	Yes	No				
Plant 3 AREA 18			SVOCs > DWP, GSIP, and DC	Monitored Plume Stability	Yes	No	Yes	2)			
	NA	AOI 3-2 AOI 3-6	Iniciais > Diver and Goir	Сар	Yes	Yes	Yes	Let a constraint of the second			
	3 NA AOI 3-2 18 AOI 3-6 Metals > DWP ar		Targeted Excavation	Yes	Yes	Yes					
			GW: No constituents exceed Part 201 Criteria	NA	NA	NA	NA				
			LNAPL: NA, not present	NA	NA	NA	NA	ity io) 			

Potential Corrective Measures Alternatives for Further Evaluation
1) Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap
2) Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
NA
NA
1) Land Use Restrictions, Groundwater Use Restrictions, and Monitored Plume Stability
1) Land Use Restrictions, Groundwater Use Restrictions and Monitored Plume Stability
2) Perched Hydraulic Control
1) Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap
 Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, a Cap, and Targeted Excavation
3) Soil-Vapor Extraction
4) LNAPL Recovery (Skimmers)
5) Multi-Phase Extraction
6) Excavation
1) Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap
2) Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
ΝΑ
NA

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Plant and Investigation Area	Subarea	Associated AOI	Summary of Applicable Exceedances	Identified Corrective Measures	Protective of Human Health and the Environment (Yes/No)	Attain Media Cleanup Objectives (Yes/No)	Control the Source o Demonstrate Plume Stability (Yes/No)					
						Land Use Restrictions	Yes	Yes	No	Ī		
				201	Groundwater Use Restrictions	Yes	Yes	No				
	Plant 3 NA AREA 19 NA		SOIL: SVOCs > GSIP Metals > DWP, GISP, and DC	Monitored Plume Stability	Yes	No	Yes					
		AOI ID 3-17		Сар	Yes	Yes	Yes					
	None o m		Targeted Excavation	Yes	Yes	Yes						
			GW:	Groundwater Use Restrictions	Yes	Yes	No					
								Metals > DW and GSI	Monitored Plume Stability	Yes	No	Yes
			Nonitored Plume Stability Yes No Yes PL: NA, not present NA NA NA Land Use Restrictions Yes Yes No									
							Land Use Restrictions	Yes	Yes	No		
			2011.	Groundwater Use Restrictions	Yes	Yes	No					
			SOIL: SVOCs > GSIP Metals > DWP, GSIP, and PSIC	Monitored Plume Stability	Yes	No	Yes					
Plant 3 AREA 20	ANT 3 NA AOI 3-51		A AOI 3-51	AOI 3-51	AOI 3-51	AOI 3-51	AOI 3-51	AOI 3-51	Сар	Yes	Yes	Yes
									Targeted Excavation	Yes	Yes	Yes
									GW: No constituents exceed Part 201 Criteria	NA	NA	NA
					LNAPL: NA, not present	NA	NA	NA	NA			
			Land Use Restrictions	Yes	Yes	No						
		SOIL: Metals > DWP, GSI	SOIL ·		Groundwater Use Restrictions	Yes	Yes	No				
				Monitored Plume Stability	Yes	No	Yes					
Plant 3 NA AREA 21 NA	NA	AOI 3-51		Сар	Yes	Yes	Yes					
				Targeted Excavation	Yes	Yes	Yes					
			GW: No constituents exceed Part 201 Criteria	NA	NA	NA	NA					
			LNAPL: NA, not present	NA	NA	NA	NA					

Acronyms and Abbreviations:

> = greater than

AOI = area of interest C_{sat} = Soil Saturation Concentration Criteria DC = Direct Contact Criteria DW = Residential Drinking Water Criteria DWP = Drinking Water Protection Criteria FESL = Flammability and Explosivity Screening Level GC = Groundwater Contact GSI = Groundwater/Surface Water Interface GSIP = Groundwater/Surface Water Interface Protection GW = groundwater GW_{VI-nr} = draft Groundwater Concentrations for Vapor Intrusion ISCO = in-situ chemical oxidation LNAPL = light non-aqueous phase liquid NA = not applicable Not Applicable Part 201 Criteria = Part 201 Generic Cleanup Criteria PCB = polychlorinated biphenyl Prop = proposed PSIC = Particulate Soil Inhalation Criteria RCRA = Resource Conservation and Recovery Act Sol = solubility SVIIC = Soil Volatilization to Indoor Air Inhalation Criteria SVOC = semivolatile organic compound µg/L = micrograms per liter VOC = volatile organic compound

Potential Corrective Measures Alternatives for Further Evaluation
1) Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap
 Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
1) Groundwater Use Restrictions and Monitored Plume Stability
ΝΑ
 Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
ΝΑ
ΝΑ
 Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and a Cap Land Use Restrictions, Groundwater Use Restrictions, Monitored Plume Stability, and Targeted Excavation
NA
ΝΑ

Plant and Investigation Area					
Media		Soil, Groundwater, and LNAPL		Groundwater	
Corrective Measures	Land Use Restrictions	Groundwater Use Restrictions	Monitored Plume Stability	Perched Hydraulic Control ¹	
Description	 Land Use Restrictions: Includes limiting future use of the Site to commercial and/or industrial, Site-wide contaminated soil management, Site-wide vapor intrusion exposure restrictions, subgrade utility restrictions, and health and safety requirements for intrusive activities². 	 Groundwater Use Restrictions: Includes prohibiting the construction and use of wells or other devices on the Site to extract groundwater for consumption, irrigation, or any other purpose, with the exception of evaluating groundwater, remediation of subsurface contamination, or short-term dewatering for construction purposes. 	 Implementation of a Site-wide monitoring program that provides the data to continue to verify plume stability. In addition, surface cover will be maintained/retained (e.g., building slabs, asphalt, concrete) near soil and groundwater impacts to minimize infiltration and maximize the potential for the perched groundwater plume to remain stable and on site. 	 Hydraulic control (i.e., pump and treat) is composed of pumping wells located near the property boundaries to prevent off-site migration of source mass. Extracted groundwater would be treated with an above-grade system, and treated water would be discharged to a POTW or surface water body. 	
Long-term Reliability and Effectiveness	 Restrictions are a reliable legal mechanism to restrict current and future land use at the Site. 	 Restrictions are a reliable legal mechanism to restrict current and future groundwater use at the Site. 	 A groundwater monitoring program would verify the stability of the groundwater plume over time. Monitoring groundwater in the storm sewer during dry weather flow would verify that COCs leaving the Site do not exceed surface water quality standards at the Grand River. The building slabs would minimize infiltration and maximize the potential for the groundwater plume to remain stable and on site. 	 Due to the heterogeneities in the perched groundwater zone, it would be difficult to operate and maintain a reliable and effective system to contain Site groundwater; large variations in capture and flow rates are expected. 	
Reduction in the Toxicity, Mobility, or Volume of Waste	 Land use restrictions do not reduce the toxicity, mobility, or volume of waste at the Site. 	 Groundwater use restrictions do not reduce the toxicity, mobility, or volume of waste at the Site. 	 The groundwater monitoring program would monitor plume stability and the reduction in COC mass present at the Site from natural processes. Monitoring groundwater in the storm sewer during dry weather flow would verify that COCs leaving the Site do not exceed surface water quality standards at the Grand River. The preservation of existing building slabs would minimize infiltration and maximize the potential for the groundwater plume to remain stable and on site. 	 Hydraulic control would reduce the toxicity, mobility, and volume of impacted groundwater at the Site by preventing off-site migration by extracting groundwater and treating the extracted groundwater with an above-grade system. 	
Short-term Effectiveness	 Restrictions are a reliable legal mechanism to restrict land use at the Site once they are registered. 	 Restrictions are a reliable legal mechanism to restrict groundwater use at the Site once they are registered. 	 Based on current data, the groundwater plume is stable. The building slabs would minimize infiltration and maximize the potential for the groundwater plume to remain stable and on site. 	 Due to the complexities in hydraulics and range of contaminants requiring treatment, multiple pumping tests and an extended field-scale pilot test would be conducted to verify long-term performance and cost. 	
	 Restrictions would be easy to implement, as RACER Trust currently owns the property that would be restricted. 	 Restrictions would be easy to implement, as RACER Trust currently owns the property that would be restricted. 	 Monitored plume stability would be easy to implement, as the existing monitoring well network would be used for groundwater monitoring. 	 Hydraulic control would be very difficult to implement due to the following: Interbedded lithology in some areas may not be conducive for a traditional pump and treat system. Multiple pumping tests would be required to capture the heterogeneities associated with the range of flow, drawdown, and capture in the interbedded zone. The extended field-scale pilot test would be required to verify long-term performance and cost. 	
Community	 The restrictions are consistent with current zoning for the Site (heavy industrial). Vapor intrusion exposure restrictions would eliminate the SVIIC exposure risk for future property owners. 	for the Site (heavy industrial). • Vapor intrusion exposure restrictions would eliminate the SVIIC exposure risk for future property eliminate the SVIIC exposure risk for future property		 Hydraulic control would prevent off-site migration, as well as control the horizontal and vertical migration of source area contamination; therefore, it would likely be acceptable to the community. 	
MDEQ Acceptance	 The restrictions are consistent with current zoning for the Site (heavy industrial) and are readily acceptable by the MDEQ. Vapor intrusion exposure restrictions have been accepted by the MDEQ to address vapor intrusion exposure risk. 	 Groundwater use restrictions in areas with municipal services are acceptable to the MDEQ. 	 Data collected during groundwater monitoring would be provided to the MDEQ to show that the groundwater plume remains stable over time. 	 Hydraulic control is widely accepted by the MDEQ as a remedial option. 	
Pre-Design Testing	• None	• None	• None	 Additional characterization to refine the areas that would require containment and/or source control. Pumping tests to capture the heterogeneities associated with the range of flow, drawdown, and capture in the interbedded zone. Treatability testing to determine the appropriate treatment technologies to meet the standards based on the range of contaminants at the Site. Geochemical analysis of groundwater required for proper design of the above-grade treatment system. Extended field-scale pilot test would be required to verify long-term performance and cost. 	
Sustainability	Restrictions do not generate waste, have energy requirements, or increase emissions. Restrictions do not generate waste, have energy requirements, or increase emissions. The groundwater monitoring program would generate minimal waste.		 This option would generate waste, have long-term energy requirements, and emissions related to the construction and operation of the hydraulic control system. 		
Corrective Measure Area	Site-Wide Site-Wide Site-Wide			Site-Wide	
Cost ^{3,4}	\$94,000	\$25,000	Cost for 30-Year Monitoring/Maintenance Duration: \$4,124,000 Groundwater Sampling: \$2,784,000 Initial Surface Cover and	Cost for 30-Year O&M Duration: \$21,800,000 Pilot Testing/Design/Full- Scale Installation: \$3,374,000	
			Vegetation Control and Surface Cover Maintenance : \$1,218,000 Well Abandonment (year 30) \$122,000	Annual Performance \$96,000 Monitoring (annual cost): \$517,000	

General Notes:

1. Current hydraulic control has been evaluated under the worse-case scenario that the perched plume does not remain stable. Actual implementation of hydraulic control would be limited to areas with plume(s) that are not stable.

- 2. Health and safety requirements for intrusive activities are only required in Areas 2, 5-1, 5-2, 5-3, 5-5, 5-6, 7, 9, 16, 17, 18, 19, 20, and 21. Subgrade utility restrictions are required in Areas 2, 5-1, 5-2, 5-5, 5-6, 5-8, and 17.
- 3. Major cost assumptions for hydraulic control include:
- Long-term (approximately 1 year) treatability testing will be required.
- Influent groundwater concentrations are summarized in Appendix E.
- The treatment process will include equalization, aeration, pH adjustment, filtration, air stripping, advanced oxidation,
- ion exchange, and granular-activated carbon.
- 30 years of system operation.

Acronyms and Abbreviations:

COC = constituent of concern LNAPL = light non-aqueous phase liquid MDEQ = Michigan Department of Environmental Quality O&M = operation and maintenance POTW = publically owned treatment works RACER = Revitalizing Auto Communities Environmental Response SVIIC = Soil Volatilization to Indoor Air Inhalation Criteria

4. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

Plant and Investigation Area	Lower 1,4-Dioxane Plants 2 and 3				
Media	Groundwater				
Corrective Measures Alternative ¹	Source Area ISCO	Hydraulic Containment			
Description	 Injection of a chemical oxidant through injection wells to reduce source area 1,4-dioxane concentrations. 	 Hydraulic containment would be composed of pumping wells located at Plant 2 near the downgradient (i.e., southern) edge of the lower 1,4-dioxane plume to prevent off-site migration. Based on the range of contaminants at the Site, treatment would require an above-grade treatment system that may include equalization, aeration, pH adjustment, filtration, air stripping, advanced oxidation, ion exchange, and granular-activated carbon. The treatment system effluent would be discharged in accordance with a National Pollutant Discharge Elimination System permit or publicly owned treatment works permit. 			
Long-term Reliability and Effectiveness	 ISCO injections would effectively reduce source mass contributing to the deep 1,4- dioxane plume. 	 Hydraulic capture at the toe of the deep 1,4-dioxane plume would be a reliable and effective way to prevent off-site migration of impacted groundwater. 			
Reduction in the Toxicity, Mobility, or Volume of Waste	 This option does reduce the toxicity and volume of impacted groundwater at the Site in the source area. ISCO in the source area will not prevent off-site migration at the toe of the plume. 	 On-site hydraulic containment would reduce the toxicity, mobility, and volume of impacted groundwater at the Site by preventing off-site migration by extracting groundwater and treating the extracted groundwater with an above-grade system. 			
Short-term Effectiveness	 ISCO injections would be conducted to reduce source mass contributing to the deep 1,4- dioxane plume; however, in the short-term, rebound (the diffusion of COCs from the non- mobile to mobile pore space after treatment) is likely to occur, multiple injections may be required. 	 Pumping tests will be required to ensure capture by pumping is feasible. Once Implemented, hydraulic containment will be effective immediately. 			
Implementability	 MDEQ approval for injection would be required prior to implementation. Additional field pilot testing is required to verify feasibility prior to full-scale implementation. 	 Hydraulic containment would be easily implementable at the toe of the plume. 			
Community Acceptance	 Reduction of source mass will be acceptable to the community. 	 Hydraulic containment would prevent off-site migration; therefore, it would likely be acceptable to the community. 			
MDEQ Acceptance	 ISCO is widely accepted by the state as a remedial option; however, there may be additional requirements to obtain approval to complete injections in a well-head protection zone. 	 Hydraulic containment is widely accepted by the MDEQ as a remedial option. 			
Pre-Design Testing	 Investigation to further define treatment area. Field injection test to determine injection hydraulics and oxidant transport. 	 Pumping tests would be required to verify performance and cost. 			
Sustainability	 Injection activities would generate minimal waste, have some energy requirements (electric/fuel consumption), and minor emissions related to the injection activities. 	 This option would generate waste, have long-term energy requirements, and emissions related to the construction and operation of the hydraulic control system. 			
Treatment Area	4,100 ft ²	890,000 ft ² (deep 1,4-dioxane > 8.5 ppb footprint)			
Cost ³	\$2,720,000	Cost for 30-Year O&M Duration: Total: \$12,912,000 Pilot Testing/Design/Full-Scale Installation: \$1,092,000 Annual Performance Monitoring (annual cost): \$72,000 Annual O&M (annual cost): \$322,000			

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection and maintenance cost are included with the monitored plume stability cost.

Major cost assumptions for hydraulic containment, aggressive pump and treat, and groundwater recirculation are as follows:
 No source mass is present in the perched zone in the vicnity of the colesium (Plant 3, Area 11) that is contributing to the lower 1,4-dioxane plume

• The treatment process will include equalization, aeration, pH adjustment, filtration, air stripping, advanced oxidation,

ion exchange, and granular-activated carbon. • Timeframe of operation for the hydraulic containment based on 30 years of system operation.

• Estimated timerames for aggressive pump and treat (15 years) and groundwater recirculation (10 years) is based on the estimated timeframe to attain current drinking water standards for 1,4-dioxane by achieving 2-3 pore flushes throughout the lower 1,4-dioxane plume.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

ISCO = in-situ chemical oxidation MDEQ = Michigan Department of Environmental Quality O&M = operation and maintenance ppb = parts per billion RCRA = Resource Conservation and Recovery Act

Plant and Investigation Area	Lower 1,4-Dioxane Plants 2 and 3					
Media	Groundwater					
Corrective Measures Alternative ¹	Aggressive Pump and Treat	Groundwater Recirculation				
Description	 Aggressive pump and treat would be composed of pumping wells located at Plant 2 near the downgradient edge of the lower 1,4-dioxane plume to prevent off-site migration. In addition, pumping wells would be located along the spine of the plume and in the source area located on Plant 3. Based on the range of contaminants at the Site, treatment would require an above-grade treatment system that may include equalization, aeration, pH adjustment, filtration, air stripping, advanced oxidation, ion exchange, and granular-activat carbon. The treatment system effluent would be discharged in accordance with a Nationa Pollutant Discharge Elimination System permit or publicly owned treatment works permit. 	grade treatment of groundwater, and reinjection of treated groundwater back into the plume via injection wells. Based on the range of contaminants at the Site, treatment would require an above- grade treatment system that may include equalization, aeration, pH adjustment, filtration, air stripping, advanced oxidation, ion exchange, and granular-activated carbon. Any excess treatment eq system effluent that cannot be re-injected would be discharged in accordance with a National				
Long-term Reliability and Effectiveness	 Pumping at the toe and along the spine of the deep 1,4-dioxane plume would be a reliab and effective way to prevent off-site migration of impacted groundwater. Pumping along the entire plume increases pore flushes and reduces concentrations more efficiently and effectively than hydraulic containment. 	 Groundwater recirculation would be a reliable and effective way to prevent off-site migration of impacted groundwater. Recirculation increases pore flushes and reduces concentrations more effectively and efficiently than pumping options. 				
Reduction in the Toxicity, Mobility, or Volume of Waste	 Aggressive pump and treat would reduce the toxicity, mobility, and volume of impacted groundwater at the Site by preventing off-site migration by extracting groundwater and treating the extracted groundwater with an above-grade system. Aggressive pump and treat would reduce mass faster than the hydraulic containment option. 	 Groundwater recirculation would reduce the toxicity, mobility, and volume of impacted groundwater at the Site by preventing off-site migration by extracting groundwater and treating the extracted groundwater with an above-grade system. Groundwater recirculation reduces mass faster than pumping only options. 				
Short-term Effectiveness	 Pumping test will be required to ensure capture by pumping is feasible. Once implemented aggressive pump and treat will be effective immediately. 	 Pumping test will be required to ensure capture by pumping is feasible. Injection test will be required to ensure reinjection of treated water is feasible. Once implemented recirculation will be effective immediately. 				
Implementability	 Aggressive pump and treat will be moderately difficult to implement due to piping/trenchiunder Saginaw and through existing source areas. 	• Groundwater recirculation will be moderately difficult to implement due to piping/trenching under Saginaw and through existing source areas. Special care/maintenance will be required to keep injection/extraction wells from fouling.				
Community Acceptance	 Aggressive pump and treat would prevent off-site migration; therefore, it would likely be acceptable to the community. 	Groundwater recirculation would prevent off-site migration; therefore, it would likely be acceptable to the community.				
MDEQ Acceptance	 Pump and treat is widely accepted by the MDEQ as a remedial option. 	 Groundwater recirculation is acceptable to the MDEQ as a remedial option. 				
Pre-Design Testing	 Pumping tests would be required to verify performance and cost. 	 Pumping and injection tests would be required to verify performance and cost. 				
Sustainability	 This option would generate waste, have long-term energy requirements, and emissions related to the construction and operation of the hydraulic control system. 	 This option would generate waste, have long-term energy requirements, and emissions related to the construction and operation of the hydraulic control system. 				
Treatment Area	890,000 ft ² (deep 1,4-dioxane > 8.5 ppb footprint)	890,000 ft ² (deep 1,4-dioxane > 8.5 ppb footprint)				
Cost ³	Cost for 15-Year O&M Duration ² : Total: \$12,101,000 Pilot Testing/Design/Full-Scale Installation: \$2,411,000 Annual Performance Monitoring (annual cost): \$72,000 Annual O&M (annual cost): \$574,000	Cost for 10-Year O&M Duration ² : Total: \$8,426,000 Pilot Testing/Design/Full-Scale Installation: \$2,706,000 Annual Performance Monitoring (annual cost): \$72,000 Annual O&M (annual cost): \$500,000				

General Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection and maintenance cost are included with the monitored plume stability cost.

Major cost assumptions for hydraulic containment, aggressive pump and treat, and groundwater recirculation are as follows:
 No source mass is present in the perched zone in the vicnity of the colesium (Plant 3, Area 11) that is contributing to the lower 1,4-dioxane plume

• The treatment process will include equalization, aeration, pH adjustment, filtration, air stripping, advanced oxidation,

ion exchange, and granular-activated carbon. • Timeframe of operation for the hydraulic containment based on 30 years of system operation.

• Estimated timerames for aggressive pump and treat (15 years) and groundwater recirculation (10 years) is based on the estimated timeframe to attain current drinking water standards for 1,4-dioxane by achieving 2-3 pore flushes throughout the lower 1,4-dioxane plume.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

= square feet ISCO = in-situ chemical oxidation MDEQ = Michigan Department of Environmental Quality O&M = operation and maintenance ppb = parts per billion RCRA = Resource Conservation and Recovery Act

Plant and Investigation Area	Plant 2, Area 2			
Media	s	Soil		
Corrective Measures Alternative ¹	Cap⁴	Targeted Soil Excavation⁵		
Description	 A cap would be implemented to cover DC and PSIC soil exceedances. The cap would be constructed using clean surface cover (soil or gravel) or existing cover (concrete or asphalt). An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	 Excavated soils would be transported and disposed in accordance with applicable requirement 		
Long-term Reliability and Effectiveness	 A cap would effectively prevent particulate inhalation and direct contact with the impacted soils. An RC would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness. 	 Targeted excavation would be a reliable and effective way to remove soils exceeding DC, PSIC, ar SVIIC near the property boundary. Removal of these soils will eliminate a potential long-term source to groundwater near the property boundary. 		
Reduction in the Toxicity, Mobility, or Volume of Waste	The cap would not reduce toxicity or volume of waste.	Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site.		
Short-term Effectiveness	 A cap would effectively prevent particulate inhalation and direct contact with the impacted soils once construction was completed. 	• Targeted excavation would be effective in removing soils exceeding DC, PSIC, and SVIIC once construction was completed.		
Implementability	 Placement of a clean surface cover (soil, gravel) or the utilization of existing cover (concrete or asphalt) to cover the DC and PSIC exceedances could be easily implemented. 	 Based on estimated depth (up to 10 feet), excavation for DC and PSIC exceedances may require shoring, sloping, and/or benching but would be implementable. Based on estimated depth (up to 25 feet), excavation to eliminate SVIIC exceedances would require shoring, sloping, and/or benching; non-traditional utility locating equipment; and potentially water management and soil solidification and could be difficult to implement. 		
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	Targeted excavation would eliminate soil exceeding DC, PSIC, and SVIIC; therefore, it would likely be acceptable to the community.		
MDEQ Acceptance	Caps have been accepted by the MDEQ to mitigate DC and PSIC risks in non-residential areas.	Excavations are widely accepted by the MDEQ as a remedial option.		
Pre-Design Testing	 Evaluation of existing concrete and/or asphalt for potential use as a cap. 	Investigation to refine vertical and horizontal targeted excavation area.		
Sustainability	 Construction of the cap would not generate waste but would have some energy requirements (fuel consumption) and minor emissions related to the source of the cap material and the construction activities. 	Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities.		
Cap Area/Excavation Volume ²	Cap Area: 800 tt ²	Targeted Excavation Volume for DC and PSIC: 200 cy Targeted Excavation Volume for SVIIC: 6,300 cy		
Cost ³	\$9,000	Excavation for DC and PSIC:	\$34,000	
COST	\$3,000	Excavation for SVIIC:	\$473,000	

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection and maintenance cost are included

with the monitored plume stability cost.

2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

4. Major cost assumptions for a cap are:

• The cap is constructed using clean surface cover (sand).

• Area defined by on RFI investigation data. DC/PSIC exceedance location(s) to the next clean boring location.

5. Major cost assumptions for targeted excavation are:

Excavated material is not classified as a Listed or Characteristically Hazardous Waste.
No shoring will be required and any materials removed for excavation benching, and sloping will not require off-site transport and disposal.

• Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.

DC/PSIC volume based on RFI investigation data, DC/PSIC exceedance location(s) to the next clean boring location.
 SVIIC volume based on RFI investigation data, SVIIC exceedance location(s) to half-way to the next clean boring location. Cost also includes investigation to refine excavation.

Acronyms and Abbreviations:

cy = cubic yards

DC = Direct Contact Criteria

ft² = square feet

MDEQ = Michigan Department of Environmental Quality

PSIC = Particulate Soil Inhalation Criteria

RC = Restrictive Covenant

RCRA = Resource Conservation and Recovery Act

RFI = RCRA Facility Investigation

SVIIC = Soil Volatilization to Indoor Air Inhalation Criteria

Plant and Investigation Area	Plant 2 Area, 5-1			
Media	Si	oil		
Corrective Measures Alternative ¹	Cap⁴	Targeted Soil Excavation ⁵		
Description	 A cap would be implemented to cover DC soil exceedances. An existing building slab covers the applicable DC exceedances and would serve as the cap for this area. An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	• Excavated soils would be transported and disposed in accordance with applicable requirements of		
Long-term Reliability and Effectiveness	 A cap would effectively prevent direct contact with the impacted soils. An RC would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness. 	 Targeted excavation would be a reliable and effective way to remove soils exceeding DC. 		
Reduction in the Toxicity, Mobility, or Volume of Waste	The cap would not reduce toxicity or volume of waste.	Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site.		
Short-term Effectiveness	The existing building slab is effectively preventing direct contact with the impacted soils.	 Targeted excavation would be effective in removing soils exceeding DC once construction was completed. 		
Implementability	 A cap would be easy to implement, as there is an existing building slab that cover the DC exceedances and is currently preventing direct contact with the impacted soils. 	 Based on estimated depth (5 feet), excavation may require shoring, sloping, and/or benching but would be implementable. 		
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	 Targeted excavation would eliminate soil exceeding DC; therefore, it would likely be acceptable to the community. 		
MDEQ Acceptance	 Caps have been accepted by the MDEQ to mitigate DC risks in non-residential areas. 	 Excavations are widely accepted by the MDEQ as a remedial option. 		
Pre-Design Testing	• None	 Investigation to refine vertical and horizontal targeted excavation area. 		
Sustainability	There is an existing building slab in place; therefore, no waste or emissions would be generated.	 Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities. 		
Cap Area/Excavation Volume ²	Cap Area: 4,900 ft ²	Targeted Excavation Volume: 1,000 cy		
Cost ³	\$0	\$150,000		

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection and maintenance cost are included

with the monitored plume stability cost. 2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not information is not information. intended to be used for complying with financial reporting requirements associated with liability reserves.

4. Major cost assumptions for a cap are:

• An existing building slab will serve as the cap.

• Area defined by on RFI investigation data. DC exceedance location(s) to the next clean boring location.

5. Major cost assumptions for targeted excavation are:

- Excavated material is not classified as a Listed or Characteristically Hazardous Waste.
- No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.
- Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.
 DC volume based on RFI investigation data, DC exceedance location(s) to the next clean boring location.

Acronyms and Abbreviations:

cy = cubic yards DC = Direct Contact Criteria ft² = square feet MDEQ = Michigan Department of Environmental Quality RC = Restrictive Covenant RCRA = Resource Conservation and Recovery Act RFI = RCRA Facility Investigation

Plant and Investigation Area		Plant 2,	Area 5-2		
Media	Soil LNAPL				
Corrective Measures Alternative ¹	Cap ⁵	Targeted Soil Excavation ⁶	LNAPL Cap ⁵	Cap and Targeted LNAPL Excavation ^{5,6}	
Description	 A cap would be implemented to cover DC and PSIC soil exceedances (135,000 ft²). In the area where the existing building slab covers the applicable DC and PSIC exceedances, the building slab would serve as the cap (100,000 ft²). The existing building slab would be extended to cover the remaining green space area with applicable DC and PSIC exceedances (20,000 ft²). An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	 Targeted excavations would be completed to remove soils exceeding DC and PSIC. Excavated soils would be transported and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 	 A cap would be implemented to cover the LNAPL plume (135,000 ft²)². In the area where the existing building slab covers the LNAPL plume, the building slab would serve as the cap (10,000 ft²). The existing building slab would be extended over the remaining green space over the LNAPL footprint to prevent exposure and limit infiltration (20,000 ft²). An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	 Targeted excavations would be completed to remove LNAPL that has the highest fraction of VOCs to eliminate ongoing potential sources to groundwater. Excavated soils would be transported and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 	
ong-term Reliability and Effectiveness	 A cap would effectively prevent particulate inhalation and direct contact with impacted soils. An RC would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness. 	 Targeted excavation would be a reliable and effective way to remove soils exceeding DC and PSIC. 	 LNAPL is defined and not migrating. A cap would effectively prevent exposure to the LNAPL. An RC would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness. 	 Targeted excavation would be a reliable and effective way to remove LNAPL that has the highest fraction of VOCs to eliminate potential ongoing sources to groundwater. 	
Reduction in the Toxicity, Mobility, or Volume of Waste	The cap would not reduce toxicity or volume of waste.	 Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site. 	The cap would not reduce toxicity or volume of waste. Mobility testing indicated the LNAPL plumes are not migrating.	 Removal of LNAPL via targeted excavations reduces the toxicity, mobility, or volume of LNAPL at the Site. 	
	 A cap would effectively prevent particulate inhalation and direct contact with the impacted soils once construction was completed. 	 Targeted excavation would be effective in removing soils exceeding DC and PSIC once construction was completed. 	 A cap would effectively prevent exposure to the LNAPL once construction was completed. 	 Targeted excavation would be a reliable and effective way to remove LNAPL that has the highest fraction of VOCs to eliminate ongoing potential sources to groundwater. 	
Implementability	 A cap would be easy to implement, as there are existing building slabs that partially cover the DC and PSIC exceedances and is currently preventing particulate inhalation and direct contact with the impacted soils. An extension of the existing building slab could be easily implemented. 	 The depth of the majority of the excavation would be up to 5 feet and may require shoring, sloping, and/or benching but would be implementable. One location would be up to 27 feet and would require shoring, sloping, and/or benching; non-traditional utility locating equipment; and potentially water management and soil solidification and could be difficult to implement. 	• A cap would be easy to implement, as there is an existing building slab that partially covers the LNAPL plume and is	 Based on estimated depth (6 to 13 feet), excavation may require shoring, sloping, and/or benching; non-traditional utility locating equipment; and potentially LNAPL/water management and/or soil solidification, and could be difficult implement. 	
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	 Targeted excavation would eliminate soil exceeding DC and PSIC and would, therefore, likely be acceptable to the community. 	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	 Targeted excavation would remove impacted soils from th Site; therefore, it would likely be acceptable to the community. 	
MDEQ Acceptance	 Caps have been accepted by the MDEQ to mitigate DC and PSIC risks in non-residential areas. 	 Excavations are widely accepted by the MDEQ as a remedial option. 	 Caps are an acceptable way to mitigate LNAPL risks for plumes that are defined, not migrating, and have limited recoverability in non-residential areas. 	 Excavations are widely accepted by the MDEQ as a remedial option. 	
	 Evaluation of existing concrete and/or asphalt for potential use as a cap where the existing building slab is not present. 	 Investigation to refine the vertical and horizontal targeted excavation area. 	 Evaluation of existing concrete and/or asphalt for potential use as a cap where the existing building slab is not present. 	 Investigation to refine the vertical and horizontal targeted excavation area. 	
Sustainability	 Construction of the cap would not generate waste but would have some energy requirements (fuel consumption) and minor emissions related to the source of the cap material and the construction activities. 	 Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities. 	 Construction of the cap would not generate waste, but would have some energy requirements (fuel consumption) and minor emissions related to the construction activities. 	 Targeted excavation would generate waste, have some energy requirements (fuel consumption), and minor emissio related to the construction and transport activities. 	
Cap/Treatment Area or Excavation Volume ³	Total Cap Area: 135,000 ft ²	Targeted Excavation Volume: 27,200 cy	Total Cap Area: 135,000 ft ²	Total Cap Area: 135,000 ft ²	
				Targeted Excavation Volume: 3,700 cy	
			4000.000		

Cost ⁴	\$269,000	\$2,606,000	\$269,000	\$666,000

Plant and Investigation Area	Plant 2 Area 5-2				
Media	LNAPL				
Corrective Measures Alternative ¹	LNAPL Recovery (Skimmers) ⁷	MPE [®]	Excavation ⁶		
Description	 LNAPL skimming would involve installation of skimmers (belt skimmers or skimmer pumps) in permanent recovery wells to remove free-phase LNAPL that collected in wells. LNAPL would be transferred to an above-grade storage tank or drum and removed and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 	 MPE would involve recovery of LNAPL and perched groundwater by pumping or high vacuum extraction. Soil vapor would also be removed to enhance recovery of LNAPL and promote volatilization and aerobic biodegradation, where applicable. Extracted soil vapor would be treated with an above-grade system and discharged to the atmosphere. Extracted groundwater would be treated with an above-grade system and discharged to a POTW or surface water body. LNAPL would be separated from groundwater in an above- grade system, transferred to an above-grade storage tank, and removed and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 	 Excavation would be completed to remove LNAPL; excavated LNAPL-impacted soils would be transported and disposed in accordance with applicable requirements of RCR and all other relevant state and federal laws. 		
Long-term Reliability and Effectiveness	 LNAPL skimming would be a reliable way to remove recoverable LNAPL at the Site to the extent practicable. Recoverability testing indicated LNAPL plumes have limited potential for recoverability; therefore, it would be difficult to design and implement an effective LNAPL skimming system to recover significant quantities of LNAPL. 	 Interbedded and low permeability lithology would limit the long-term effectiveness of MPE in some areas of the LNAPL plume. Mobility and recoverability testing indicated the LNAPL plume has limited potential for recoverability. Due to the heterogeneities in the perched groundwater zone (most impacted), it would be difficult to operate and maintain a reliable and effective system to remove LNAPL; large variations in capture and flow rates are expected. 	• Excavation would be a reliable and effective way to remove LNAPL from the Site.		
Reduction in the Toxicity, Mobility, or Volume of Waste	This option would, to the extent practicable, reduce the toxicity, mobility, and volume of LNAPL at the Site.	 This option does reduce the toxicity, mobility, and volume of LNAPL at the Site. Mobility and recoverability testing indicated the LNAPL plumes are not migrating and have limited potential for recoverability. 	 Removal of LNAPL via excavation reduces the toxicity, mobility, or volume of LNAPL at the Site. 		
Short-term Effectiveness	 Mobility and recoverability testing indicated the LNAPL plumes are not migrating and have limited potential for recoverability; therefore, the LNAPL recovery would be slow and have limited short-term effectiveness. 	 Mobility and recoverability testing indicated the LNAPL plumes are not migrating and have limited potential for recoverability. Due to the limited potential for recoverability, an extended field-scale pilot test would be conducted to verify long-term performance and cost. 	Excavation would be a reliable and effective way to remove LNAPL from the Site once construction was complete.		
Implementability	 LNAPL skimming would be difficult to implement due to the following: Mobility and recoverability testing indicated the LNAPL plumes have limited potential for recoverability; therefore, it would be difficult to design and implement an effective LNAPL skimming system to recover significant quantities of LNAPL. Skimmers would have limited influence away from the recovery wells; therefore, a large number of wells would be required to be effective. 	 MPE would be difficult to implement because: Mobility and recoverability testing indicated the LNAPL plumes have limited potential for recoverability; therefore, it would be difficult to operate and maintain a reliable and effective system to remove LNAPL; large variations in capture and flow rates are expected. Interbedded and low permeability lithology in some areas of the Site may not be conducive for a mass recovery via vapor extraction. LNAPL present in the interbedded and/or lower permeability silts and clays would be minimally recovered by an MPE system. Multiple extraction tests would be required to capture the heterogeneities associated with the range of flow, drawdown, and capture in the interbedded zone. Treatability testing would be required to determine the appropriate treatment technologies to meet the standards based on the range of contaminants at the Site. A extended field-scale pilot test would be required to verify long-term performance and cost. 	 Based on estimated depth (up to 24 feet), excavation may require shoring, sloping, and/or benching; non-traditional util locating equipment; and potentially LNAPL/water manageme and/or soil solidification, and could be difficult to implement. 		
Community Acceptance	 LNAPL skimming would remove LNAPL from the Site; therefore, it would likely be acceptable to the community. 	MPE would minimize LNAPL at the Site; therefore, it would likely be acceptable to the community. The MPE system may generate nuisance noise.	 Excavation would remove LNAPL from the Site; therefore, would likely be acceptable to the community. 		
MDEQ Acceptance	 LNAPL skimming is widely accepted by the MDEQ as a remedial option. 	 MPE is widely accepted by the MDEQ as a remedial option for LNAPL. 	 Excavation is widely accepted by the MDEQ as a remedial option. 		
Pre-Design Testing	Additional characterization to refine the vertical and horizontal treatment area.	 Additional characterization to refine the vertical and horizontal treatment area. MPE pilot testing to assess the feasibility of recovering free- phase LNAPL and reducing LNAPL mass via vapor extraction in interbedded zones and low-permeability silts and clays. Treatability testing to determine the appropriate treatment technologies to meet the standards based on the range of contaminants at the Site. Geochemical analysis of groundwater required for proper design of the above-grade treatment system. An extended field-scale pilot test would be required to verify long-term performance and cost. 	Additional characterization to refine the vertical and horizontal excavation area.		
Sustainability	 Installation of LNAPL skimmers and recovery wells would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction activities. Operation of the LNAPL skimmers would generate LNAPL waste and minor emissions. Solar-powered skimmers can be considered to minimize energy requirements. 	 Installation and operation of an MPE system would generate waste, have energy requirements (fuel consumption/electrical), and emissions. 	 Excavation would generate large quantities of waste, have large energy requirements (fuel consumption), and some emissions related to the construction and transport activities 		
Cap/Treatment Area or Excavation Volume ³	LNAPL Skimming Area: 50,000 ft ²	MPE Area: 50,000 ft ²	Excavation Volume: 27,800 cy		
	Cost for 30 Year O&M Duration:	Cost for 15 Year O&M Duration:			
	\$4 790 000	\$17,400,000			

	\$4,790,000		\$17,400,000			
Cost ⁴	Pilot Testing/Design/Full-Scale Installation:	\$2,385,000	Pilot Testing/Design/Full-Scale Installation:	\$3,100,000	\$2,475,000	
	Annual O&M:	\$80,000	Annual O&M:	\$949,000		

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection and maintenance costs are included with the monitored plume stability cost.

2. The LNAPL plume is within the cap area for DC and PSIC soil exceedances; therefore, an additional cap for LNAPL would be redundant

and the cost is reflective of the cap area for DC and PSIC soil exceedances.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

4. Cost estimates are rounded engineering estimates, +/- 30 to 50%.

- 5. Major cost assumptions for a cap are:
- An existing building slab will serve as the cap for a portion of the area, in the remaining green space area the cap is constructed concrete.
- Area defined by RFI investigation data. DC/PSIC exceedance location(s) to the next clean boring location.
- 6. Major cost assumptions for excavation are:
 - Excavated material is not classified as a Listed or Characteristically Hazardous Waste.
 - No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.
 - Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.
- DC/PSIC volume based on RFI investigation data, DC/PSIC exceedance location(s) to the next clean boring location.
- Targeted excavation volume based on RFI investigation data, source location(s) half-way to the next clean boring location.
 LNAPL plume excavation volume based on RFI investigation data, covers the approximate extent of LNAPL.
- 7. Major cost assumptions for LNAPL skimming are:
- Full-scale installation of 160 recovery wells to a maximum depth of 24 feet with a 10 foot treatment interval.
- Recovery wells installed on 20-foot centers, with a 10-foot radius of influence.
- Skimmers to be installed in 80 recovery wells at a time and rotated around the Site as needed.
- 30 years of skimmer operation.
- 8. Major cost assumptions for MPE are:
- Full-scale installation of 56 recovery wells to a maximum depth of 24 feet with a 10-foot treatment interval.
- Recovery wells installed on 30-oot centers, with a 15-foot radius of influence
- Long-term (approximately 1 year) treatability testing will be required.
- Influent groundwater concentrations are summarized in Appendix D.
- The treatment process will include equalization, aeration, pH adjustment, filtration, air stripping, advanced oxidation, ion exchange, and granular-activated carbon.
- 15 years of system operation

Acronyms and Abbreviations:

cy = cubic yard DC = Direct Contact Criteria ft² = square feet LNAPL = light non-aqueous phase liquid MDEQ = Michigan Department of Environmental Quality MPE = multi-phase extraction O&M = operation and maintenance POTW = publically owned treatment works PSIC = Particulate Soil Inhalation Criteria RC = Restrictive Covenant RCRA = Resource Conservation and Recovery Act RFI = RCRA Facility Investigation VOC = volatile organic compound

Plant and Investigation Area	Plant 2, Area 5-3			
Media	Si	bil		
Corrective Measures Alternative ¹	Cap ⁴	Targeted Soil Excavation ⁵		
Description	 A cap would be implemented to cover DC and PSIC soil exceedances (3,300 ft). In the area where the existing building slab covers the applicable DC and PSIC exceedances, the building slab would serve as the cap (2,500 ft). The existing building slab would be extended to cover the remaining area with applicable DC and PSIC exceedances (800 ft²). An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	 Targeted excavations would be completed to remove soils exceeding DC and PSIC. Excavated soils would be transported and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 		
Long-term Reliability and Effectiveness	 A cap would effectively prevent particulate inhalation and direct contact with the impacted soils. An RC would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness. 	 Targeted excavation would be a reliable and effective way to remove soils exceeding DC and PSIC. 		
Reduction in the Toxicity, Mobility, or Volume of Waste	The cap would not reduce toxicity or volume of waste.	Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site.		
Short-term Effectiveness	 A cap would effectively prevent particulate inhalation and direct contact with the impacted soils once construction was completed. 	 Targeted excavation would be effective in removing soils exceeding DC and PSIC once construction was completed. 		
Implementability	 A cap would be easy to implement, as there are existing building slabs that partially cover the DC and PSIC exceedances and is currently preventing particulate inhalation and direct contact with the impacted soils. An extension of the existing building slab slabs could be easily implemented. 	 Based on estimated depth (2 feet), excavation could be easily implemented. 		
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	 Targeted excavation would eliminate soil exceeding DC; therefore, it would likely be acceptable to the community. 		
MDEQ Acceptance	Caps have been accepted by the MDEQ to mitigate DC and PSIC risks in non-residential areas.	Excavations are widely accepted by the MDEQ as a remedial option.		
Pre-Design Testing	 Evaluation of existing concrete and/or asphalt for potential use as a cap where the existing building slab is not present. 	 Investigation to refine vertical and horizontal targeted excavation area. 		
Sustainability	 Construction of the cap would not generate waste but would have some energy requirements (fuel consumption) and minor emissions related to the source of the cap material and the construction activities. 	 Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities. 		
Cap Area/Excavation Volume ²	Cap Area: 3,300 ft ² (Extension Area 800 ft ²)	Targeted Excavation Volume: 300 cy		
Cost ³	\$11,000	\$61,000		

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection

and maintenance cost are included with the monitored plume stability cost.

2. Excavation volumes are rounded estimates

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

4. Major cost assumptions for a cap are:

•An existing building slab will serve as the cap for a portion of the area, in the remaining area the cap is constructed using clean surface cover (sand).

•Area defined by on RFI investigation data. DC/PSIC exceedance location(s) to the next clean boring location.

5. Major cost assumptions for targeted excavation are:

- •Excavated material is not classified as a Listed or Characteristically Hazardous Waste.
- No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.
 Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.

• DC/PSIC volume based on RFI investigation data, DC/PSIC exceedance location(s) to the next clean boring location.

Acronyms and Abbreviations:

cy = cubic yards

DC = Direct Contact Criteria ft² = square feet MDEQ = Michigan Department of Environmental Quality PSIC = Particulate Soil Inhalation Criteria RC = Restrictive Covenant RCRA = Resource Conservation and Recovery Act RFI = RCRA Facility Investigation

Plant and Investigation Area	Plant 2, Area 5-5			
Media	s	oil		
Corrective Measures Alternative ¹	Cap⁴	Targeted Soil Excavation ⁵		
Description	 A cap would be implemented to cover DC soil exceedances. The cap would be constructed using clean surface cover (soil or gravel) or existing cover (concrete or asphalt). An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	 Targeted excavations would be completed to remove soils exceeding DC. Excavated soils would be transported and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 		
Long-term Reliability and Effectiveness	 A cap would effectively prevent direct contact with the impacted soils. An RC would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness. 	 Targeted excavation would be a reliable and effective way to remove soils exceeding DC. 		
Reduction in the Toxicity, Mobility, or Volume of Waste	The cap would not reduce toxicity or volume of waste.	Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site.		
Short-term Effectiveness	 A cap would effectively prevent direct contact with the impacted soils once construction was completed. 	 Targeted excavation would be effective in removing soils exceeding DC once construction was completed. 		
Implementability	 Placement of a clean surface cover (soil, gravel) or the utilization of existing cover (concrete or asphalt) to cover the DC exceedances could be easily implemented. 	 Based on estimated depth (10 feet), excavation may require shoring, sloping, and/or benching but would be implementable. 		
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	 Targeted excavation would eliminate soil exceeding DC; therefore, it would likely be acceptable to the community. 		
MDEQ Acceptance	Caps have been accepted by the MDEQ to mitigate DC risks in non-residential areas.	Excavations are widely accepted by the MDEQ as a remedial option.		
Pre-Design Testing	• Evaluation of existing concrete and/or asphalt for potential use as a cap.	• None		
Sustainability	 Construction of the cap would not generate waste but would have some energy requirements (fuel consumption) and minor emissions related to the source of the cap material and the construction activities. 	 Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities. 		
Cap Area/Excavation Volume ²	Cap Area: 2,200 ft ²	Targeted Excavation Volume: 300 cy		
Cost ³	\$11,000	\$28,000		

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection and maintenance cost are included with the monitored plume stability cost.

2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

4. Major cost assumptions for a cap are:

•The cap is constructed using clean surface cover (sand).

•Area defined by on RFI investigation data. DC exceedance location(s) to the next clean boring location.

5. Major cost assumptions for targeted excavation are:

- •Excavated material is not classified as a Listed or Characteristically Hazardous Waste.
- •No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.

•Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.

• DC volume based on RFI investigation data, DC exceedance location(s) to the next clean boring location.

Acronyms and Abbreviations:

cy = cubic yards DC = Direct Contact Criteria

 ft^2 = square feet

MDEQ = Michigan Department of Environmental Quality

RC = Restrictive Covenant RFI = RCRA Facility Investigation

Plant and Investigation Area	Plant 6, Area 5-6			
Media	S	oil		
Corrective Measures Alternative ¹	Cap ⁴	Targeted Soil Excavation ⁵		
Description	 A cap would be implemented to cover DC soil exceedances. The cap would be constructed using clean surface cover (soil or gravel) or existing cover (concrete or asphalt). An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	 Targeted excavations would be completed to remove soils exceeding DC. Excavated soils would be transported and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 		
Long-term Reliability and Effectiveness	 A cap would effectively prevent direct contact with the impacted soils. An RC would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness. 	 Targeted excavation would be a reliable and effective way to remove soils exceeding DC. 		
Reduction in the Toxicity, Mobility, or Volume of Waste	The cap would not reduce toxicity or volume of waste.	Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site.		
Short-term Effectiveness	 A cap would effectively prevent direct contact with the impacted soils once construction was completed. 	 Targeted excavation would be effective in removing soils exceeding DC once construction was completed. 		
Implementability	 Placement of a clean surface cover (soil, gravel) or the utilization of existing cover (concrete or asphalt) to cover the DC exceedances could be easily implemented. 	 Based on estimated depth (6 feet), excavation may require shoring, sloping, and/or benching but woul be implementable. 		
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	 Targeted excavation would eliminate soil exceeding DC; therefore, it would likely be acceptable to the community. 		
MDEQ Acceptance	Caps have been accepted by the MDEQ to mitigate DC risks in non-residential areas.	Excavations are widely accepted by the MDEQ as a remedial option.		
Pre-Design Testing	 Evaluation of existing concrete and/or asphalt for potential use as a cap. 	 Investigation to refine vertical and horizontal targeted excavation area. 		
Sustainability	 Construction of the cap would not generate waste but would have some energy requirements (fuel consumption) and minor emissions related to the source of the cap material and the construction activities. 	 Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities. 		
Cap Area/Excavation Volume ²	Cap Area: 20,000 ft ²	Targeted Excavation Volume: 5,200 cy		
Cost ³	\$72,000	\$416,000		

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection

and maintenance $\ensuremath{\mathsf{cost}}$ are included with the monitored plume stability $\ensuremath{\mathsf{cost}}$.

2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

4. Major cost assumptions for a cap are:

 $\bullet \mbox{The cap is constructed using clean surface cover (sand).}$

• Area defined by on RFI investigation data. DC exceedance location(s) to the next clean boring location.

5. Major cost assumptions for targeted excavation are:

Excavated material is not classified as a Listed or Characteristically Hazardous Waste.
No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.

• Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.

• DC volume based on RFI investigation data, DC exceedance location(s) to the next clean boring location.

Acronyms and Abbreviations:

cy = cubic yards DC = Direct Contact Criteria ft² = square feet MDEQ = Michigan Department of Environmental Quality RC = Restrictive Covenant RCRA = Resource Conservation and Recovery Act RFI = RCRA Facility Investigation square feet

Table 3i Evaluation of Corrective Measures Alternatives

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Plant and Investigation Area	Plant 6, Area 5-7
Media	Soil
Corrective Measures Alternative ¹	Targeted Soil Excavation ⁴
Description	 Targeted excavations would be completed to remove soils exceeding SVIIC near the property boundary. Excavated soils would be transported and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws.
Effectiveness	 Targeted excavation would be a reliable and effective way to remove soils exceeding SVIIC near the property boundary. Removal of these soils will eliminate a potential long-term source to groundwater near the property boundary.
Reduction in the Toxicity, Mobility, or Volume of Waste	Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site.
Short-term Effectiveness	 Targeted excavation would be effective in removing soils exceeding SVIIC once construction was completed.
Implementability	 Based on estimated depth (12 feet), excavation may require shoring, sloping, and/or benching but would be implementable.
Community Acceptance	 Targeted excavation would eliminate soil exceeding SVIIC; therefore, it would likely be acceptable to the community.
MDEQ Acceptance	 Excavations are widely accepted by the MDEQ as a remedial option.
Pre-Design Testing	 Investigation to refine vertical and horizontal targeted excavation area.
Sustainability	 Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities.
Cap Area/Excavation Volume ²	Targeted Excavation Volume for SVIIC: 800 cy
Cost ³	\$73,000

General Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection

and maintenance cost are included with the monitored plume stability cost.

2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

4. Major cost assumptions for targeted excavation are:

• Excavated material is not classified as a Listed or Characteristically Hazardous Waste.

• No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.

- Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.
 SVIIC volume based on RFI investigation data, SVIIC exceedance location(s) to half way to the next clean boring location. Cost also includes investigation to refine excavation.

Acronyms and Abbreviations:

cy = cubic yards MDEQ = Michigan Department of Environmental Quality

RCRA = Resource Conservation and Recovery Act

SVIIC = Soil Volatilization to Indoor Air Inhalation Criteria

Plant and Investigation Area	Plant 6, Area 5-8			
Media	Si	pil		
Corrective Measures Alternative ¹	Cap⁴	Targeted Soil Excavation ⁵		
	 A cap would be implemented to cover PSIC soil exceedances. An existing building slab covers the applicable PSIC exceedances and would serve as the cap for this area. An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	 Targeted excavations would be completed to remove soils exceeding PSIC. Excavated soils would be transported and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 		
Long-term Reliability and Effectiveness	 A cap would effectively prevent particulate inhalation of the impacted soils. An RC would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness. 	 Targeted excavation would be a reliable and effective way to remove soils exceeding PSIC. 		
Reduction in the Toxicity, Mobility, or Volume of Waste	The cap would not reduce toxicity or volume of waste.	Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site.		
Short-term Effectiveness	 The existing building slab is effectively preventing particulate inhalation of the impacted soils. 	 Targeted excavation would be effective in removing soils exceeding PSIC once construction was completed. 		
	 A cap would be easy to implement, as there is an existing building slab that cover the PSIC exceedances and is currently preventing particulate inhalation of the impacted soils. 	 Based on estimated depth (3 feet), excavation could be easily implemented. 		
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	 Targeted excavation would eliminate soil exceeding PSIC; therefore, it would likely be acceptable to the community. 		
MDEQ Acceptance	 Caps have been accepted by the MDEQ to mitigate PSIC risks in non-residential areas. 	 Excavations are widely accepted by the MDEQ as a remedial option. 		
Pre-Design Testing	• None	• None		
Sustainability	 There is an existing building slab in place; therefore, no waste or emissions would be generated. 	 Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities. 		
Cap Area/Excavation Volume ²	Cap Area: 2,200 ft ²	Targeted Excavation Volume: 300 cy		
Cost ³	\$0	\$61,000		

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection and maintenance cost are included with the monitored plume stability cost.

2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

4. Major cost assumptions for a cap are:

- •An existing building slab will serve as the cap.
- •Area defined by on RFI investigation data. PSIC exceedance location(s) to the next clean boring location.

5. Major cost assumptions for targeted excavation are:

- Excavated material is not classified as a Listed or Characteristically Hazardous Waste.
- No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.
- Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.
 PSIC volume based on RFI investigation data, PSIC exceedance location(s) to the next clean boring location.

Acronyms and Abbreviations:

cy = cubic yards ft² = square feet MDEQ = Michigan Department of Environmental Quality PSIC = Particulate Soil Inhalation Criteria RC = Restrictive Covenant RCRA = Resource Conservation and Recovery Act RFI = RCRA Facility Investigation

Plant and Investigation Area	Plant 6, Area 7				
Media	Soil				
Corrective Measures Alternative ¹	Ca	p ⁴	Targeted Soil Excavation ⁵		
Description	 The cap would be constructed using clean surface cover (soil or gravel) or existing cover (concrete or asphalt). An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and 		 Targeted excavations would be completed to remo boundary. Excavated soils would be transported and dispose RCRA and all other relevant state and federal laws. 	ve soils exceeding DC and SVIIC near the property d in accordance with applicable requirements of	
Long-term Reliability and Effectiveness	A cap would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness		 Targeted excavation would be a reliable and effective way to remove soils exceeding DC and SVIIC near the property boundary. Removal of these soils will eliminate a potential long-term source to groundwater near the property boundary. 		
Reduction in the Toxicity, Mobility, or Volume of Waste	The cap would not reduce toxicity or volume of waste.		Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site.		
Short-term Effectiveness	A cap would effectively prevent direct contact with the impacted soils once construction was completed.		Targeted excavation would be effective in removing soils exceeding DC and SVIIC once construction was completed.		
Implementability	 Placement of a clean surface cover (soil, gravel) or the utilization of existing cover (concrete or asphalt) to cover the DC exceedances could be easily implemented. 		 Based on estimated depth (up to 12 feet), excavati but would be implementable. 	on may require shoring, sloping, and/or benching	
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 		 Targeted excavation would eliminate soil exceedin acceptable to the community. 	g DC and SVIIC; therefore, it would likely be	
MDEQ Acceptance	Caps have been accepted by the MDEQ to mitigate	e DC risks in non-residential areas.	Excavations are widely accepted by the MDEQ as	a remedial option.	
Pre-Design Testing	Evaluation of existing concrete and/or asphalt for potential use as a cap.		 Investigation to refine vertical and horizontal target 	ed excavation area.	
Sustainability	 Construction of the cap would not generate waste but would have some energy requirements (fuel consumption) and minor emissions related to the source of the cap material and the construction activities. 		 Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities. 		
Cap Area/Excavation Volume ²	West Cap Area: 400 ft ² East Cap Area: 2,300 ft ²		Targeted Excavation \ Targeted Excavation Vo		
Cost ³	West Cap:	\$10,000	Excavation for DC and SVIIC:	\$134,000	
COSI	East Cap:	\$13,000	Excavation for SVIIC Only:	\$114,000	

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection

and maintenance cost are included with the monitored plume stability cost. 2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

4. Major cost assumptions for a cap are:

•The cap is constructed using clean surface cover (sand).

• Area defined by on RFI investigation data. DC exceedance location(s) to the next clean boring location.

5. Major cost assumptions for targeted excavation are:

• Excavated material is not classified as a Listed or Characteristically Hazardous Waste.

• No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.

Groundwater management/disposal activities are incidental to the project and are not subject to unit rates.
DC volume based on RFI investigation data, DC exceedance location(s) to the next clean boring location.

• SVIIC volume based on RFI investigation data, SVIIC exceedance location(s) to half way to the next clean boring location. Cost also includes investigation to refine excavation.

Acronyms and Abbreviations:

cy = cubic yards DC = Direct Contact Criteria

 ft^2 = square feet

MDEQ = Michigan Department of Environmental Quality RC = Restrictive Covenant

RCRA = Resource Conservation and Recovery Act RFI = RCRA Facility Investigation

SVIIC = Soil Volatilization to Indoor Air Inhalation Criteria

Plant and Investigation Area	Plant 6, Area 9				
Media	Soil			Groundwater	
Corrective Measures Alternative ¹	Cap⁴	Targeted Soil Excavation ⁵		In-Situ Chemical Oxidation ⁶	
Description	 A cap would be implemented to cover DC soil exceedances. Existing soil/gravel that covers the applicable DC exceedances would serve as the cap for this area. An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	 Targeted excavations would be completed to remove soils exceeding DC and SVIIC near the property boundary. Excavated soils would be transported and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 		 Injection of a chemical oxidant through injection wells to reduce groundwater concentrations to below the FESL. 	
Long-term Reliability and Effectiveness	 A cap would effectively prevent direct contact with the impacted soils. An RC would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness. 	 Targeted excavation would be a reliable and effective way to remove soils exceeding DC and SVIIC near the property boundary. Removal of these soils will eliminate a potential long-term source to groundwater near the property boundary. 		 ISCO injections would be conducted until groundwater no longer exceeded FESL and is, therefore, an effective long-term strategy. 	
Reduction in the Toxicity, Mobility, or Volume of Waste	The cap would not reduce toxicity or volume of waste.	 Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site. 		 This option does reduce the toxicity, mobility, and volume of impacted groundwater at the Site in the area of the ISCO injections. 	
Short-term Effectiveness	 The existing soil/gravel is effectively preventing direct contact with the impacted soils. 	DC and SVIIC once construction was completed.		 ISCO injections would be conducted until groundwater no longer exceeded FESL; however, in the short-term, rebound (the diffusion of COCs from the non-mobile to mobile pore space after treatment) is likely to occur; multiple injections may be required. 	
Implementability	 A cap would be easy to implement, as there is sufficient existing soil/gravel that would serve as the cap and is currently preventing direct contact with the impacted soils. 	 Based on estimated depth (up to 12 feet), excavation may require shoring, sloping, and/or benching but would be implementable. 		 ISCO injections would be moderately difficult to implement due to the following: Additional field pilot testing is required to verify feasibility prior to full-scale implementation. Injections cannot be completed where subgrade utilities below the water table may be contacted. MDEQ approval for injection would be required. 	
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	 Targeted excavation would eliminate soil exceeding DC and SVIIC; therefore, it would likely be acceptable to the community. 		 Reduction of source mass would likely be acceptable to the community. 	
MDEQ Acceptance	 Caps have been accepted by the MDEQ to mitigate DC risks in non-residential areas. 	 Excavations are widely accepted by the MDEQ as a remedial option. 		 ISCO is widely accepted by the state as a remedial option; however, there may be additional requirements to obtain approval to complete injections in a well head protection zone. 	
Pre-Design Testing	• None	 Investigation to refine vertical and horizontal targeted excavation area. 		 Investigation to further define vertical and horizontal treatment area. Field injection test to determine injection hydraulics and oxidant transport. 	
	 Existing soil/gravel would serve as the cap; therefore, no waste or emissions would be generated. 	 Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities. 		 Injection activities would generate minimal waste, have some energy requirements (electric/fuel consumption), and minor emissions related to the injection activities. 	
Cap/Treatment Area or Excavation Volume ²	Cap Area: 4,200 ft ²	Targeted Excavation Volume for DC and SVIIC: 700 cy		4,200 ft ²	
Cost ³	\$0	Excavation for DC and SVIIC:	\$129,000	\$390,000	

General Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection

and maintenance cost are included with the monitored plume stability cost.

2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

4. Major cost assumptions for a cap are:Existing soil/gravel will serve as the cap.

Area defined by on RFI investigation data. PSIC/DC exceedance location(s) to the next clean boring location.
 S. Major cost assumptions for targeted excavation are:

• Excavated material is not classified as a Listed or Characteristically Hazardous Waste.

• No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.

Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.
DC volume based on RFI investigation data, DC exceedance location(s) to the next clean boring location.

• SVIIC volume based on RFI investigation data, SVIIC exceedance location(s) to half way to the next clean boring location. Cost also includes investigation to refine excavation.

6. Major cost assumptions for ISCO are:

Full-scale installation of 12 injection wells to a maximum depth of 10 feet with a 5-foot treatment interval.
 Injection wells installed on 20-foot centers, with a 10-foot radius of influence.

• Mobile porosity of 0.1 (injection volume of 1,175 gallons per well), injection flow rate of 3 gallons per minute per well.

Two injections to reach treatment objectives.

Acronyms and Abbreviations: COC = constituent of concern cy = cubic yards DC = Direct Contact Criteria FESL = Flammability and Explosivity Screening Level ft² = square feet feet ISCO = in-situ chemical oxidation MDEQ = Michigan Department of Environmental Quality RC = Restrictive Covenant RCRA = Resource Conservation and Recovery Act

RFI = RCRA Facility Investigation SVIIC = Soil Volatilization to Indoor Air Inhalation Criteria

Table 3m **Evaluation of Corrective Measures Alternatives**

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Plant and Investigation Area	Plant 3, Area 11		
Media	Soil		
Corrective Measures Alternative ¹	Targeted Soil Excavation ⁴		
Description	 Targeted excavations would be completed to remove soils exceeding SVIIC near the property boundary. Excavated soils would be transported and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 		
Long-term Reliability and Effectiveness	 Targeted excavation would be a reliable and effective way to remove soils exceeding SVIIC near the property boundary. Removal of these soils will eliminate a potential long-term source to groundwater near the property boundary. 		
Reduction in the Toxicity, Mobility, or Volume of Waste	Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site.		
Short-term Effectiveness	 Targeted excavation would be effective in removing soils exceeding SVIIC once construction was completed. 		
Implementability	 Based on estimated depth (15 feet), excavation to eliminate SVIIC exceedances would require shoring, sloping, and/or benching; non-traditional utility locating equipment; and potentially water management and soil solidification and could be difficult to implement. 		
Community Acceptance	Targeted excavation would eliminate soil exceeding SVIIC; therefore, it would likely be acceptable to the community.		
MDEQ Acceptance	 Excavations are widely accepted by the MDEQ as a remedial option. 		
Pre-Design Testing	 Investigation to refine vertical and horizontal targeted excavation area. 		
Sustainability	• Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities.		
Excavation Volume ² or Treatment Area	Targeted Excavation Volume for SVIIC: 1,400 cy		
Cost ³	\$134,000		

General Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection and maintenance cost are included with the monitored plume stability cost.

2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

4. Major cost assumptions for targeted excavation are:

- Excavated material is not classified as a Listed or Characteristically Hazardous Waste.
- No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.
- Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.

• SVIIC volume based on RFI investigation data, SVIIC exceedance location(s) to half way to the next clean boring location. Cost also includes investigation to refine excavation.

Acronyms and Abbreviations:

cy = cubic yards MDEQ = Michigan Department of Environmental Quality RCRA = Resource Conservation and Recovery Act

SVIIC = Soil Volatilization to Indoor Air Inhalation Criteria

RFI = RCRA Facility Investigation

Plant and Investigation Area	Plant 3 Area 16				
Media	Soil				
Corrective Measures Alternative ¹ Cap ⁴		Targeted Soil Excavation ⁵			
Description	 A cap would be implemented to cover DC soil exceedances. Existing soil/gravel that covers the applicable DC exceedances would serve as the cap for this area. An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	 Targeted excavations would be completed to remove soils exceeding DC. Excavated soils would be transported and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 			
Long-term Reliability and Effectiveness	 A cap would effectively prevent direct contact with the impacted soils. An RC would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness. 	• Targeted excavation would be a reliable and effective way to remove soils exceeding DC.			
Reduction in the Toxicity, Mobility, or Volume of Waste	The cap would not reduce toxicity or volume of waste.	• Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site.			
Short-term Effectiveness	 The existing soil/gravel is effectively preventing direct contact with the impacted soils. 	 Targeted excavation would be effective in removing soils exceeding DC once construction was completed. 			
Implementability	 A cap would be easy to implement, as there is sufficient existing soil/gravel that would serve as the cap and is currently preventing direct contact with the impacted soils. 	 Based on estimated depth (10 feet), excavation may require shoring, sloping, and/or benching but would be implementable. 			
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	 Targeted excavation would eliminate soil exceeding DC; therefore, it would likely be acceptable to the community. 			
MDEQ Acceptance	 Caps have been accepted by the MDEQ to mitigate DC risks in non-residential areas. 	• Excavations are widely accepted by the MDEQ as a remedial option.			
Pre-Design Testing	• None	Investigation to refine vertical and horizontal targeted excavation area.			
Sustainability	• Existing soil/gravel would serve as the cap; therefore, no waste or emissions would be generated.	 Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities. 			
Cap Area/Excavation Volume ²	Cap Area: 3,500 ft ²	Targeted Excavation Volume: 1,200 cy			
Cost ³	\$0	\$92,000			

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection and maintenance cost are included with the monitored plume stability cost.

2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

- 4. Major cost assumptions for a cap are:
- Existing soil/gravel will serve as the cap.
- Area defined by on RFI investigation data. DC exceedance location(s) to the next clean boring location.

5. Major cost assumptions for targeted excavation are:

- Excavated material is not classified as a Listed or Characteristically Hazardous Waste.
- No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.
 Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.

• DC volume based on RFI investigation data, DC exceedance location(s) to the next clean boring location.

Acronyms and Abbreviations: cy = cubic yards DC = Direct Contact Criteria ${\rm ft}^2$ = square feet MDEQ = Michigan Department of Environmental Quality RC = Restrictive Covenant RCRA = Resource Conservation and Recovery Act RFI = RCRA Facility Investigation

Plant and Investigation Area	Plant 3 Area 17					
Media	LNAPL					
Corrective Measures Alternative ¹	LNAPL Cap ⁴	Cap and Targeted LNAPL Excavation ^{4,5}	SVE ⁶			
	 A cap would be implemented to cover the LNAPL plumes. The cap would be constructed using concrete or existing cover (concrete or asphalt). An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	 Targeted excavations would be completed to remove LNAPL that has the highest fraction of VOCs to eliminate ongoing potential sources to groundwater. Excavated solis would be transported and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 	 SVE would involve installation of extraction wells to volatilize contaminants, including free-phase LNAPL, and enhanced aerobic degradation of the LNAPL. Extracted soli vapor would be treated with an above-grade system and would be discharged to the atmosphere. 			
Long-term Reliability and Effectiveness	 LNAPL is defined and not migrating. A cap would effectively prevent exposure to the LNAPL. An RC would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness. 	 Targeted excavation would be a reliable and effective way to remove LNAPL that has the highest fraction of VOCs to eliminate potential ongoing sources to groundwater. 	 SVE would be a reliable and effective long-term strategy to volatilize contaminants, including free-phase LNAPL, and enhanced aerobic degradation of the LNAPL to the extent practicable at the Site. Interbedded and low-permeability lithology would limit the long-term effectiveness of SVE in some areas where LNAPL is present. 			
Reduction in the Toxicity, Mobility, or Volume of Waste	 The cap would not reduce toxicity or volume of waste. Mobility testing indicated the LNAPL plumes are not migrating. 	 Removal of LNAPL via targeted excavations reduces the toxicity, mobility, and volume of LNAPL at the Site. 	 This option does reduce the toxicity, mobility, and volume of LNAPL at the Site. Mobility testing indicated the LNAPL plumes are not migrating. 			
Short-term Effectiveness	 A cap would effectively prevent exposure to the LNAPL once construction was completed. 	 Targeted excavation would be a reliable and effective way to remove LNAPL that has the highest fraction of VOCs to eliminate ongoing potential sources to groundwater. 	 SVE would be an effective short-term to way volatilize contaminants, including free-phase LNAPL, and enhanced aerobic degradation in higher permeability soils once construction was completed. Interbedded lithology may limit the short-term effectiveness of SVE in low- permeability areas of the LNAPL plumes. 			
Implementability	 Construction of a concrete cap or use of existing cover (concrete or asphalt) could be easily implemented. 	 Based on estimated depth (5 feet), excavation may require shoring, sloping, and/or benching but would be implementable. 	 SVE may be difficult to implement due to the following: Interbedded and low-permeability lithology in some areas may not be conducive for mass recovery via vapor extraction. LNAPL present in the interbedded and/or lower permeability silts and clays would be minimally affected by an SVE system. In areas with interbedded and/or low-permeability lithology, extraction wells would need to be spaced closer together to effectively volatilize contaminants, including free-phase LNAPL, and enhanced aerobic degradation of the LNAPL. 			
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	 Targeted excavation would remove LNAPL impacted soils from the Site; therefore, it would likely be acceptable to the community. 	SVE would reduce LNAPL at the Site; therefore, it would likely be acceptable to the community. The SVE system may generate nuisance noise.			
MDEQ Acceptance	 Caps are an acceptable way to mitigate LNAPL risks for plumes that are defined, not migrating, and have limited recoverability in non-residential areas. 	 Excavations are widely accepted by the MDEQ as a remedial option. 	 SVE is widely accepted by the state as a remedial option. 			
Pre-Design Testing	 Evaluation of existing concrete and/or asphalt for potential use as a cap. 	 Investigation to refine vertical and horizontal targeted excavation area. 	 Additional characterization to refine the vertical and horizontal treatment area. SVE pilot testing to assess the feasibility of reducing LNAPL via vapor extraction in interbedded zones and low-permeability silts and clays. 			
Sustainability	 Construction of the cap would not generate waste, but would have some energy requirements (fuel consumption) and minor emissions related to the construction activities. 	 Targeted excavation would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities. 	 Installation of an SVE system would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction activities. Operation of the SVE system would generate waste, have energy requirements, and air emissions. 			
Cap/Treatment Area or Excavation Volume ²	Cap Area: 3,800 ft ²	Cap Area: 3,800 ft ² Targeted Excavation Volume: 800 cy	SVE Area: 3,800 ft ²			
Cost ³	\$54,000	\$168,000	Cost for 15 Year O&M Duration: \$1,530,000 Pilot Testing/Design/Full-Scale \$454,000 Installation: \$454,000 Annual O&M: \$71,100			

Plant and Investigation Area	Plant 3 Area 17			
Media	LNAPL			
Corrective Measures Alternative ¹	LNAPL Recovery (Skimmers) ⁷	MPE ⁸	Excavation ⁵	
Description	 LNAPL skimming would involve installation of skimmers (belt skimmers or skimmer pumps) in permanent recovery wells to remove free-phase LNAPL that collected in wells. LNAPL would be transferred to an above-grade storage tank or drum and removed and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 	• MPE would involve recovery of LNAPL and perched groundwater by pumping or high vacuum extraction. Soil vapor would also be removed to enhance recovery of the LNAPL and promote volatilization and aerobic biodegradation, where applicable. • Extracted soil vapor would be treated with an above-grade system and discharged to the atmosphere. • Extracted groundwater would be treated with an above-grade system and discharged to a POTW or surface water body. • LNAPL would be separated from groundwater in an above-grade system, transferred to an above-grade storage tank, and removed and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws.	r • Excavation would be completed to remove LNAPL; excavated LNAPL-impacte soils would be transported and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws.	
and Effectiveness	recoverability; therefore, it would be difficult to design and implement an effective LNAPL skimming system to recover significant quantities of LNAPL.	 Interbedded and low-permeability lithology would limit the long-term effectiveness of MPE in some areas of the LNAPL plumes. Mobility and recoverability testing indicated the LNAPL plumes have limited potential for recoverability. Due to the heterogeneities in the perched groundwater zone (most impacted), it would be difficult to operate and maintain a reliable and effective system to remove LNAPL; large variations in capture and flow rates are expected. 	 Excavation would be a reliable and effective way to remove LNAPL from the Site. 	
Reduction in the Toxicity, Mobility, or Volume of Waste	 This option would, to the extent practicable, reduce the toxicity, mobility, and volume of LNAPL at the Site. 	 This option does reduce the toxicity, mobility, and volume of LNAPL at the Site. Mobility and recoverability testing indicated the LNAPL plumes are not migrating and have limited potential for recoverability. 	Removal of LNAPL via excavation reduces the toxicity, mobility, and volume of LNAPL at the Site.	
	 Mobility and recoverability testing indicated the LNAPL plumes are not migrating and have limited potential for recoverability; therefore, the LNAPL recovery would be slow and have limited short-term effectiveness. 	Mobility and recoverability testing indicated the LNAPL plumes are not migrating and have limited potential for recoverability. Due to the limited potential for recoverability, an extended field-scale pilot test would be conducted to verify long-term performance and cost.	 Excavation would be a reliable and effective way to remove LNAPL from the Site once construction was complete. 	
Implementability		MPE would be difficult to implement due to the following: Mobility and recoverability testing indicated the LNAPL plumes have limited potential for recoverability; therefore, it would be difficult to operate and maintain a reliable and effective system to remove LNAPL; large variations in capture and flow rates are expected. Interbedded and low-permeability lithology in some areas of the Site may not be conducive for a mass recovery via vapor extraction. LNAPL present in the interbedded and/or lower permeability sits and clays would be minimally recovered by an MPE system. Multiple extraction tests would be required to capture the heterogeneities associated with the range of flow, drawdown, and capture in the interbedded zone. Treatability testing would be required to determine the appropriate treatment technologies to meet the standards based on the range of contaminants at the Site. An extended field-scale pilot test would be required to verify long-term bertomented.	 Based on estimated depth (up to 22 feet), excavation may require shoring, sloping, and/or benching; non-traditional utility locating equipment; and potentially LNAPL/water management and/or soil solidification, and could be difficult to implement. 	
Community Acceptance	LNAPL skimming would reduce LNAPL from the Site; therefore, it would likely be acceptable to the community.	MPE would reduce LNAPL at the Site; therefore, it would likely be acceptable to the community. The MPE system may generate nuisance noise.	Excavation would remove LNAPL from the Site; therefore, it would likely be acceptable to the community.	
MDEQ Acceptance	LNAPL skimming is widely accepted by the MDEQ as a remedial option.	MPE is widely accepted by the MDEQ as a remedial option for LNAPL.	Excavation is widely accepted by the MDEQ as a remedial option.	
Pre-Design Testing		 Additional characterization to refine the vertical and horizontal treatment area. MPE pilot testing to assess the feasibility of recovering free-phase LNAPL and reducing LNAPL mass via vapor extraction in interbedded zones and low permeability silts and clays. Treatability testing to determine the appropriate treatment technologies to meet the standards based on the range of contaminants at the Site. Geochemical analysis of groundwater required for proper design of the above-grade treatment system. An extended field-scale pilot test would be required to verify long-term performance and cost. 	et • Additional characterization to refine the vertical and horizontal excavation a	
Sustainability	 Installation of LNAPL skimmers and recovery wells would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction activities. Operation of the LNAPL skimmers would generate LNAPL waste and minor emissions. Solar powered skimmers can be considered to minimize energy requirements. 	 Installation and operation of an MPE system would generate waste, have energy requirements (fuel consumption/electrical), and emissions. 	 Excavation would generate large quantities of waste, have large energy requirements (fuel consumption), and some emissions related to the construction and transport activities. 	
Cap/Treatment Area or Excavation Volume ²	LNAPL Skimming Area: 3,800 ft ²	MPE Area: 3,800 ft ²	Excavation Volume: 4,100 cy	
Cost ³	Cost for 30-Year O&M Duration: \$2,430,000 Pilot Testing/Design/Full-Scale Installation: Annual Q&M: \$66,000	Cost for 15 -ear O&M Duration: \$2,970,000 Pilot Testing/Design/Full-Scale Installation: Annual Q&M: \$149,000	\$396,000	
	Annual O&M: \$68,000	Annual O&M: \$149,000		

See notes on page 3.

Lansing, Michigan

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection and maintenance cost are included with the monitored plume stability cost.

2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

- 4. Major cost assumptions for a cap are:
- •The cap is constructed using concrete.
 •Area defined by on RFI investigation data. PSIC/DC exceedance location(s) to the next clean boring location.
- 5. Major cost assumptions for excavation are:
 Excavated material is not classified as a Listed or Characteristically Hazardous Waste.
 No shoring will be required and any materials removed for excavation benching and sloping will not require offsite transport and disposal.
- Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.
 Targeted excavation volume based on RFI investigation data, source location(s) half way to the next clean boring location.
 LNAPL plume excavation volume based on RFI investigation data, covers the approximate extent of LNAPL.

- LINAPL plume excavation volume based on RFI investigation data, covers the approximate extent of 6. Major cost assumptions for SVE are:
 Full-scale installation of 6 SVE wells to a maximum depth of 22 feet with a 10-foot treatment interval.
 Recovery wells installed on 40-foot centers, with a 20-foot radius of influence
 The treatment process will include an air-water separator and granular-activated carbon.
 15 years of system operation.

- To years of system operation.
 Major cost assumptions for LNPL skimming are:
 Full-scale installation of 49 recovery wells to a maximum depth of 22 feet with a 10-foot treatment interval.
 Recovery wells installed on 20-foot centers, with a 10-foot radius of influence
- Skimmers to be installed in 25 recovery wells at time and rotated around the Site as needed.
- 30 years of skimmer operation.
 8. Major cost assumptions for MPE are:

- Full-scale installation of 9 recovery wells to a maximum depth of 22 feet with a 10-foot treatment interval.
 Recovery wells installed on 30-foot centers, with a 15-foot radius of influence.
- The treatment process will include an oil water separator, air stripping, filtration, and granular activated carbon. • 15 years of system operation
- Acronyms and Abbreviations:

cy = cubic yards DC = Direct Contact Criteria

- ft² = square feet LNAPL = light non-aqueous phase liquid
- MDEQ = Michigan Department of Environmental Quality MPE = multi-phase extraction O&M = operation and maintenance

- POTW = publically owned treatment works PSIC = Particulate Soil Inhalation Criteria RC = Restrictive Covenant
- RCRA = Resource Conservation and Recovery Act RFI = RCRA Facility Investigation
- SVE = soil vapor extraction VOC = volatile organic compound

Plant and Investigation Area	Plant 3, Area 18		
Media	Soil		
Corrective Measures Alternative ¹	Cap⁴	Targeted Soil Excavation ⁵	
Description	 A cap would be implemented to cover DC soil exceedances. The cap would be constructed using clean surface cover (soil or gravel) or existing cover (concrete or asphalt). An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	 Targeted excavations would be completed to remove soils exceeding DC. Excavated soils would be transported and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 	
Long-term Reliability and Effectiveness	 A cap would effectively prevent direct contact with the impacted soils. An RC would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness. 	 Targeted excavation would be a reliable and effective way to remove soils exceeding DC. 	
Reduction in the Toxicity, Mobility, or Volume of Waste	The cap would not reduce toxicity or volume of waste.	Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site.	
Short-term Effectiveness	 A cap would effectively prevent direct contact with the impacted soils once construction was completed. 	 Targeted excavation would be effective in removing soils exceeding DC once construction was completed. 	
Implementability	 Placement of a clean surface cover (soil, gravel) or the utilization of existing cover (concrete or asphalt) to cover the DC exceedances could be easily implemented. 	 Based on estimated depth (2 feet), excavation could be easily implemented. 	
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	 Targeted excavation would eliminate soil exceeding DC; therefore, it would likely be acceptable to the community. 	
MDEQ Acceptance	 Caps have been accepted by the MDEQ to mitigate DC risks in non-residential areas. 	 Excavations are widely accepted by the MDEQ as a remedial option. 	
Pre-Design Testing	 Evaluation of existing concrete and/or asphalt for potential use as a cap. 	 Investigation to refine vertical and horizontal targeted excavation area. 	
Sustainability	 Construction of the cap would not generate waste but would have some energy requirements (fuel consumption) and minor emissions related to the source of the cap material and the construction activities. 	 Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities. 	
Cap Area/Excavation Volume ²	Cap Area: 8,300 ft ²	Targeted Excavation Volume: 700 cy	
Cost ³	\$33,000	\$75,000	

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection and maintenance cost are included with the monitored plume stability cost.

2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

4. Major cost assumptions for a cap are:

 $\bullet \mbox{The cap is constructed using clean surface cover (sand).}$

•Area defined by on RFI investigation data. DC exceedance location(s) to the next clean boring location.

5. Major cost assumptions for targeted excavation are:

Excavated material is not classified as a Listed or Characteristically Hazardous Waste.
No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.

• Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.

• DC volume based on RFI investigation data, DC exceedance location(s) to the next clean boring location.

Acronyms and Abbreviations:

cy = cubic yards DC = Direct Contact Criteria ft^2 = square feet MDEQ = Michigan Department of Environmental Quality RC = Restrictive Covenant RCRA = Resource Conservation and Recovery Act RFI = RCRA Facility Investigation

Plant and Investigation Area	vestigation Area Plant 3, Area 19		
Media	Soil		
Corrective Measures Alternative ¹	Cap⁴	Targeted Soil Excavation ⁵	
Description	 A cap would be implemented to cover DC soil exceedances. An existing building slab covers the applicable DC exceedances and would serve as the cap for this area. An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	 Targeted excavations would be completed to remove soils exceeding DC. Excavated soils would be transported and disposed of in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 	
Long-term Reliability and Effectiveness	 A cap would effectively prevent direct contact with the impacted soils. An RC would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness. 	 Targeted excavation would be a reliable and effective way to remove soils exceeding DC. 	
Reduction in the Toxicity, Mobility, or Volume of Waste	The cap would not reduce toxicity or volume of waste.	Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site.	
Short-term Effectiveness	The existing building slab is effectively preventing direct contact with the impacted soils.	 Targeted excavation would be effective in removing soils exceeding DC once construction was completed. 	
Implementability	 A cap would be easy to implement, as there is an existing building slabs that cover the DC exceedances and is currently preventing direct contact with the impacted soils. 	 Based on estimated depth (10 feet), excavation may require shoring, sloping, and/or benching but would be implementable. 	
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	 Targeted excavation would eliminate soil exceeding DC; therefore, it would likely be acceptable to the community. 	
MDEQ Acceptance	Caps have been accepted by the MDEQ to mitigate DC risks in non-residential areas.	Excavations are widely accepted by the MDEQ as a remedial option.	
Pre-Design Testing	• None	 Investigation to refine vertical and horizontal targeted excavation area. 	
Sustainability	 There is an existing building slab in place; therefore, no waste or emissions would be generated. 	 Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities. 	
Cap Area/Excavation Volume ²	Cap Area: 3,400 ft ²	Targeted Excavation Volume: 1,300 cy	
Cost ³	\$0	\$140,000	

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection

and maintenance cost are included with the monitored plume stability cost.

2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

4. Major cost assumptions for a cap are:

• An existing building slab will serve as the cap.

Area defined by on RFI investigation data. DC exceedance location(s) to the next clean boring location.

5. Major cost assumptions for targeted excavation are:

- Excavated material is not classified as a Listed or Characteristically Hazardous Waste.
- No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.
 Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.
 DC volume based on RFI investigation data, DC exceedance location(s) to the next clean boring location.

Acronyms and Abbreviations: cy = cubic yards

DC = Direct Contact Criteria ft² = square feet MDEQ = Michigan Department of Environmental Quality RC = Restrictive Covenant RCRA = Resource Conservation and Recovery Act RFI = RCRA Facility Investigation

Plant and Investigation Area	Plant 3, Area 20		
Media	Soil		
Corrective Measures Alternative ¹	Cap ⁴	Targeted Soil Excavation ⁵	
Description	 A cap would be implemented to cover PSIC soil exceedances. Existing soil/gravel that covers the applicable PSIC exceedances would serve as the cap for this area. An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	 Targeted excavations would be completed to remove soils exceeding PSIC. Excavated soils would be transported and disposed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 	
Long-term Reliability and Effectiveness	 A cap would effectively prevent particulate inhalation. An RC would be filed with the deed prohibiting the removal of the cap to ensure long-term effectiveness. 	 Targeted excavation would be a reliable and effective way to remove soils exceeding PSIC. 	
Reduction in the Toxicity, Mobility, or Volume of Waste	The cap would not reduce toxicity or volume of waste.	Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site.	
Short-term Effectiveness	 The existing soil/gravel is effectively preventing particulate inhalation. 	 Targeted excavation would be effective in removing soils exceeding PSIC once construction was completed. 	
Implementability	 A cap would be easy to implement, as there is sufficient existing soil/gravel that would serve as the cap and is currently preventing particulate inhalation. 	 Based on estimated depth (up to 18 feet), excavation may require shoring, sloping, and/or benching; non-traditional utility locating equipment; and potentially water management and soil solidification and could be difficult to implement. 	
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	 Targeted excavation would eliminate soil exceeding PSIC; therefore, it would likely be acceptable to the community. 	
MDEQ Acceptance	 Caps have been accepted by the MDEQ to mitigate PSIC risks in non-residential areas. 	 Excavations are widely accepted by the MDEQ as a remedial option. 	
Pre-Design Testing	• None	 Investigation to refine vertical and horizontal targeted excavation area. 	
Sustainability	• Existing soil/gravel would serve as the cap; therefore, no waste or emissions would be generated.	 Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities. 	
Cap Area/Excavation Volume ²	Cap Area: 4,700 ft ²	Targeted Excavation Volume: 3,200 cy	
Cost ³	\$0	\$269,000	

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection

and maintenance cost are included with the monitored plume stability cost.

2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

- 4. Major cost assumptions for a cap are:
- Existing soil/gravel will serve as the cap.
- Area defined by on RFI investigation data. PSIC exceedance location(s) to the next clean boring location.
- 5. Major cost assumptions for targeted excavation are:
- Excavated material is not classified as a Listed or Characteristically Hazardous Waste.
- No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.
 Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.
 PSIC volume based on RFI investigation data, PSIC exceedance location(s) to the next clean boring location.

Acronyms and Abbreviations: cy = cubic yards

 ft^2 = square feet

MDEQ = Michigan Department of Environmental Quality

PSIC = Particulate Soil Inhalation Criteria

RC = Restrictive Covenant

RCRA = Resource Conservation and Recovery Act

RFI = RCRA Facility Investigation

Plant and Investigation Area	Plant 3, Area 21		
Media	Soil		
Corrective Measures Alternative ¹	Cap ⁴	Targeted Soil Excavation ⁵	
Description	 A cap would be implemented to cover DC soil exceedances. An existing building slab covers the applicable DC exceedances and would serve as the cap for this area. An RC would be filed with the deed prohibiting the removal of the cap. 	 Targeted excavations would be completed to remove soils exceeding DC. Excavated soils would be transported and disposed of in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 	
Long-term Reliability and Effectiveness	 A cap would effectively prevent direct contact with the impacted soils. An RC would be filed with the deed prohibiting the removal of the cap and requiring inspections and maintenance of the cap. 	 Targeted excavation would be a reliable and effective way to remove soils exceeding DC. 	
Reduction in the Toxicity, Mobility, or Volume of Waste	The cap would not reduce toxicity or volume of waste.	Removal of impacted soil reduces the toxicity, mobility, and volume of impacted soils at the Site.	
Short-term Effectiveness	The existing building slab is effectively preventing direct contact with the impacted soils.	Targeted excavation would be effective in removing soils exceeding DC once construction was completed.	
Implementability	 A cap would be easy to implement, as there is an existing building slabs that cover the DC exceedances and is currently preventing direct contact with the impacted soils. 	 Based on estimated depth (5 feet), excavation may require shoring, sloping, and/or benching but woul be implementable. 	
Community Acceptance	 None (see community acceptance for land use restrictions, groundwater use restrictions, and monitored plume stability) 	Targeted excavation would eliminate soil exceeding DC; therefore, it would likely be acceptable to the community.	
MDEQ Acceptance	Caps have been accepted by the MDEQ to mitigate DC risks in non-residential areas.	• Excavations are widely accepted by the MDEQ as a remedial option.	
Pre-Design Testing	• None	• None	
Sustainability	There is an existing building slab in place; therefore, no waste or emissions would be generated.	 Targeted excavation activities would generate waste, have some energy requirements (fuel consumption), and minor emissions related to the construction and transport activities. 	
Cap Area/Excavation Volume ²	Cap Area: 1,000 ft ²	Targeted Excavation Volume: 200 cy	
Cost ³	\$0	\$26,000	

Notes:

1. Corrective measures alternatives also include land use restrictions, groundwater use restrictions, and monitored plume stability as evaluated in Table 3a. Cap inspection

and maintenance cost are included with the monitored plume stability cost.

2. Excavation volumes are rounded estimates.

3. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

4. Major cost assumptions for a cap are:An existing building slab will serve as the cap.

Area defined by on RFI investigation data. DC exceedance location(s) to the next clean boring location.

5. Major cost assumptions for targeted excavation are:

• Excavated material is not classified as a Listed or Characteristically Hazardous Waste.

- No shoring will be required and any materials removed for excavation benching and sloping will not require off-site transport and disposal.
- Benching, sloping, groundwater management/disposal activities are incidental to the project and are not subject to unit rates.

• DC volume based on RFI investigation data, DC exceedance location(s) to the next clean boring location.

Acronyms and Abbreviations:

cy = cubic yards DC = Direct Contact Criteria ft² = square feet MDEQ = Michigan Department of Environmental Quality RC = Restrictive Covenant RCRA = Resource Conservation and Recovery Act RFI = RCRA Facility Investigation

Table 4 Proposed Final Corrective Measures Alternative for Soil, Groundwater and LNAPL

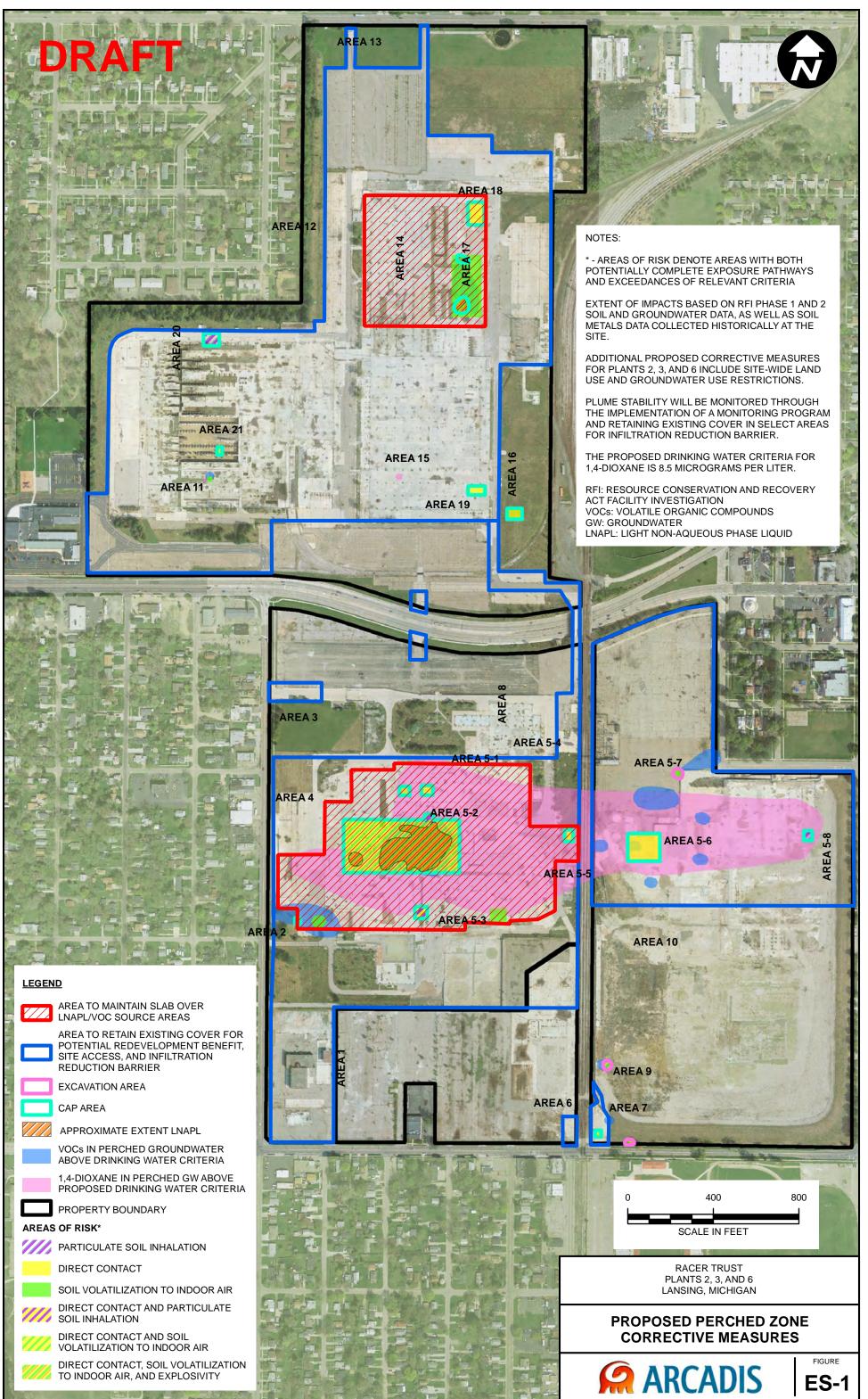
RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Cost Estimate ¹	Plant 2	Plant 3	Plant 6	GRAND TOTAL
Land Use Restrictions:	\$29,300	\$23,400	\$41,000	\$94,000
Groundwater Use Restrictions:	\$8,300	\$8,300	\$8,300	\$25,000
Monitored Plume Stability (30-year):	\$1,497,000	\$1,590,000	\$1,037,000	\$4,124,000
Groundwater Sampling:	\$696,000	\$1,092,000	\$996,000	\$2,784,000
Initial Surface Cover and Vegetation Control and Surface Cover Maintenance :	\$775,000	\$443,000	-	\$1,218,000
Well Abandonment (year 30)	\$26,000	\$55,000	\$41,000	\$122,000
Caps (Areas 2, 5-1, 5-2, 5-3, 5-5, 5-6, 5-8, 7, 16, 17, 18, 19, 20, and 21):	\$300,000	\$82,000	\$87,000	\$469,000
Targeted Excavation (Areas 5-7, 7, 9, and Plant 2 PCB Interim Measure):	\$134,000	\$0	\$187,000	\$321,000
Groundwater Recirculation:	\$4,200,000	\$4,200,000	-	\$8,400,000
Treatability Testing, Design, and Capital	\$1,300,000	\$1,300,000	-	\$2,600,000
System Startup	\$53,000	\$53,000	-	\$106,000
Annual O&M (years 1 to 10)	\$250,000	\$250,000	-	\$500,000
Annual Groundwater Performance Monitoring (years 1 to 10)	\$36,000	\$36,000	-	\$72,000
Subtotal:	\$6,169,000	\$5,904,000	\$1,361,000	\$13,400,000

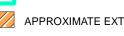
Notes:

1. All cost estimates presented have been prepared for the purposes of comparing potential remedial alternatives. The information in this cost estimate is based on the available information regarding the Site investigation and the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. This cost estimate is expected to be within -30% to +50% of the actual project cost. Utilization of this cost estimate information beyond the stated purpose is not recommended. ARCADIS is not licensed to provide financial or legal consulting services; as such, this cost estimate information is not intended to be used for complying with financial reporting requirements associated with liability reserves.

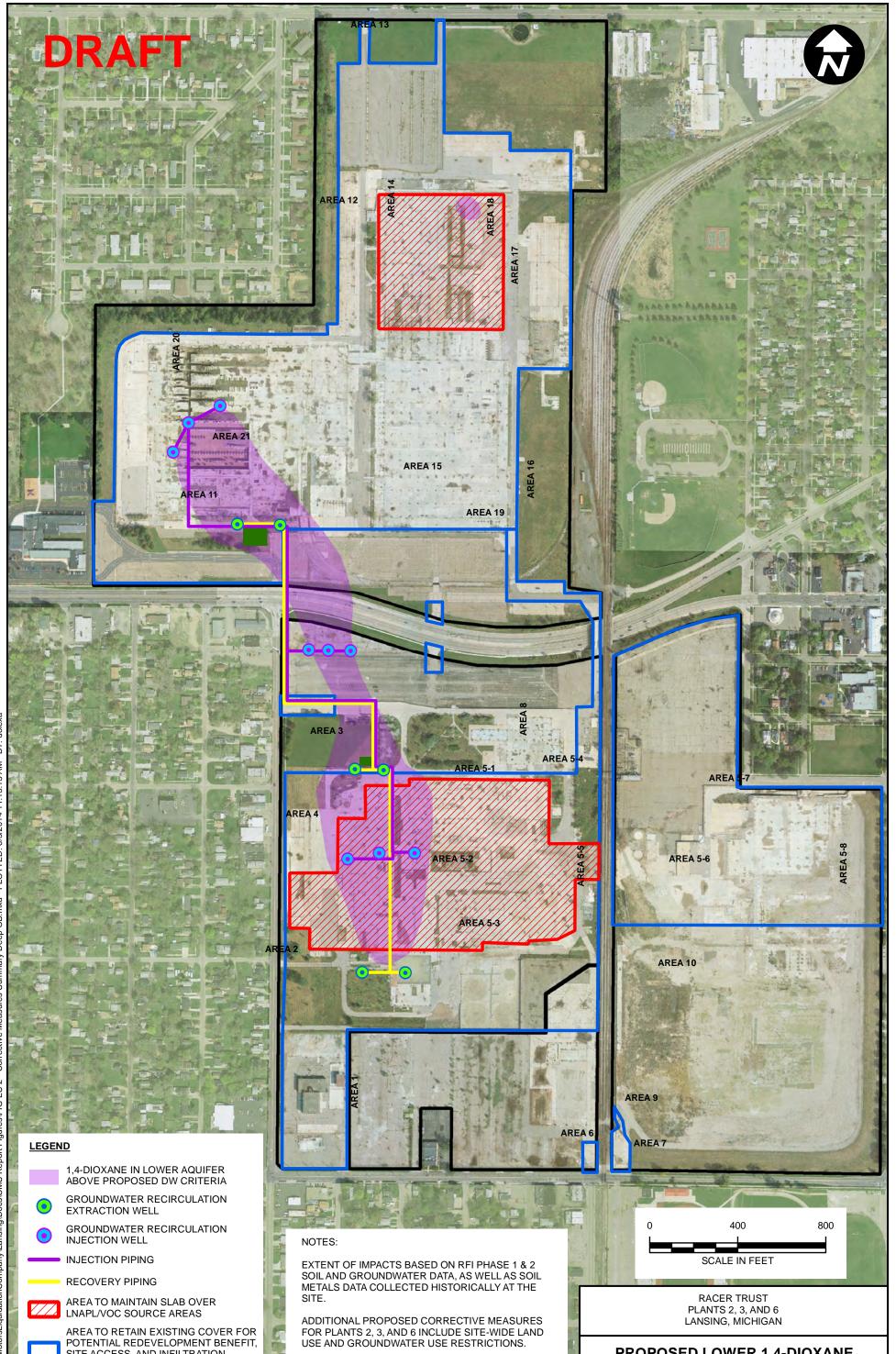
2. Plant 2 PCB excavation based on costs provided by PM Environmental.


Acronyms and Abbreviations:

O&M = operations and maintenance PCB = polychlorinated biphenyl


Figures

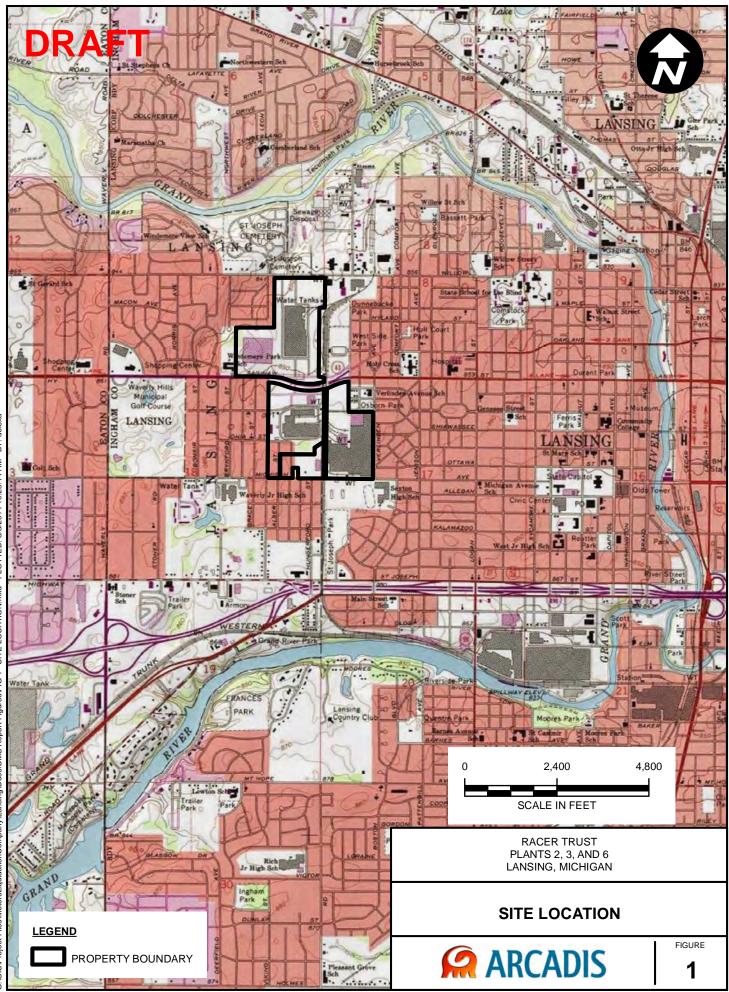
TR: JACKIE SALING PROJECT NUMBER: B0064479.2013 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Int .mxd PLOTTED: 6/3/2014 11:16:31 AM BY: dolexa CHRISTENSEN RANDY ŭ Ĭ



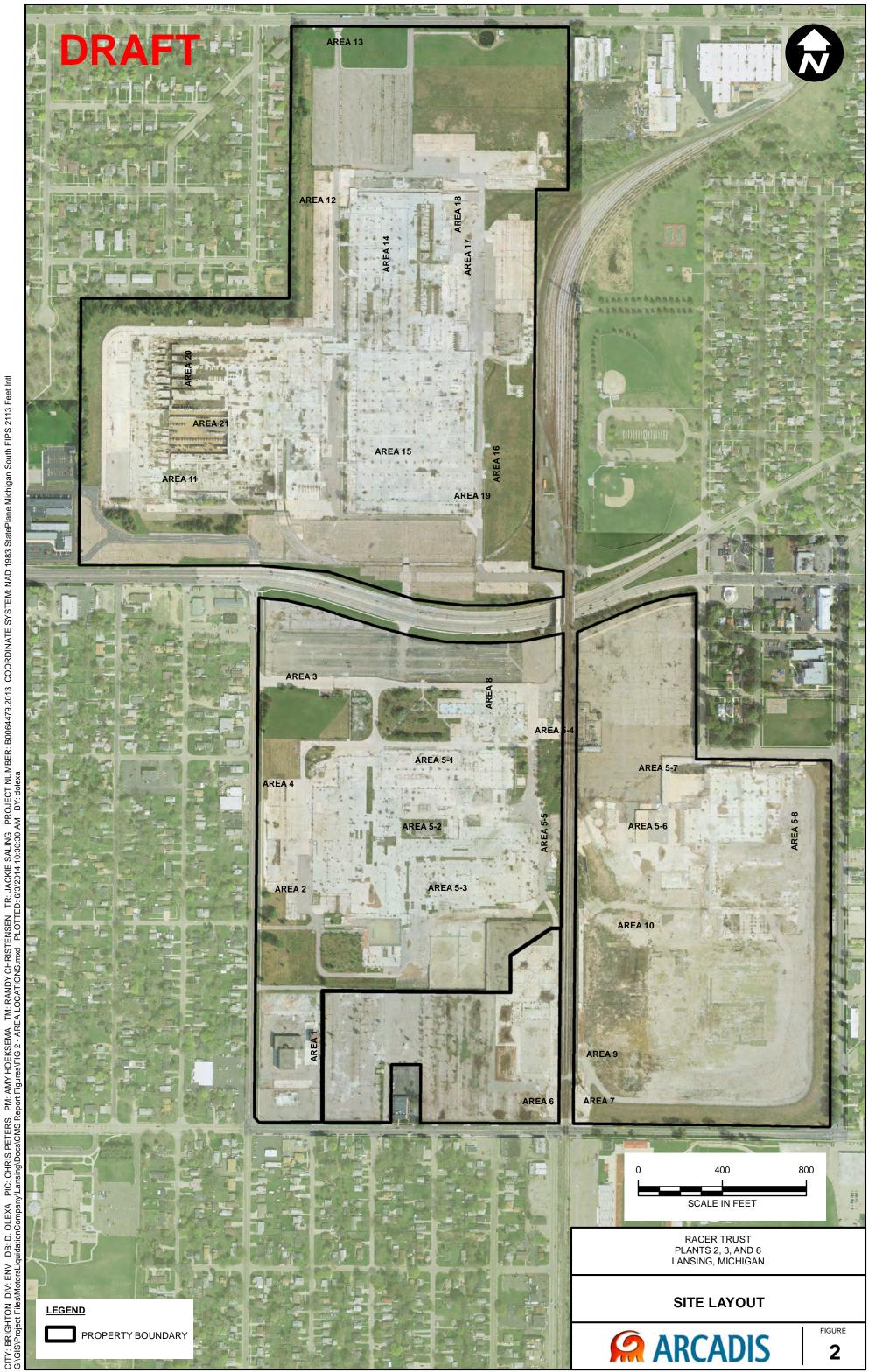
TM: RANDY CHRISTENSEN TR: JACKIE SALING PROJECT NUMBER: B0064479.2013 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Int Corrective Measures Summary Deep OB.mxd PLOTTED: 6/3/2014 11:15:13 AM BY: dolexa

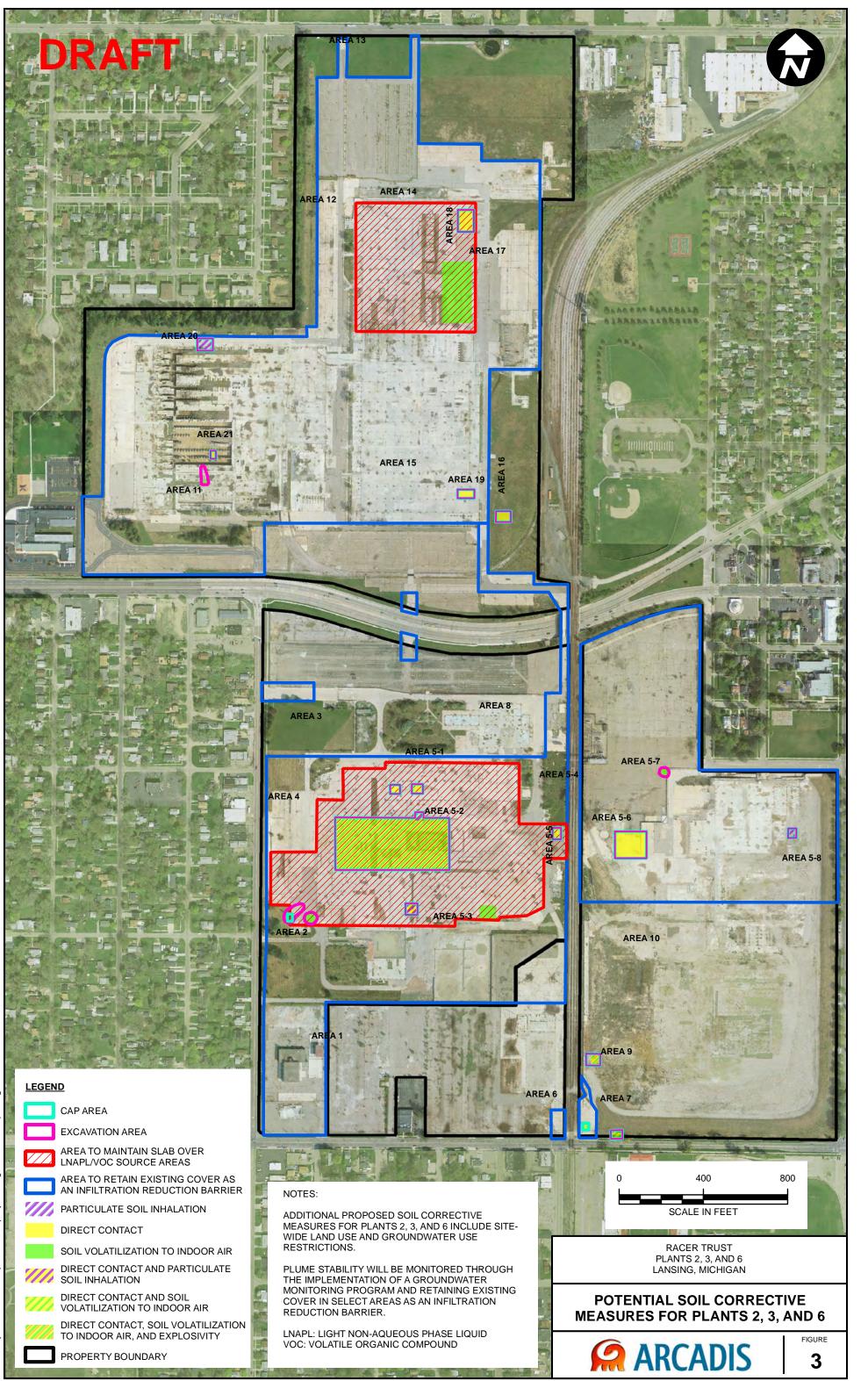
SITE ACCESS, AND INFILTRATION **REDUCTION BARRIER**

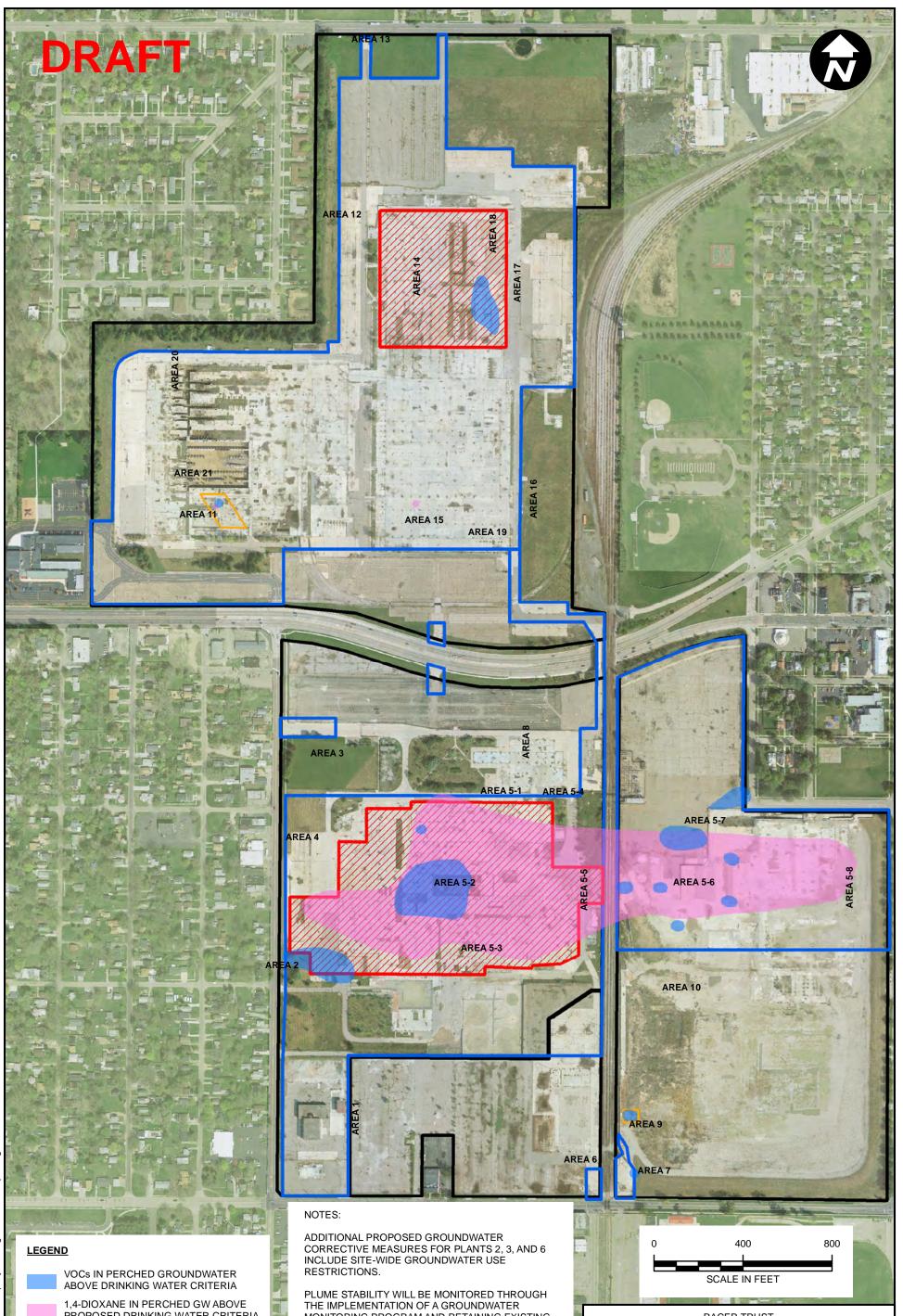
PROPERTY BOUNDARY


PLUME STABILITY WILL BE MONITORED THROUGH THE IMPLEMENTATION OF A GROUNDWATER MONITORING PROGRAM AND RETAINING EXISTING COVER IN SELECT AREAS FOR INFILTRATION REDUCTION BARRIER.

Contraction of the local division of the loc


PROPOSED LOWER 1,4-DIOXANE CORRECTIVE MEASURES


FIGURE **ES-2**


CITY: BRIGHTON DIV: ENV DB: D. OLEXA PIC: CHRIS PETERS PM: AMY HOEKSEMA TM: RANDY CHRISTENSEN TR: JACKIE SALING PROJECT NUMBER: B0064479.2013 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Intl G:\GISNProject Files\MotorsLiquidationCompany\Lansing\Docs\CMS Report Figures\FIG 1 - SITE LOCATION.mxd PLOTTED: 6\3/2014 10.28:14 AM BY: dolexa

TM: RANDY CHRISTENSEN TR: JACKIE SALING PROJECT NUMBER: B0064479.2013 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Intl A LOCATIONS.mxd PLOTTED: 6/3/2014 10:30:30 AM BY: dolexa

KSEMA TM: RANDY CHRISTENSEN TR: JACKIE SALING PROJECT NUMBER: B0064479.2013 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Intl G 3 - Potential Soil CMs.mxd PLOTTED: 6/3/2014 10:34:04 AM BY: dolexa

TM: RANDY CHRISTENSEN TR: JACKIE SALING PROJECT NUMBER: B0064479.2013 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Int tu Chemical Oxidation.mxd PLOTTED: 6/3/2014 10:45:29 AM BY: dolexa ŝ

PROPOSED DRINKING WATER CRITERIA

ISCO AREA

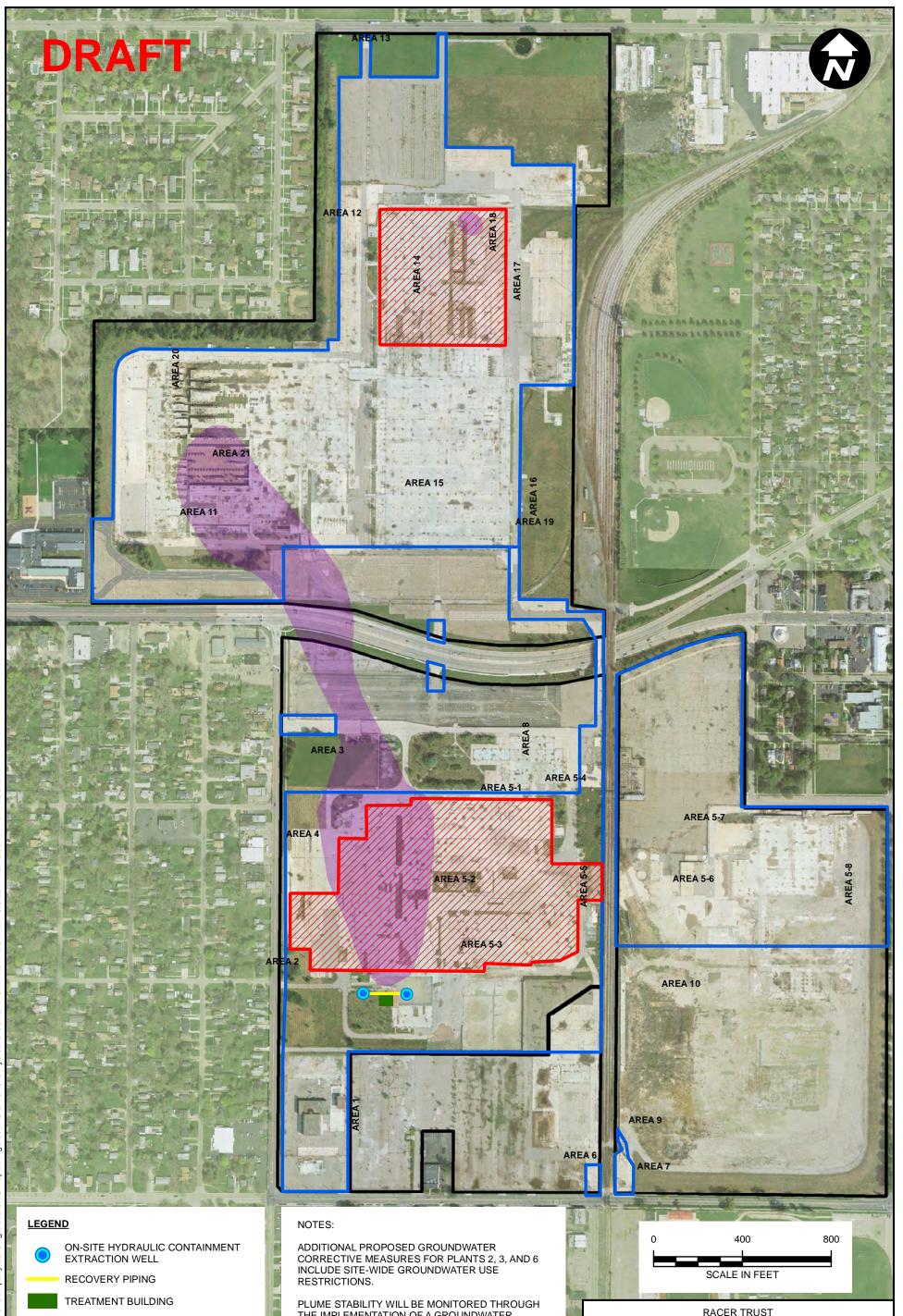
AREA TO MAINTAIN SLAB OVER LNAPL/VOC SOURCE AREAS

AREA TO RETAIN EXISTING COVER AS AN INFILTRATION REDUCTION BARRIER

PROPERTY BOUNDARY

MONITORING PROGRAM AND RETAINING EXISTING COVER IN SELECT AREAS AS AN INFILTRATION **REDUCTION BARRIER.**

THE PROPOSED DRINKING WATER CRITERIA FOR 1,4-DIOXANE IS 8.5 MICROGRAMS PER LITER.


VOCs: VOLATILE ORGANIC COMPOUNDS GW: GROUNDWATER ISCO: IN SITU CHEMICAL OXIDATION LNAPL: LIGHT NON-AQUEOUS PHASE LIQUID

RACER TRUST PLANTS 2, 3, AND 6 LANSING, MICHIGAN

POTENTIAL GROUNDWATER CORRECTIVE **MEASURES FOR PLANTS 2, 3, AND 6 -**IN SITU CHEMICAL OXIDATION


FIGURE 4

TM: RANDY CHRISTENSEN TR: JACKIE SALING PROJECT NUMBER: B0064479.2013 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Intl te Hydraulic Containment.mxd PLOTTED: 6/3/2014 10:46:26 AM BY: dolexa

AREA TO MAINTAIN SLAB OVER LNAPL/VOC SOURCE AREAS

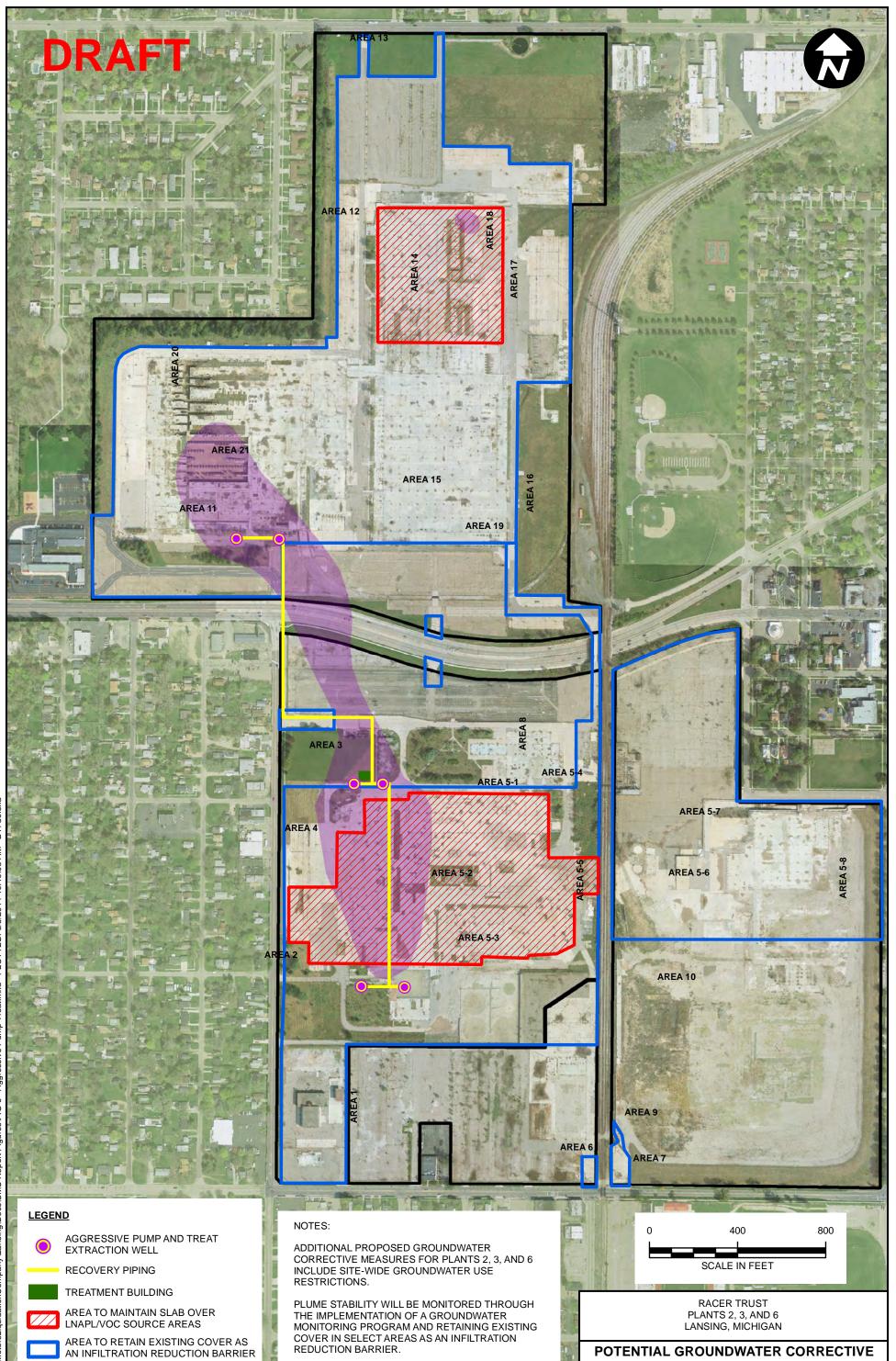
1.4-DIOXANE IN LOWER AQUIFER ABOVE PROPOSED DW CRITERIA

PROPERTY BOUNDARY

1

PLUME STABILITY WILL BE MONITORED THROUGH THE IMPLEMENTATION OF A GROUNDWATER MONITORING PROGRAM AND RETAINING EXISTING COVER IN SELECT AREAS AS AN INFILTRATION **REDUCTION BARRIER.**

THE PROPOSED DRINKING WATER CRITERIA FOR 1,4-DIOXANE IS 8.5 MICROGRAMS PER LITER.


LNAPL: LIGHT NON-AQUEOUS PHASE LIQUID VOC: VOLATILE ORGANIC COMPOUND DW: DRINKING WATER

RACER TRUST PLANTS 2, 3, AND 6 LANSING, MICHIGAN

POTENTIAL GROUNDWATER CORRECTIVE **MEASURES FOR PLANTS 2 AND 3 - LOWER 1,4-DIOXANE HYDRAULIC CONTAINMENT**

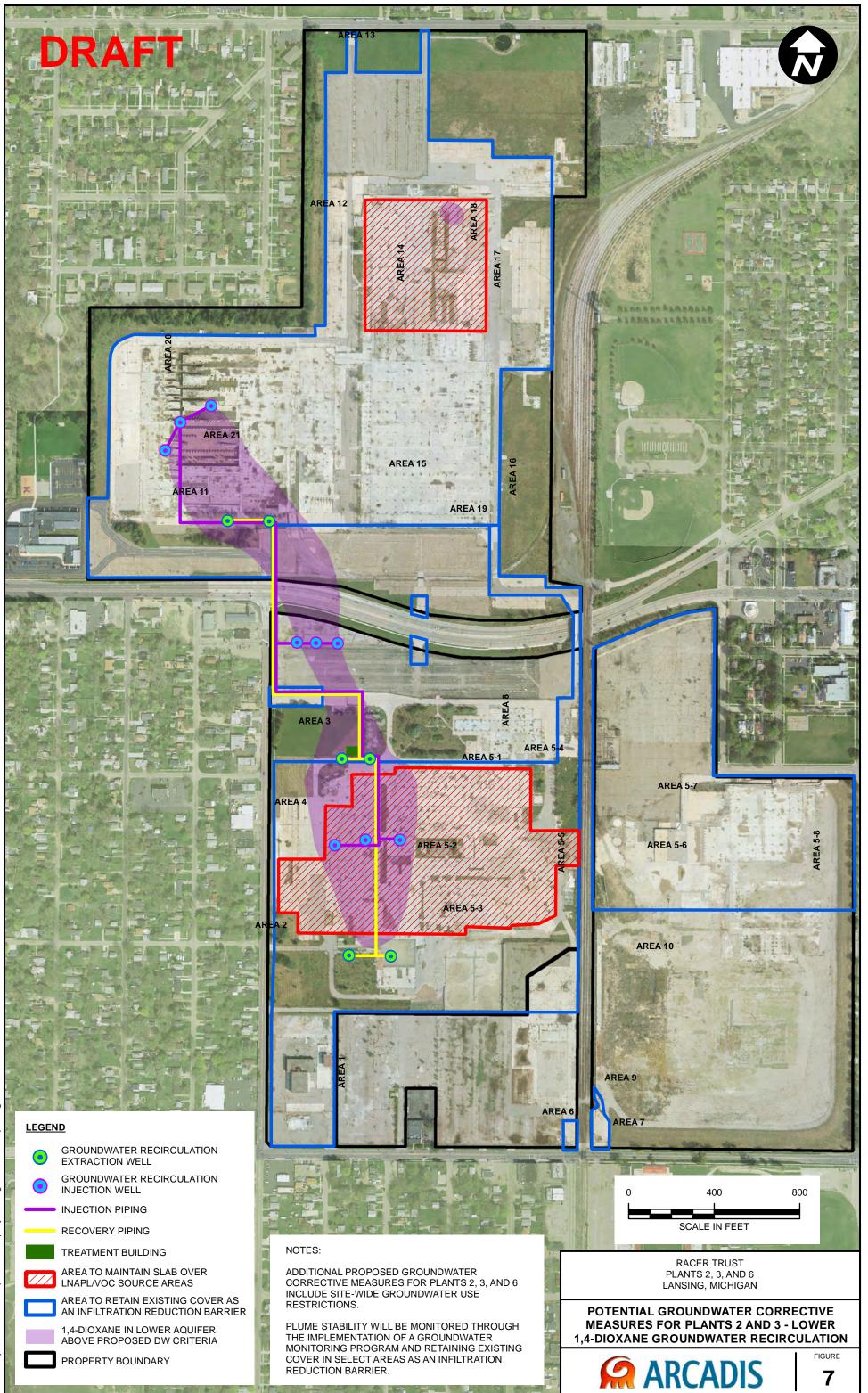
FIGURE 5

TM: RANDY CHRISTENSEN TR: JACKIE SALING PROJECT NUMBER: B0064479.2013 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Intl essive Pump Treat.mxd PLOTTED: 6/3/2014 10:49:05 AM BY: dolexa

1.4-DIOXANE IN LOWER AQUIFER ABOVE PROPOSED DW CRITERIA

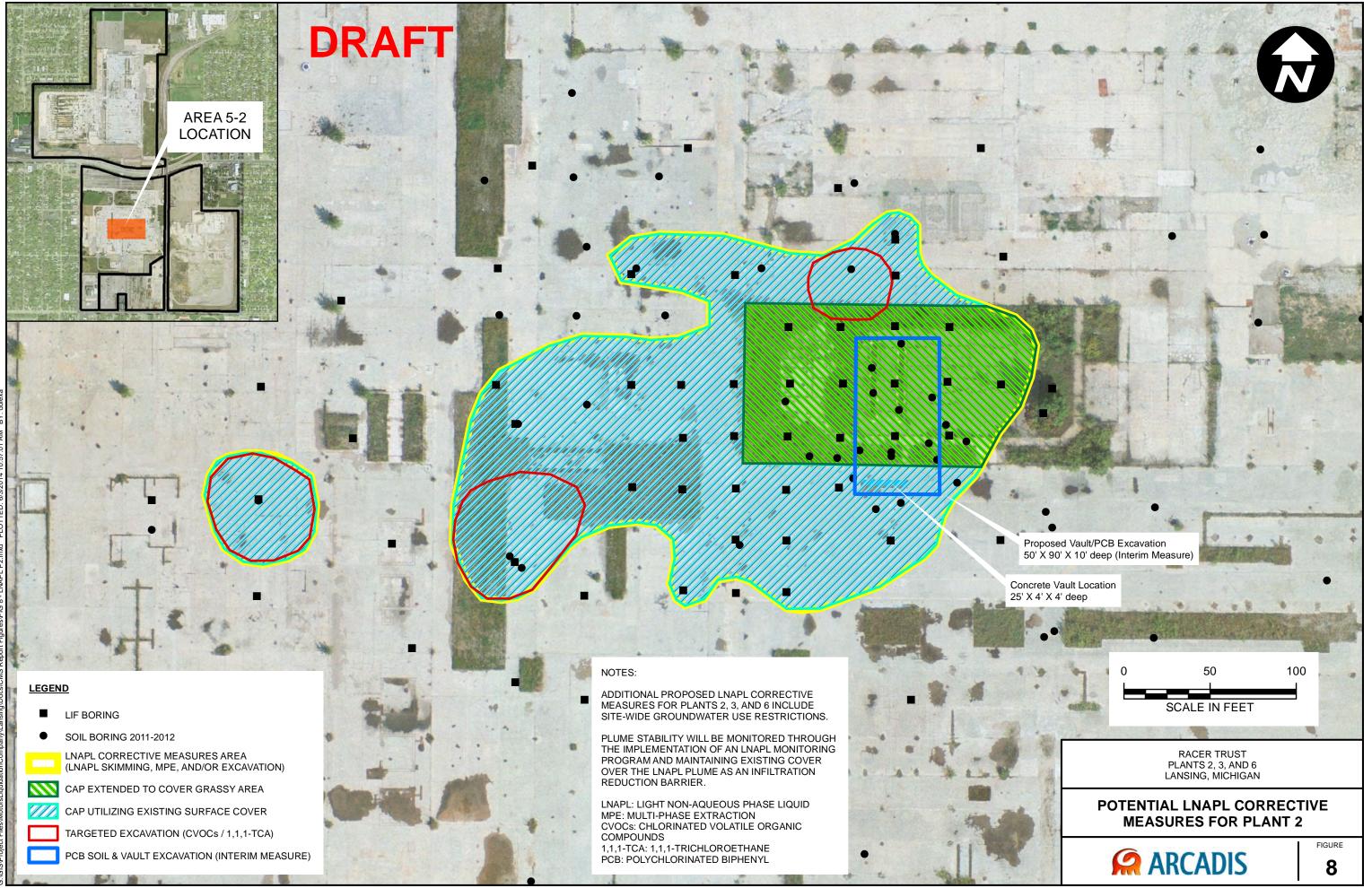
PROPERTY BOUNDARY

REDUCTION BARRIER.


THE PROPOSED DRINKING WATER CRITERIA FOR 1,4-DIOXANE IS 8.5 MICROGRAMS PER LITER.

LNAPL: LIGHT NON-AQUEOUS PHASE LIQUID VOC: VOLATILE ORGANIC COMPOUND

POTENTIAL GROUNDWATER CORRECTIVE **MEASURES FOR PLANTS 2 AND 3 - LOWER** 1,4-DIOXANE AGGRESSIVE PUMP AND TREAT


FIGURE 6



TM: RANDY CHRISTENSEN TR: JACKIE SALING PROJECT NUMBER: B0064479.2013 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Intl Recirculation...mxd PLOTTED: 6/3/2014 10:51:50 AM BY: dolexa

MA TM: RANDY CHRISTENSEN TR: JACKIE SALING PROJECT NUMBER: B0064479.2013 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Intl LNAPL P3.mxd PLOTTED: 6/3/2014 11:03:35 AM BY: dolexa

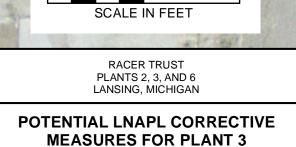
LEGEND

LIF BORING

SOIL BORING 2011-2012

CAP UTILIZING EXISTING SURFACE COVER

(LNAPL SKIMMING, SVE, MPE, AND/OR EXCAVATION)

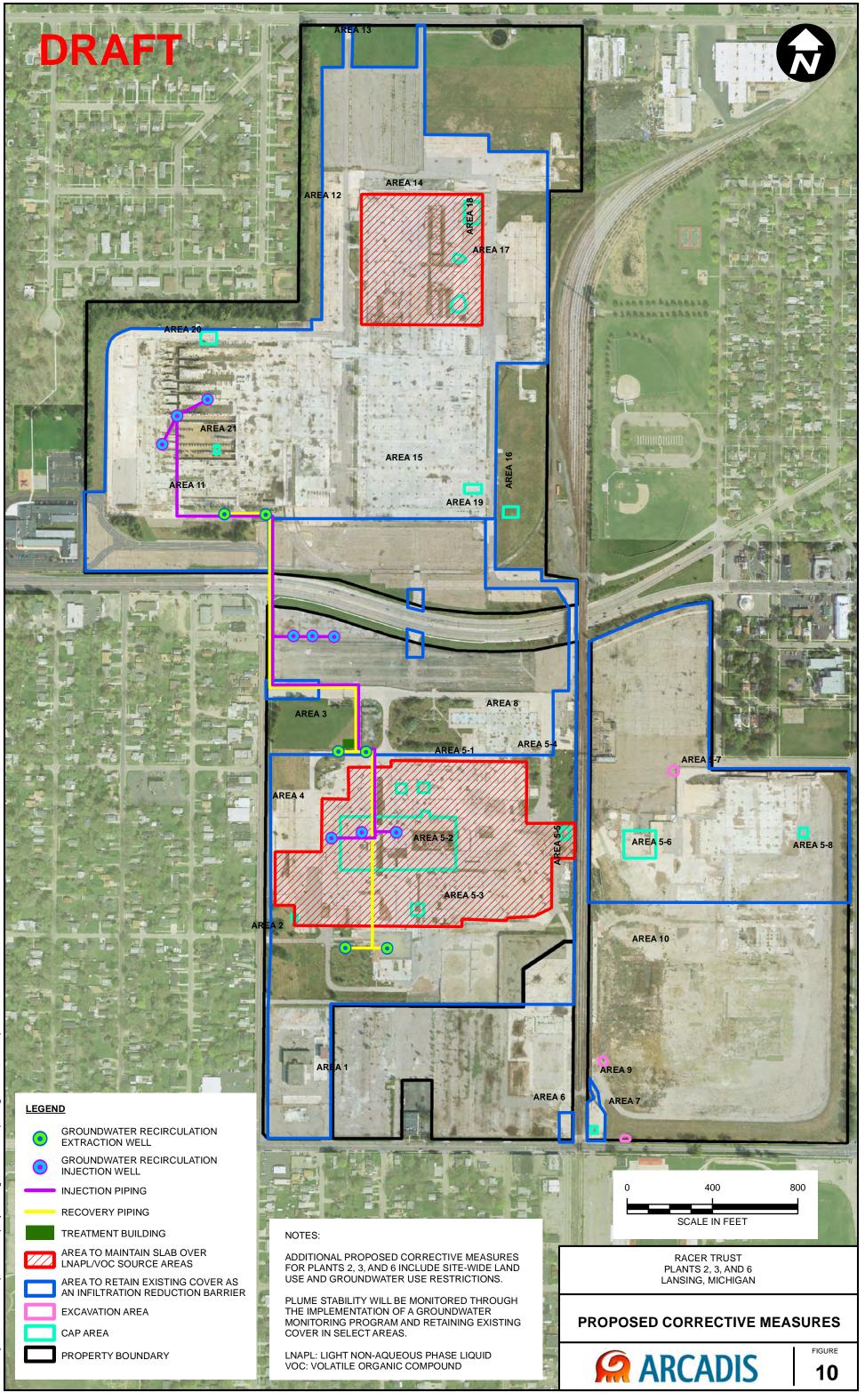

LNAPL CORRECTIVE MEASURES AREA

NOTES:

ADDITIONAL PROPOSED LNAPL CORRECTIVE MEASURES FOR PLANTS 2, 3, AND 6 INCLUDE SITE-WIDE GROUNDWATER USE RESTRICTIONS.

PLUME STABILITY WILL BE MONITORED THROUGH THE IMPLEMENTATION OF AN LNAPL MONITORING PROGRAM AND MAINTAINING EXISTING COVER OVER THE LNAPL PLUME FOR INFILTRATION REDUCTION.

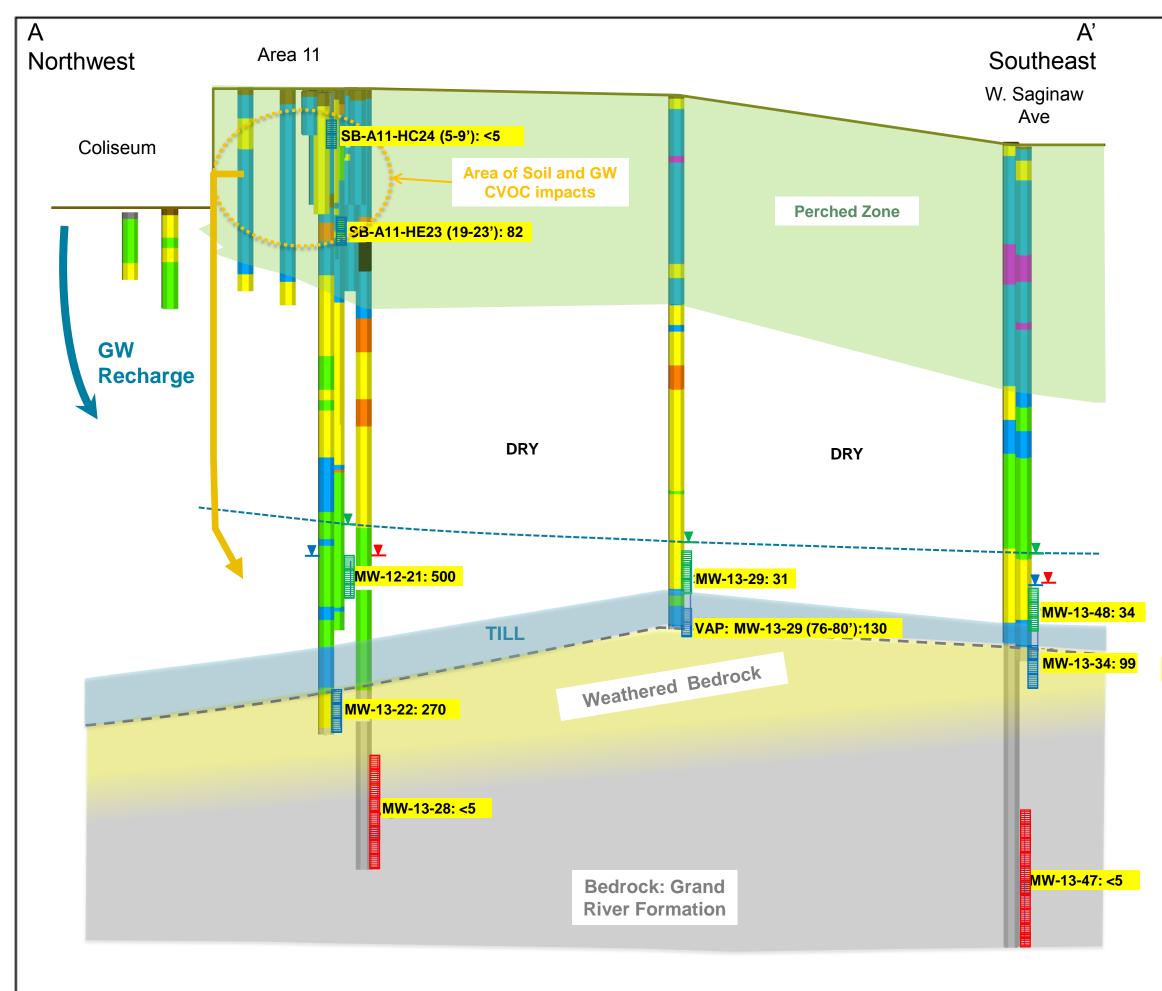
LNAPL: LIGHT NON-AQUEOUS PHASE LIQUID SVE: SOIL VAPOR EXTRACTION MPE: MULTI-PHASE EXTRACTION


30

0

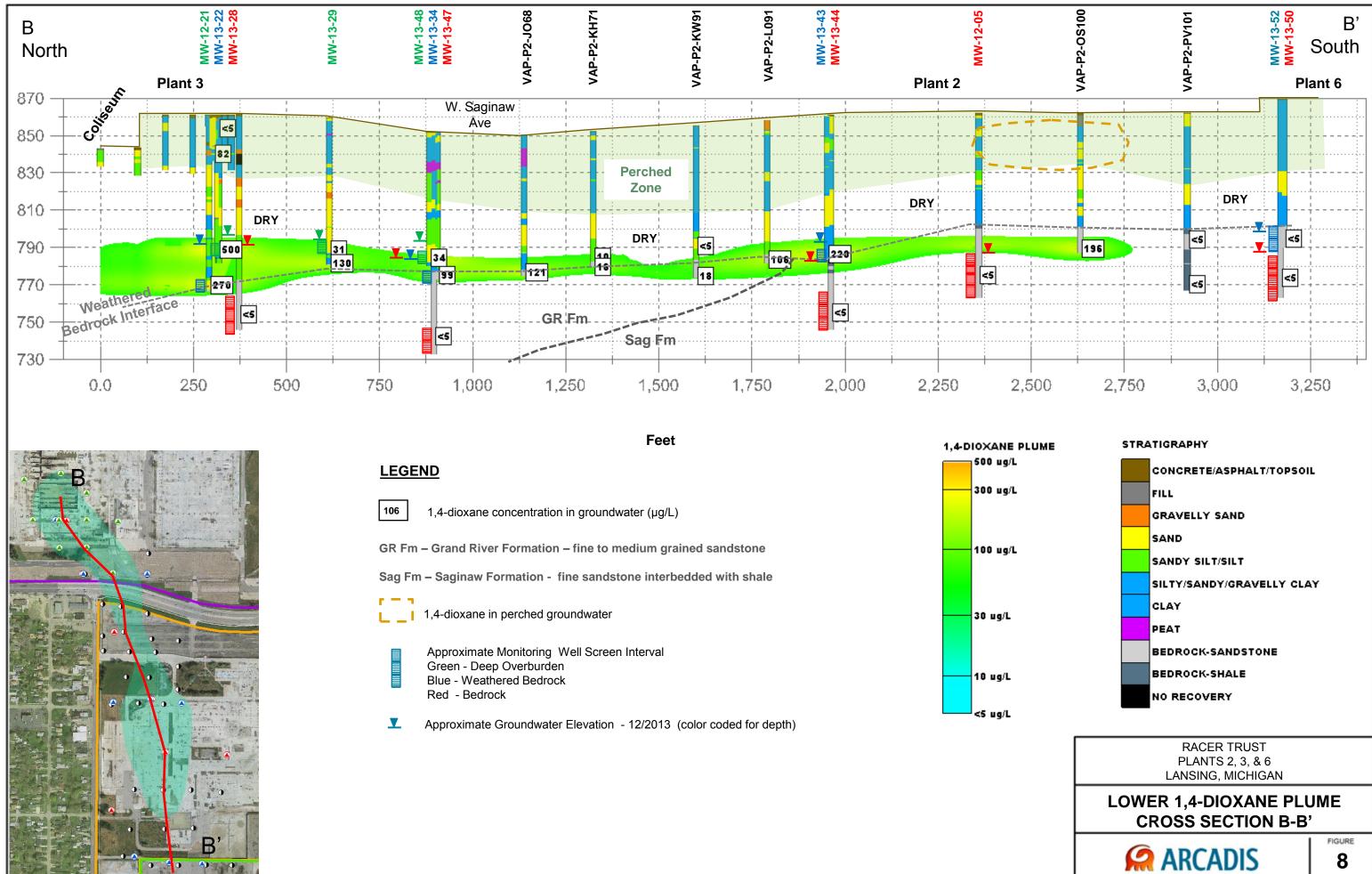
FIGURE

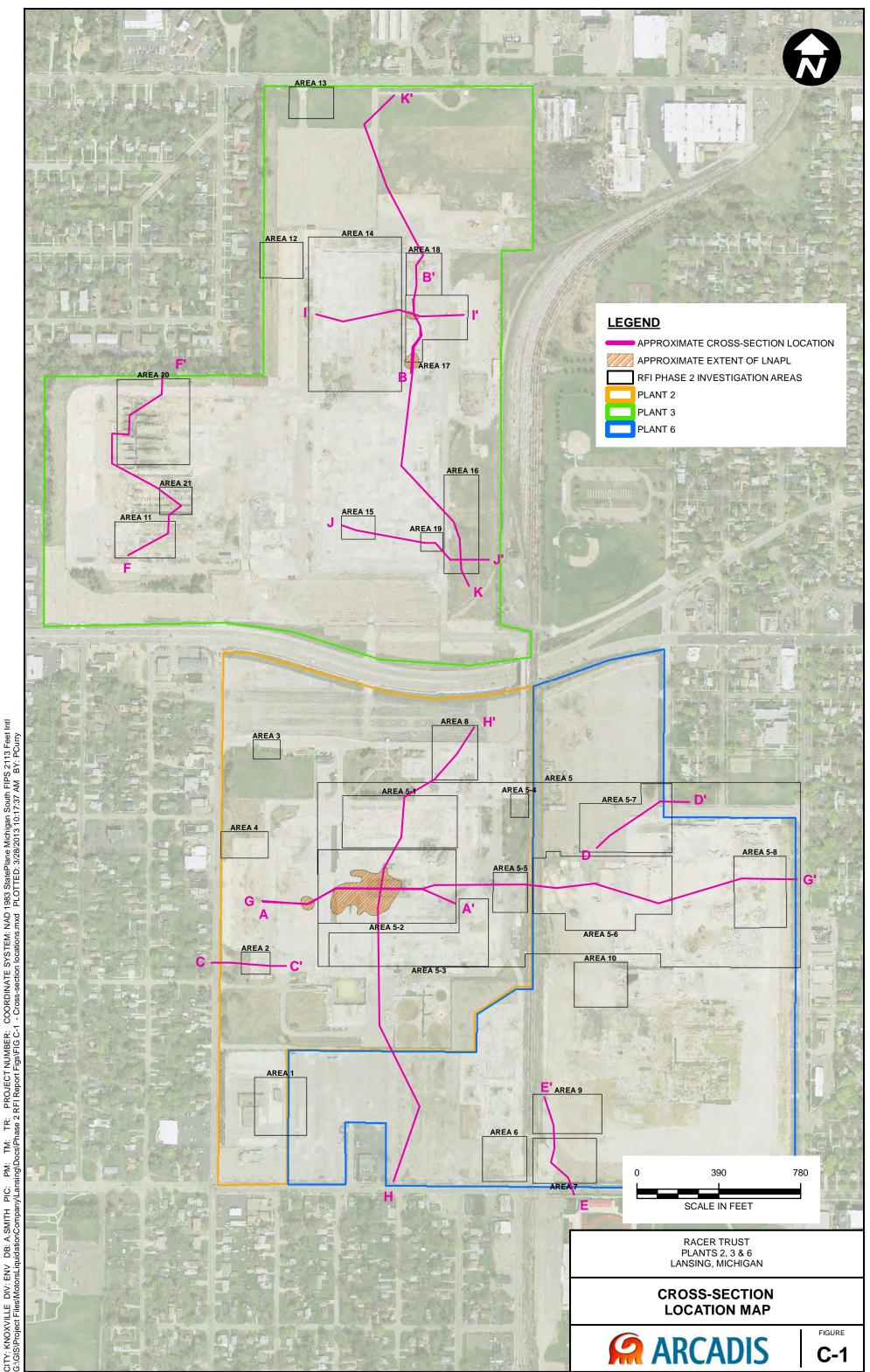
60


SEMA TM: RANDY CHRISTENSEN TR: JACKIE SALING PROJECT NUMBER: B0064479.2013 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Intl 10 - Proposed CMs..mxd PLOTTED: 6/3/2014 11:04:57 AM BY: dolexa

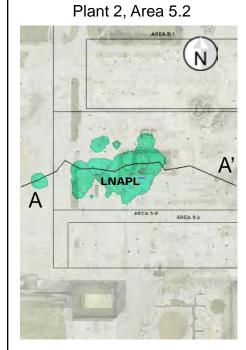
Appendix A

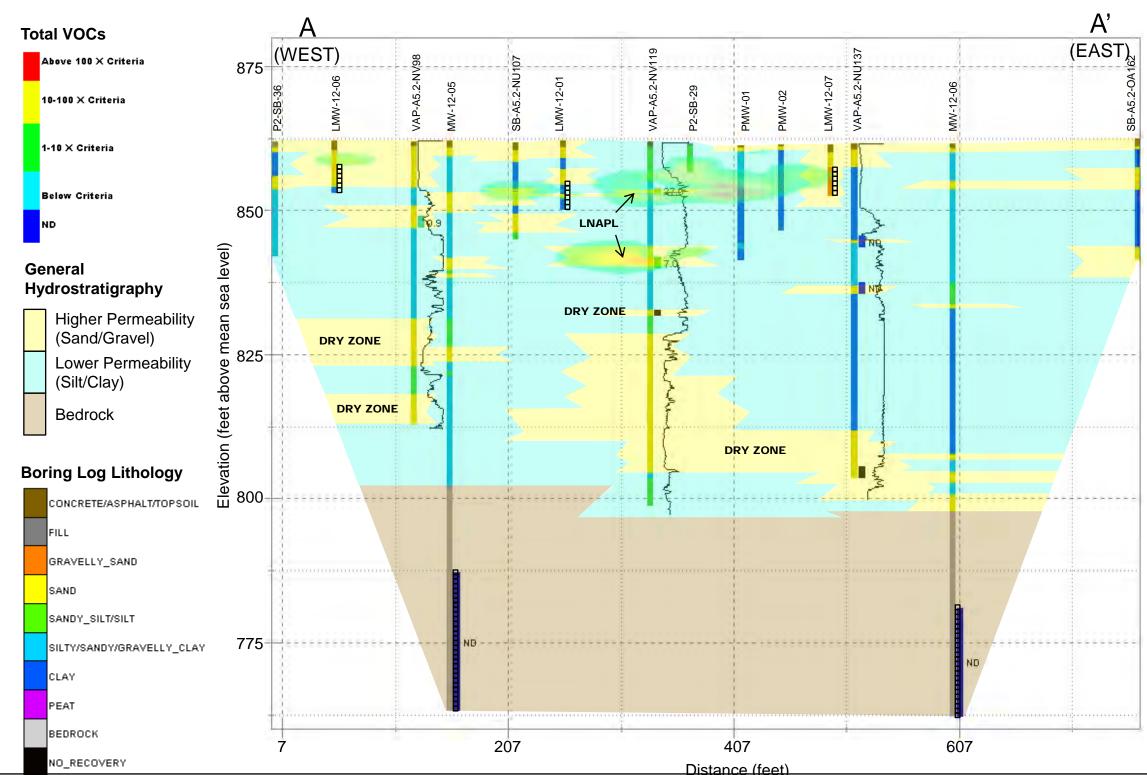
RFI Figure and Table References

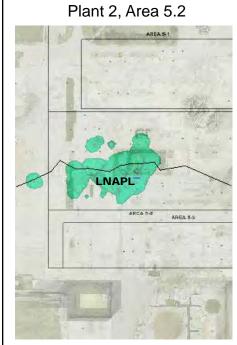



STRATIGRAPHIC UNIT

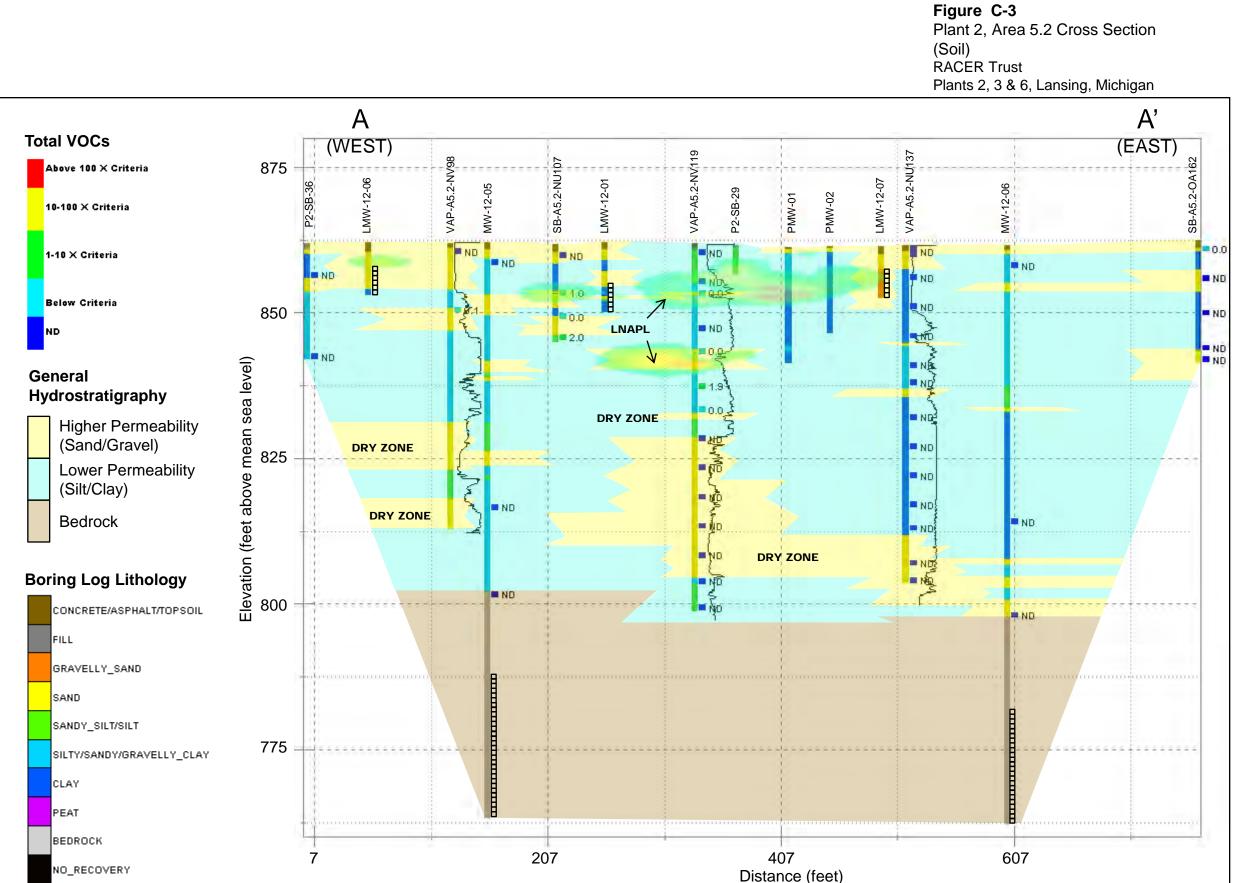
co	CONCRETE/ASPHALT/TOPSOIL		
FI	FILL		
GF	GRAVELLY SAND		
SA	SAND		
S/	ANDY SILT/SILT		
SI	LTY/SANDY/GRAVELLY CLAY		
С	CLAY		
PE	PEAT		
ВЕ	BEDROCK-SANDSTONE		
в	DROCK-SHALE		
N	RECOVERY		
_			
35	1,4-Dioxane in Groundwater (µg/L) (12/2013)		
	Approximate Monitoring Well Screen Interval Green - Deep Overburden Blue- Weathered Bedrock Red- Bedrock		
T	Approximate Groundwater Elevation (12/2013) (color coded for depth)		
	RACER TRUST PLANTS 2, 3, & 6 LANSING, MICHIGAN		
	LOWER 1,4-DIOXANE SOURCE AREA CROSS SECTION A-A'		
	ARCADIS FIGURE 4		

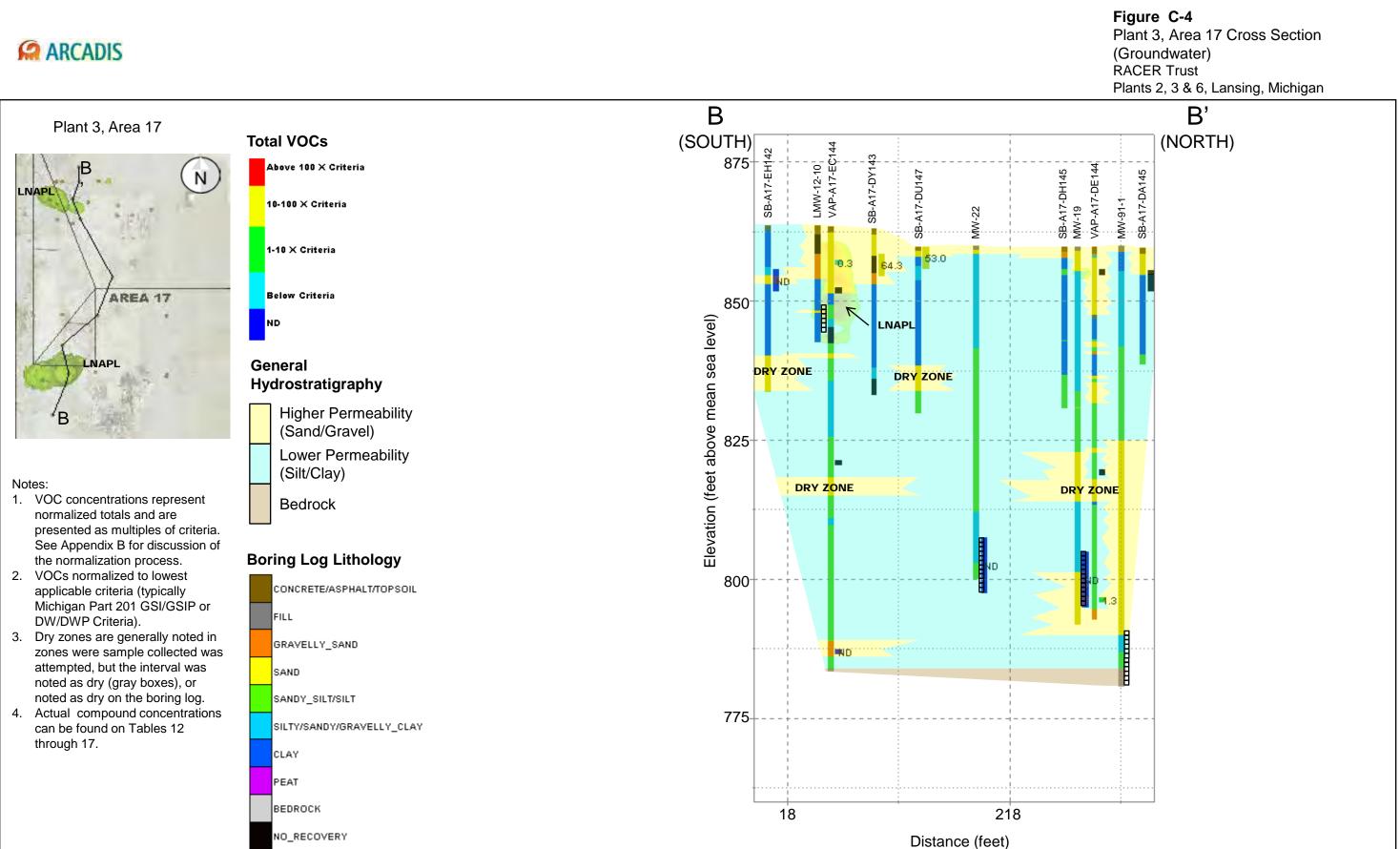


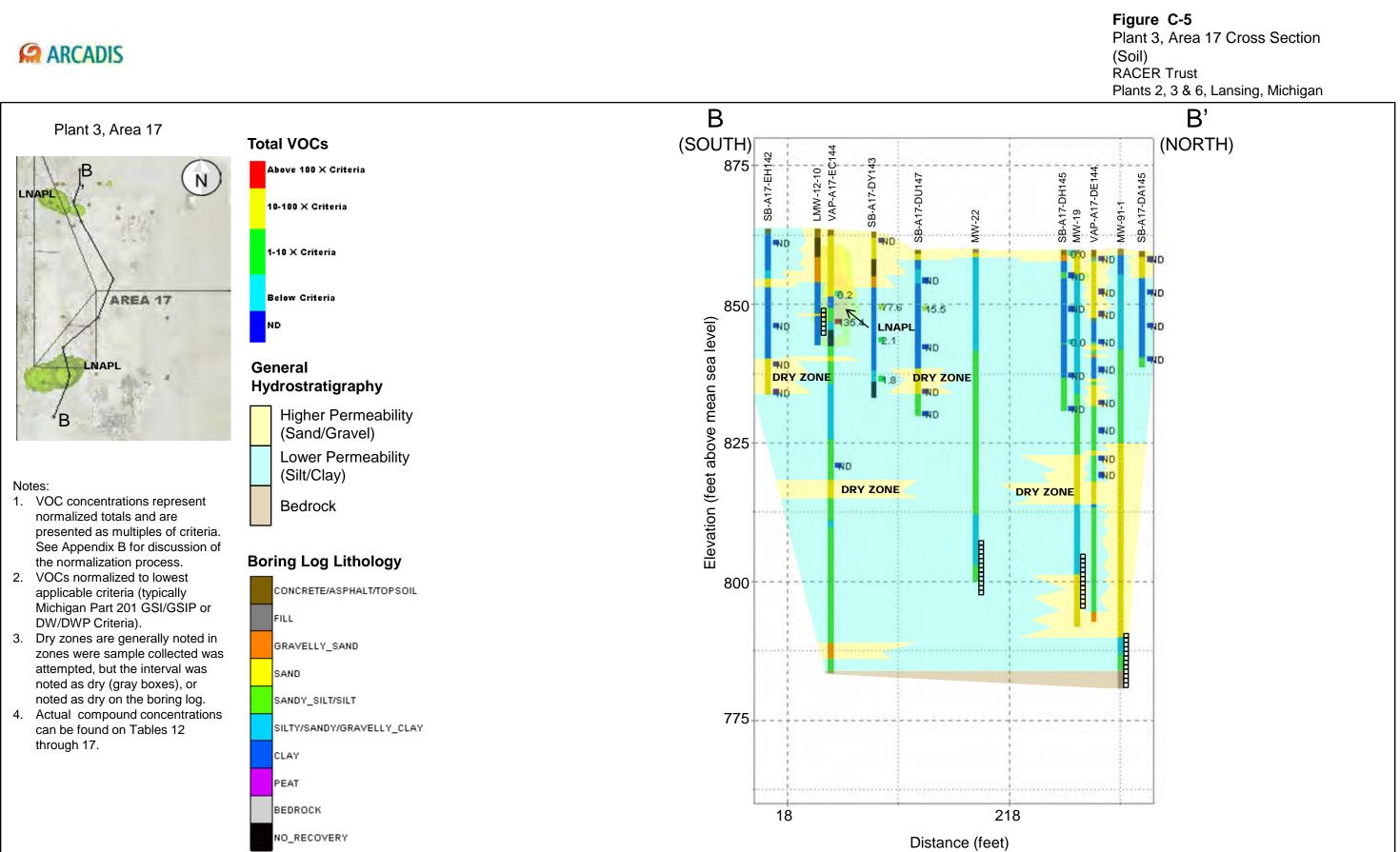


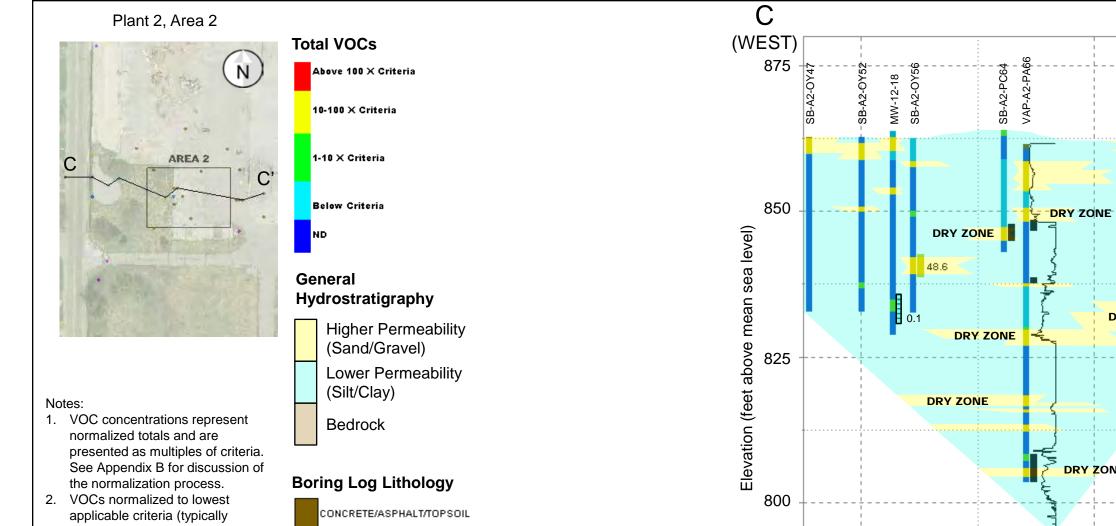

Notes:

- VOC concentrations represent normalized totals and are presented as multiples of criteria. See Appendix B for discussion of the normalization process.
- 2. VOCs normalized to lowest applicable criteria (typically Michigan Part 201 GSI/GSIP or DW/DWP Criteria).
- 3. Dry zones are generally noted in zones were sample collected was attempted, but the interval was noted as dry (gray boxes), or noted as dry on the boring log.
- 4. Actual compound concentrations can be found on Tables 12 through 17.
- 5. HPT pressure profile represented by black lines. Pressure increasing to right.


Source:


Figure C-2 Plant 2, Area 5.2 Cross Section (Groundwater) RACER Trust Plants 2, 3 & 6, Lansing, Michigan




Notes:

- VOC concentrations represent normalized totals and are presented as multiples of criteria. See Appendix B for discussion of the normalization process.
- 2. VOCs normalized to lowest applicable criteria (typically Michigan Part 201 GSI/GSIP or DW/DWP Criteria).
- 3. Dry zones are generally noted in zones were sample collected was attempted, but the interval was noted as dry (gray boxes), or noted as dry on the boring log.
- 4. Actual compound concentrations can be found on Tables 12 through 17.
- 5. HPT pressure profile represented by black lines. Pressure increasing to right.

775

55

Michigan Part 201 GSI/GSIP or DW/DWP Criteria). 3. Dry zones are generally noted in

FILL

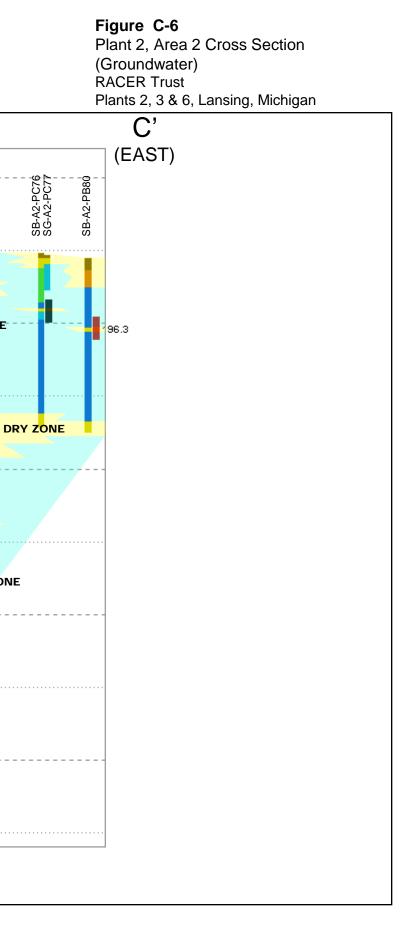
SAND

CLAY

PEAT

BEDROCK

NO_RECOVERY

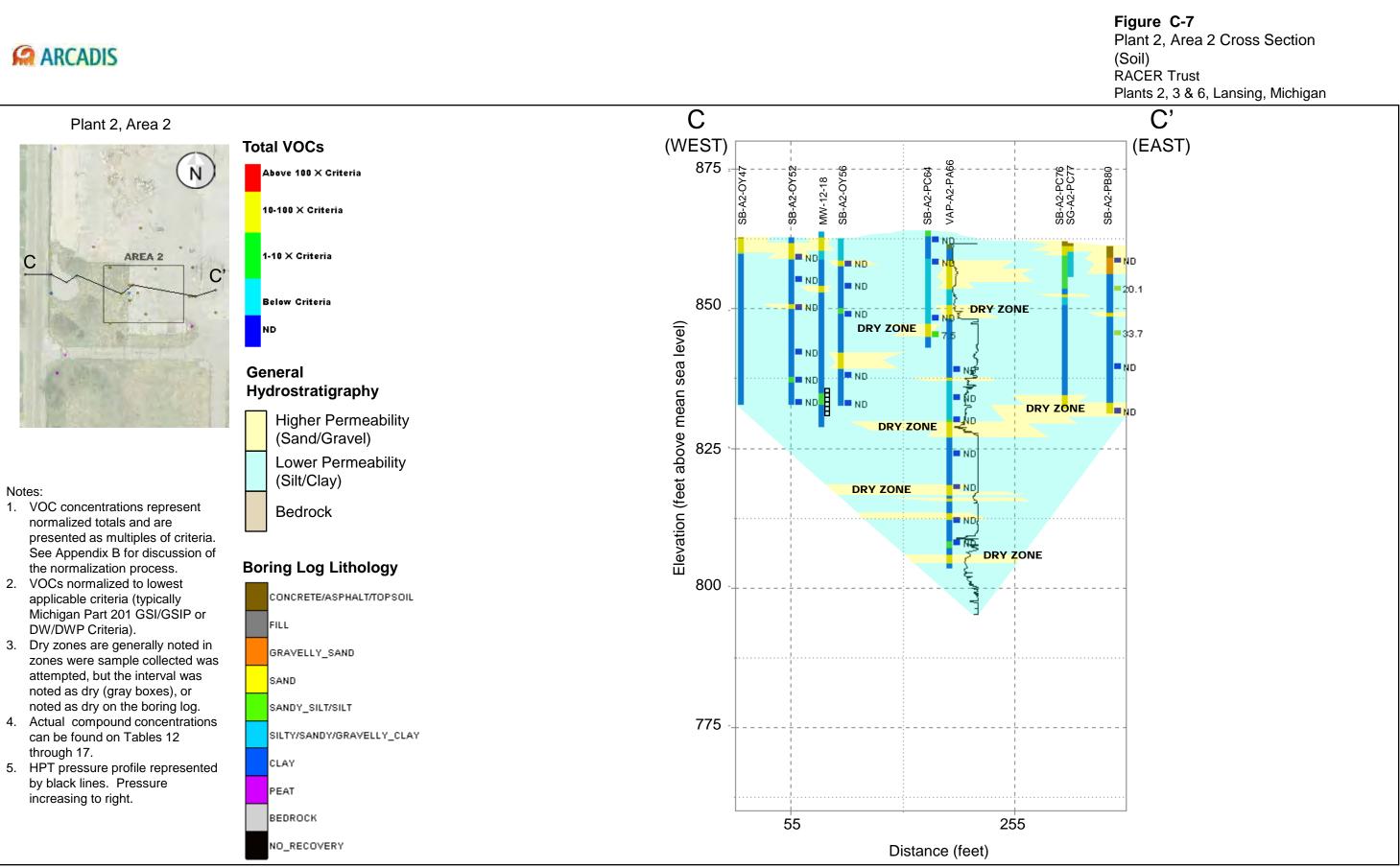

GRAVELLY_SAND

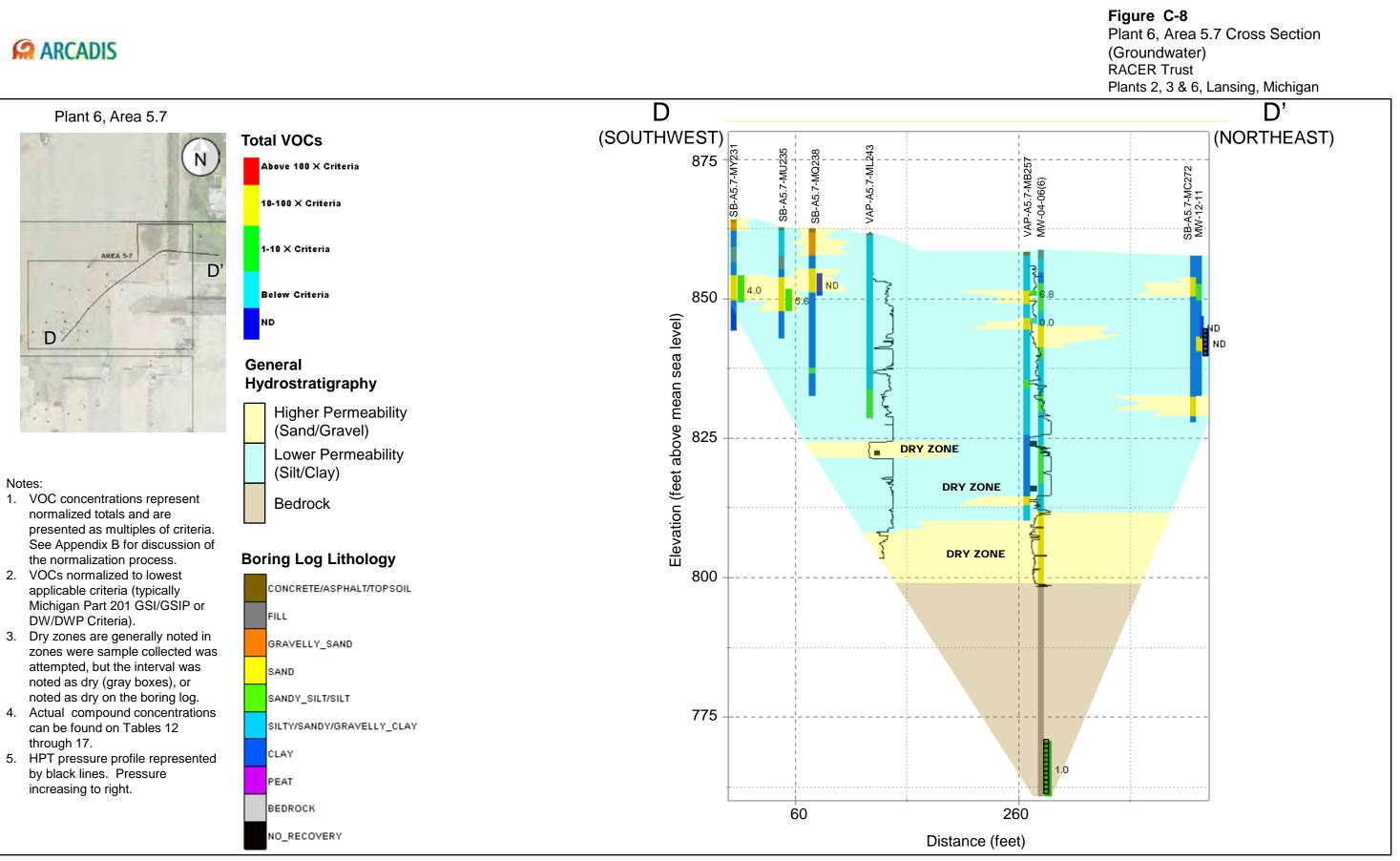
SANDY_SILT/SILT

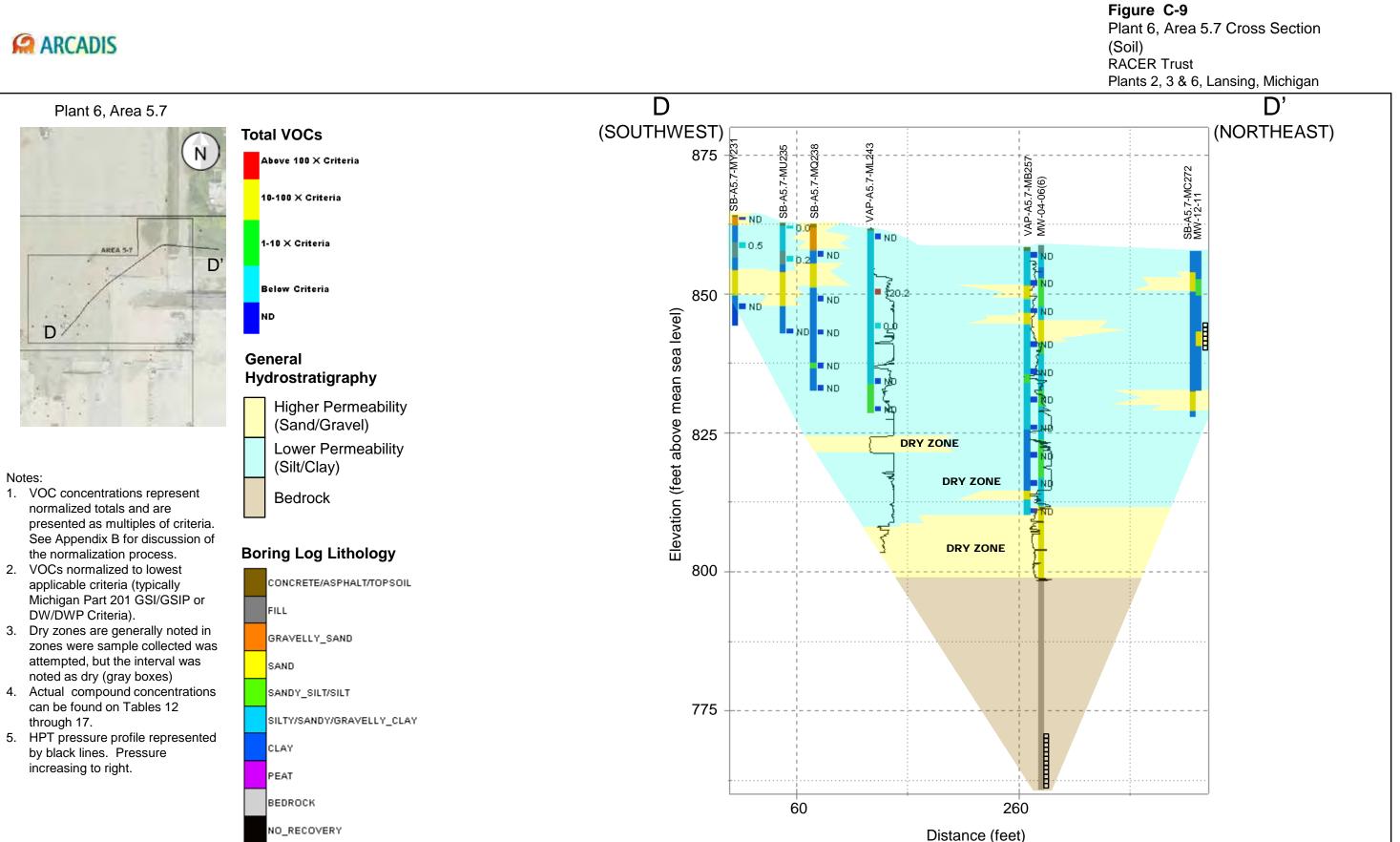
SILTY/SANDY/GRAVELLY_CLAY

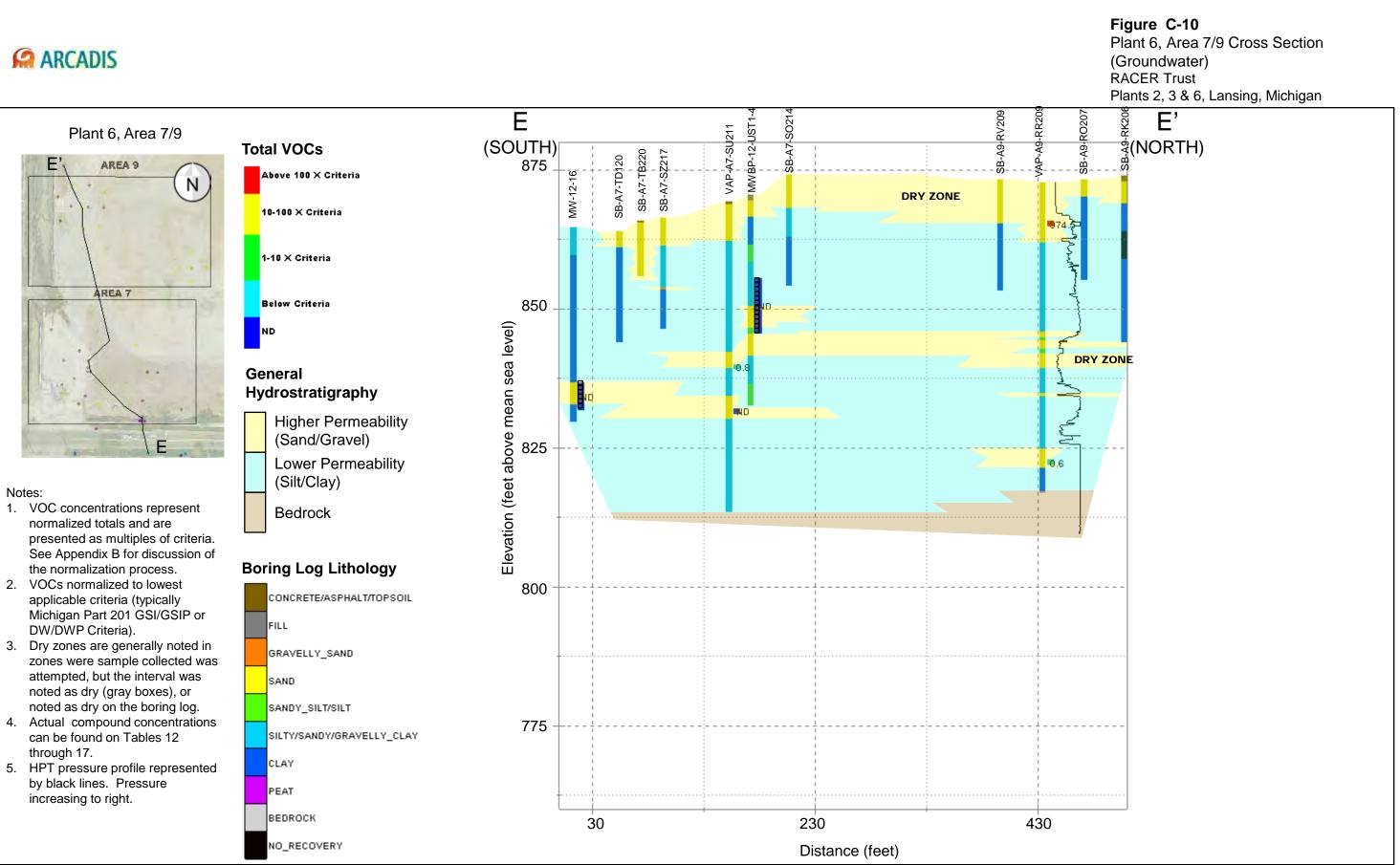
- zones were sample collected was attempted, but the interval was noted as dry (gray boxes), or noted as dry on the boring log.
- 4. Actual compound concentrations can be found on Tables 12 through 17.
- 5. HPT pressure profile represented by black lines. Pressure increasing to right.

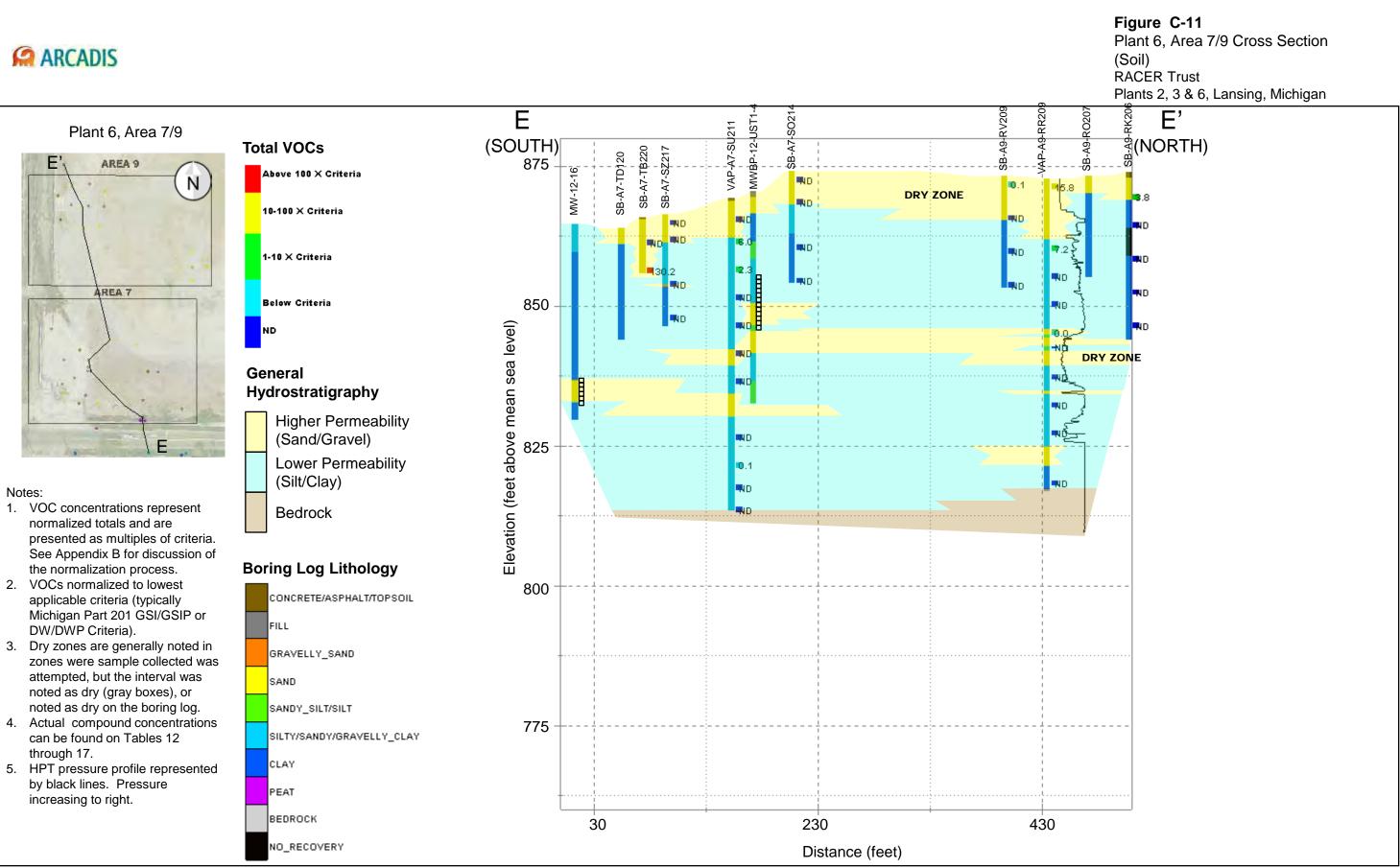
Source:

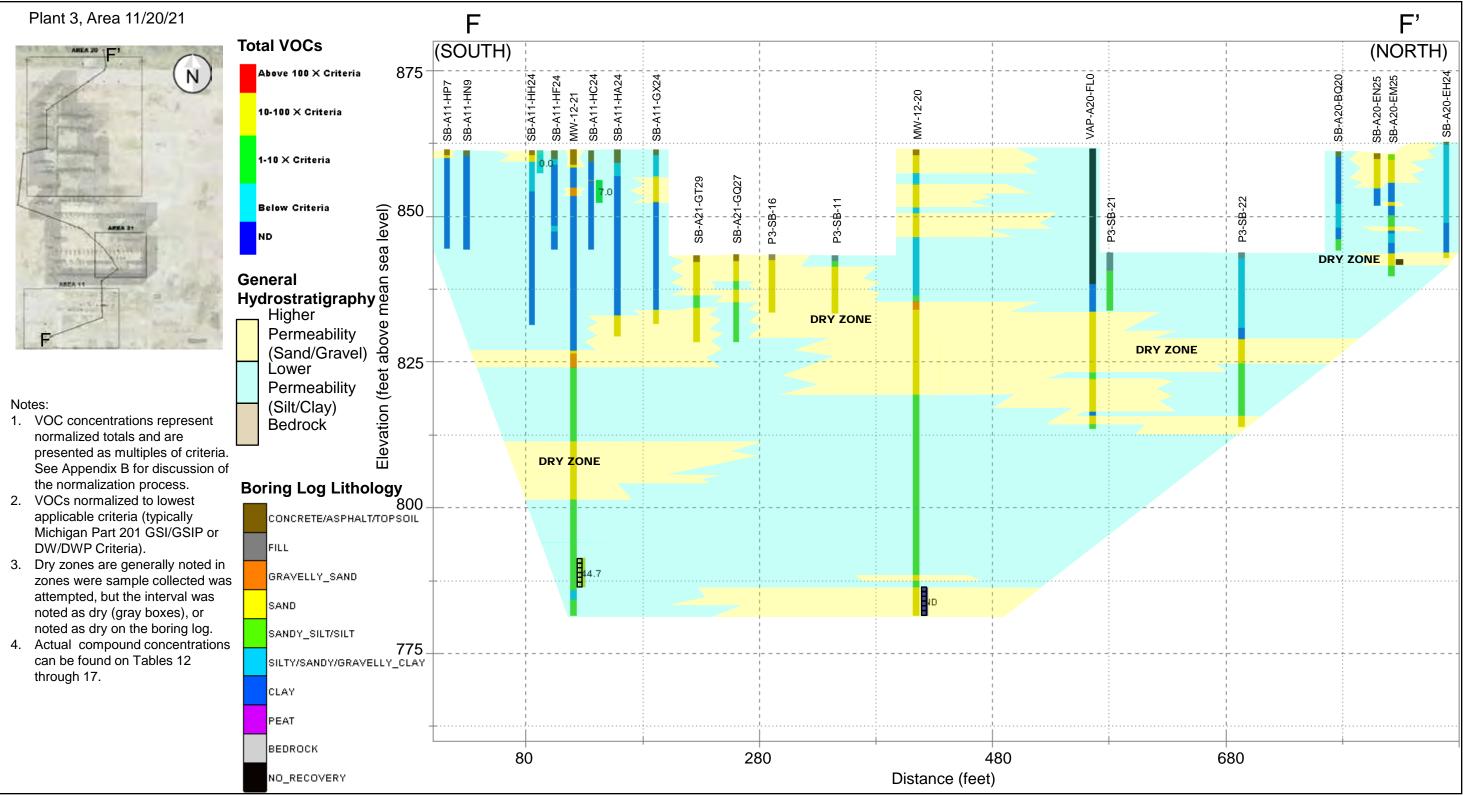


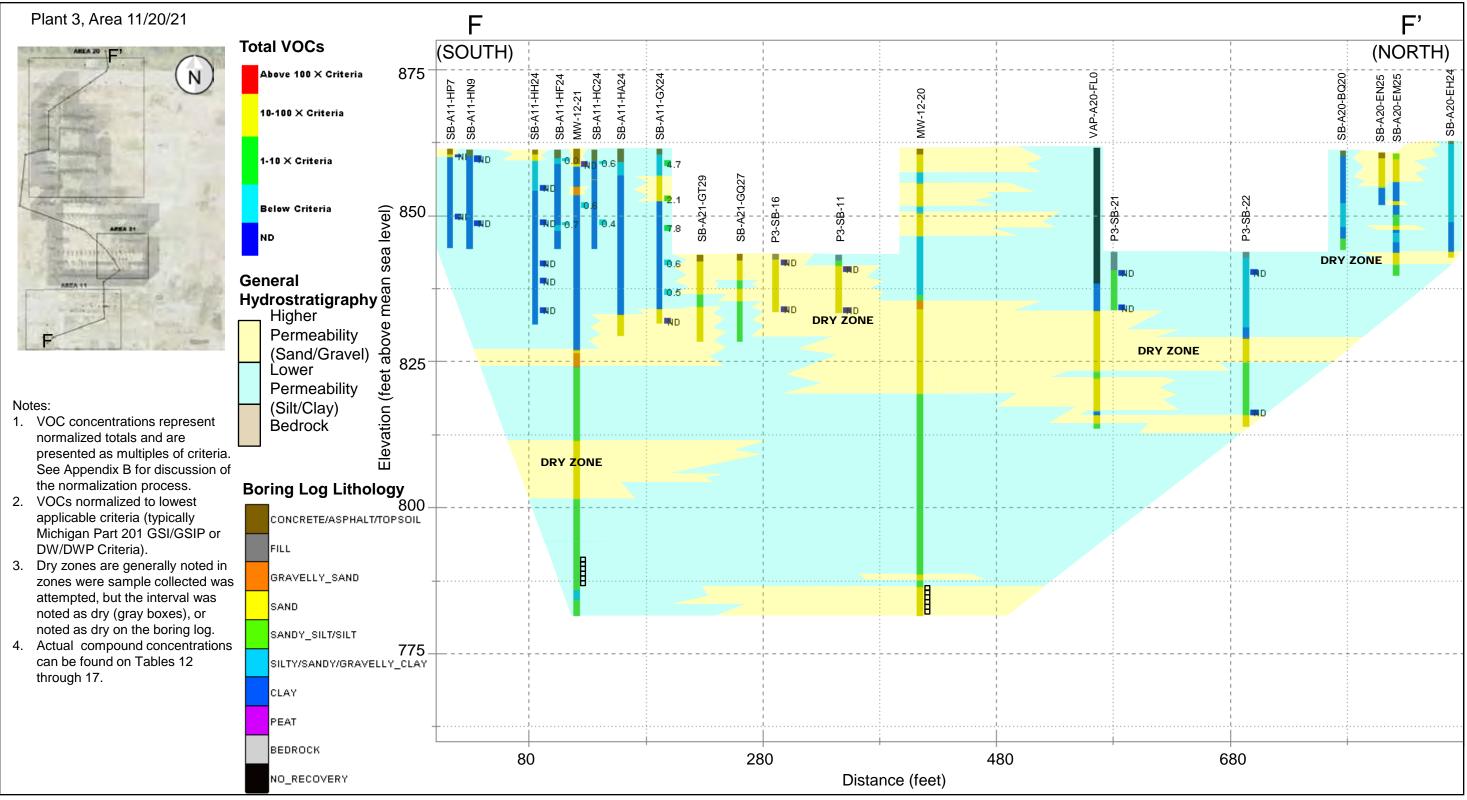

SB-A2-PC76 SG-A2-PC77


DRY ZONE


255

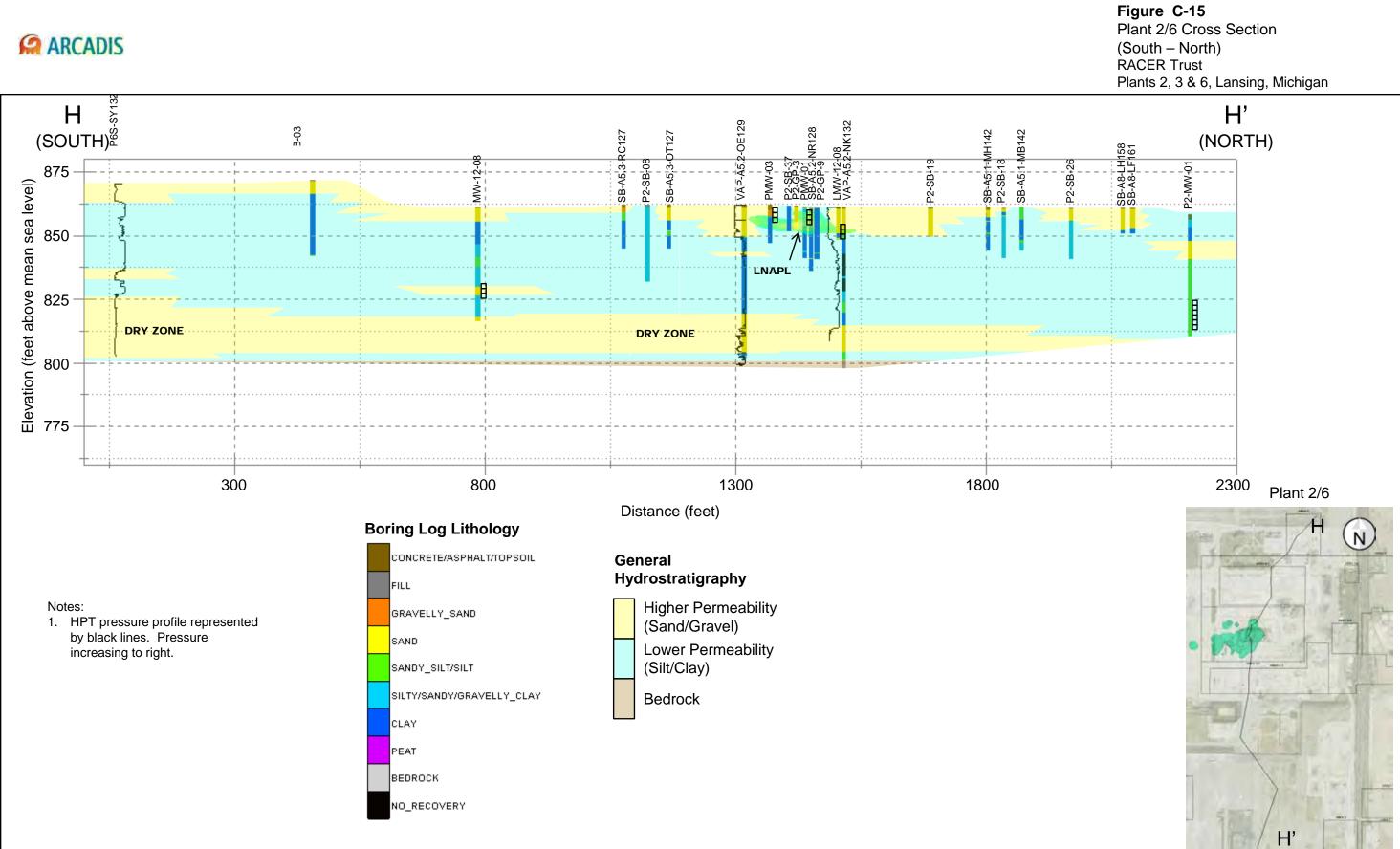

Distance (feet)





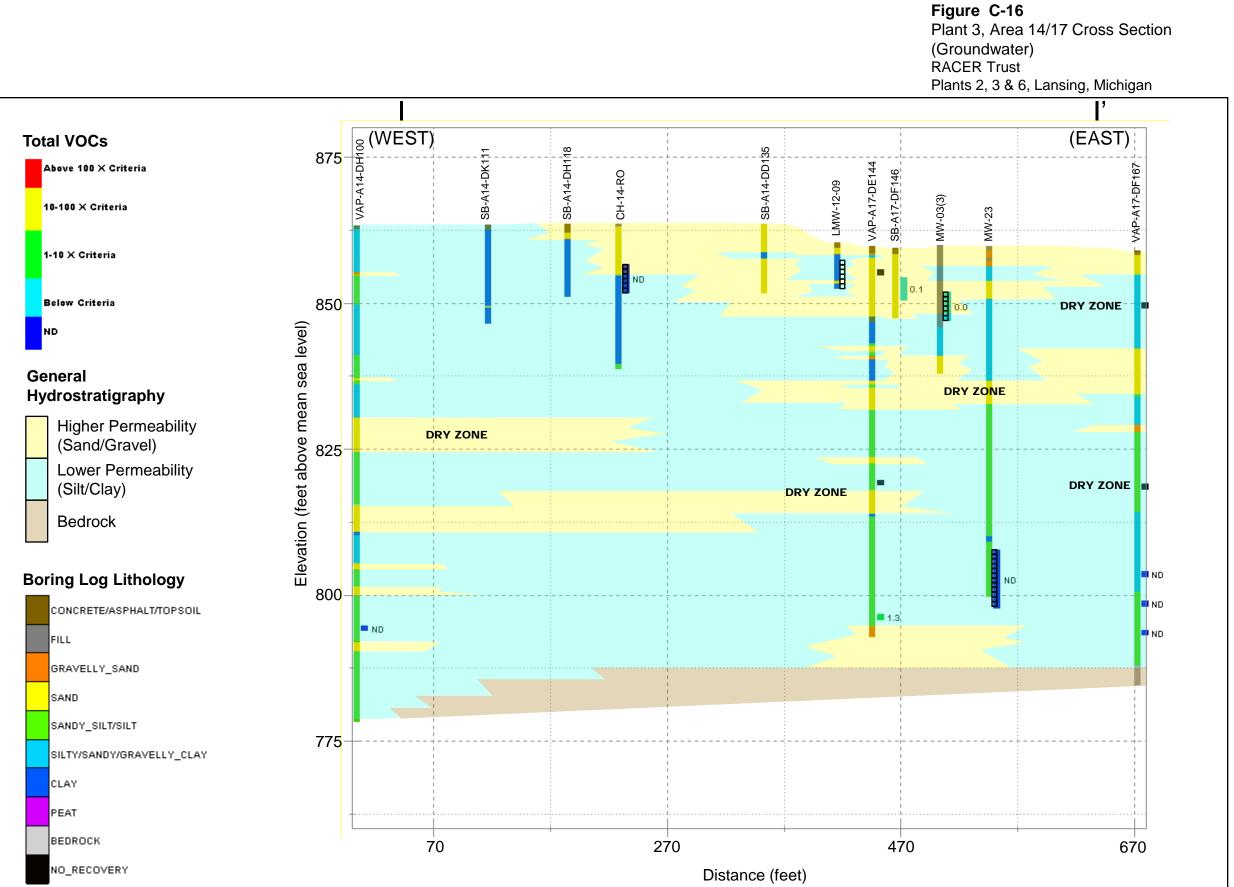
Source:

Figure C-12 Plant 3, Area 11/20/21 Cross Section (Groundwater) **RACER** Trust


Plants 2, 3 & 6, Lansing, Michigan

Source:

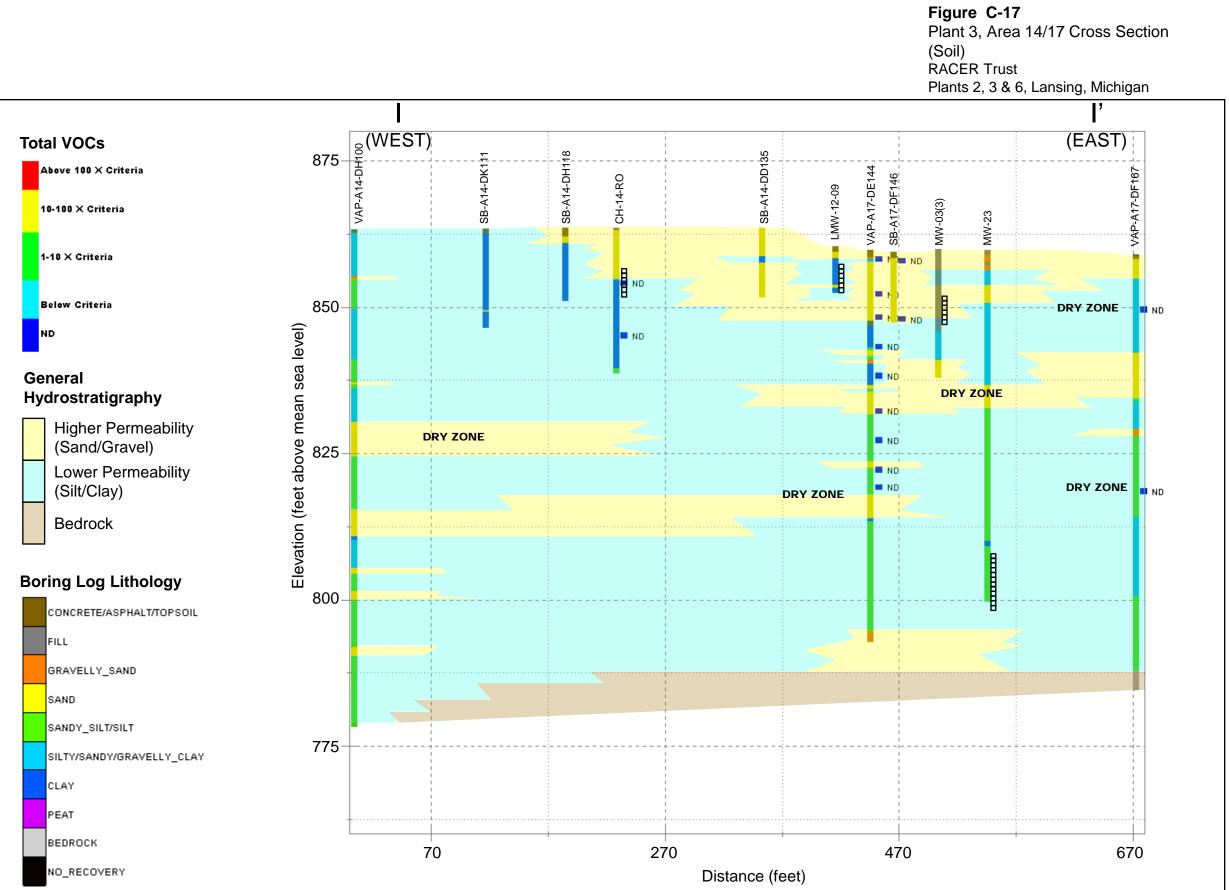
Figure C-13 Plant 3, Area 11/20/21 Cross Section (Soil) RACER Trust Plants 2, 3 & 6, Lansing, Michigan


Source:

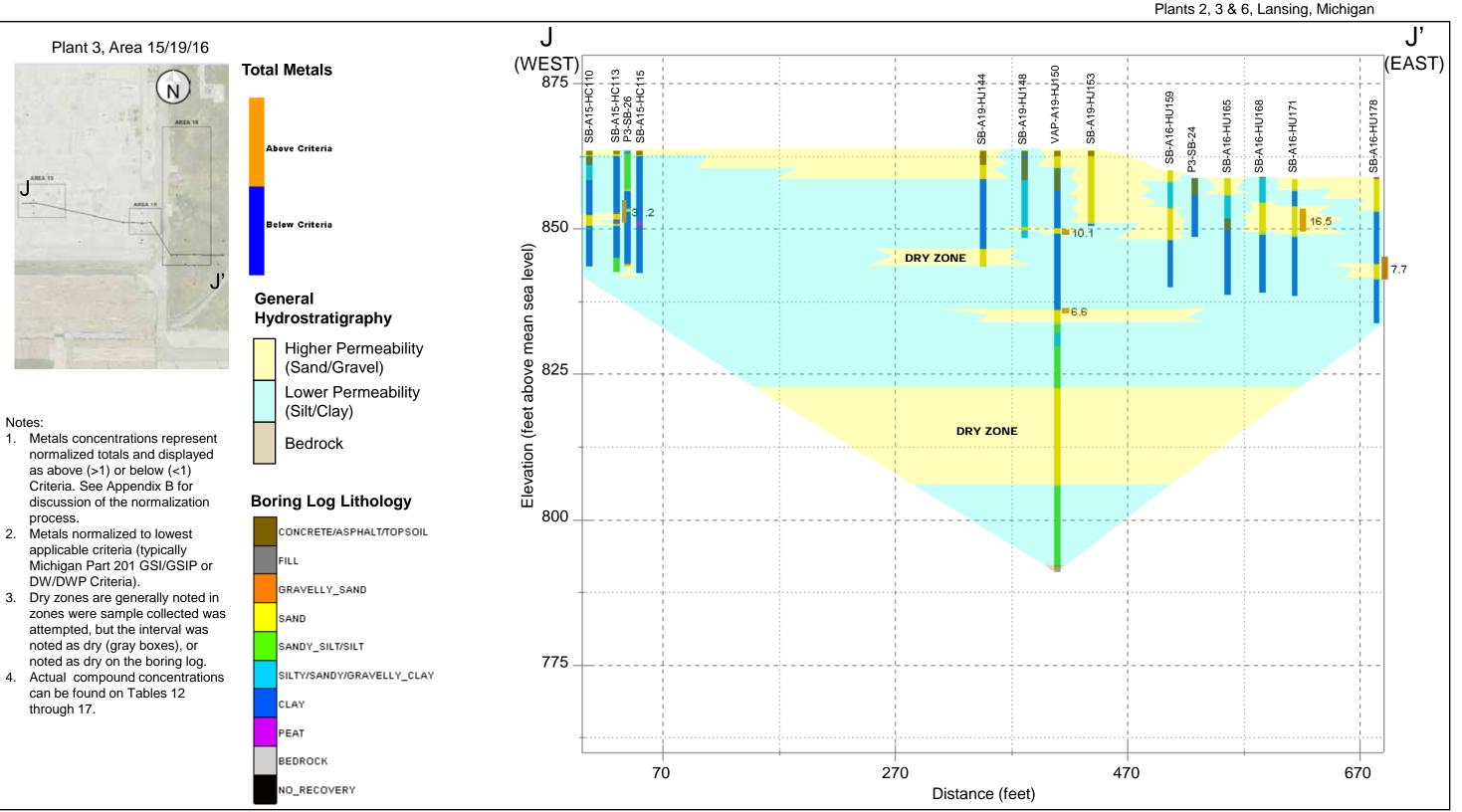
ARCADIS

Notes:

- VOC concentrations represent normalized totals and are presented as multiples of criteria. See Appendix B for discussion of the normalization process.
- 2. VOCs normalized to lowest applicable criteria (typically Michigan Part 201 GSI/GSIP or DW/DWP Criteria).
- 3. Dry zones are generally noted in zones were sample collected was attempted, but the interval was noted as dry (gray boxes), or noted as dry on the boring log.
- 4. Actual compound concentrations can be found on Tables 12 through 17.

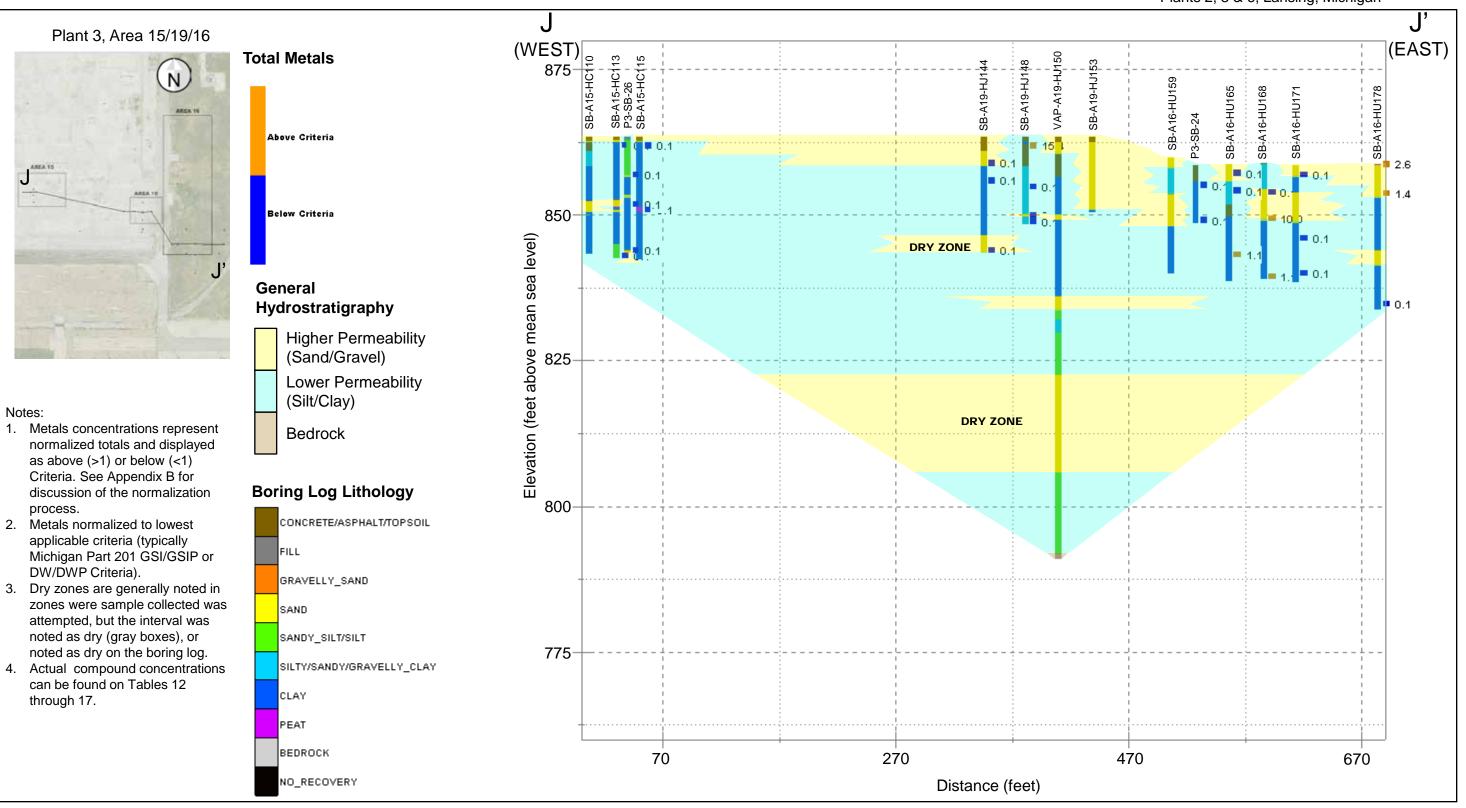

Source:

ARCADIS


Notes:

- VOC concentrations represent normalized totals and are presented as multiples of criteria. See Appendix B for discussion of the normalization process.
- 2. VOCs normalized to lowest applicable criteria (typically Michigan Part 201 GSI/GSIP or DW/DWP Criteria).
- 3. Dry zones are generally noted in zones were sample collected was attempted, but the interval was noted as dry (gray boxes), or noted as dry on the boring log.
- 4. Actual compound concentrations can be found on Tables 12 through 17.

Source:



Source:

Figure C-18 Plant 3, Area 15/19/16 Cross Section (Groundwater/Metals) RACER Trust

Source:

Figure C-19 Plant 3, Area 15/19/16 Cross Section (Soil/Metals) RACER Trust Plants 2, 3 & 6, Lansing, Michigan

ARCADIS

Appendix B

Advanced Oxidation Process Treatability Test Results

HiPOx[®] Bench-Scale Treatability Report

For The Treatment of 1,4-dioxane

At The

Racer Trust – Lansing, MI Site

APT Proposal: P3453

Revision: DRAFT

Prepared for:

Joe Darby Arcadis US Inc. 101 Creekside Ridget Court Suite 290 Roseville, CA 95678

Submitted on

3/26/2014

ULTURA, Inc.

100 West Broadway, Suite 200, Long Beach, CA 90802 Phone: (562) 661-4999; Fax (562) 661-4990

www.ulturawater.com

TABLE OF CONTENTS

1. PROJECT SPECIFIC BENCH TEST INFORMATION	1
 BACKGROUND INFORMATION OBJECTIVE OF EVALUATION PROCESS WATER INFORMATION 	1
2. RESULTS	2
 2.1 1,4-DIOXANE DESTRUCTION TEST RESULTS 2.2 VOC DESTRUCTION TEST RESULTS 2.3 BROMATE CONTROL TEST RESULTS 	5
3. DISCUSSION	9
 3.1 HIPOX TREATMENT	9
4. ATTACHMENTS	11

ATTACHMENT 1 Third Party Analytical Data

1. PROJECT SPECIFIC BENCH TEST INFORMATION

1.1 Background Information

The HiPOx treatment system is being evaluated for use to treat 1,4-dioxane and VOCs in groundwater from the Racer Trust Site near Lansing, MI (Site).

This bench test study was performed to determine the efficacy of treatment of 1,4-dioxane and VOCs using the ULTURA HiPOx advanced oxidation process (AOP) technology as a key treatment process. The following is background information regarding this project:

- Expected treatment flow rate of the location is projected to be 10 to 60 gpm.
- The 1,4-dioxane discharge limit is to be treated to < 3.2 μg/L ;
- VOCs need to be reduced;
- Bromide conversion to Bromate needs to be maintained below 10 ug/L;

1.2 Objective of Evaluation

The bench test study was performed to evaluate, with a high level of accuracy, the ozone and hydrogen peroxide dose required for 1,4-dioxane and VOC's treatment. The primary objectives of this evaluation are as listed:

- To reduce the 1,4-dioxane concentration in the water from the Racer Trust site to < 3.2 ug/L;
- To reduce selected VOC concentrations in water at the Racer Trust Site;
- To project full scale ozone dose requirements to treat up to 150 ug/L 1,4-dioxane;
- To evaluate Bromide oxidation to Bromate;
- To model oxidant dose and reactor configuration for contaminant destruction and Bromate control at full scale.

1.3 Process Water Information

Groundwater samples from the Racer Trust Site were collected by Arcadis on February 20, 2014 and were received at the ULTURA facility on February 21, 2014. The bench testing was conducted in two steps, the first (Destruction Tests) to establish oxidant dose for contaminant destruction and the second (Bromate Control Tests) to refine conditions necessary to control the formation of Bromate.

These samples were analyzed by ULTURA using standard methods and/or Hach methods for the listed parameters before treatment. Each successive treatment experiment was sampled for 1,4-dioxane and VOC analysis and the listed parameters analyzed by ULTURA. Samples from the Destruction Tests were sent to Merit Laboratories in Lansing, Michigan for analyses of 1,4dioxane, VOCs, TOCs and metals. Additional samples sent to Underwriter Laboratories in South Bend, Indiana for low concentrations analysis of bromide, bromate. From these results the appropriate ozone treatment dose was determined and then bromate formation modeling was performed based on those parameters. As before samples were taken and sent to Merit Laboratories, located in Lansing, Michigan for the analysis of 1,4-dioxane, VOCs, and metals, with additional samples sent to Underwriters Laboratories in South Bend, Indiana for low concentration bromide and bromate analysis.

2. RESULTS

The Racer Trust water samples were effectively treated with ozone – hydrogen peroxide. The destruction tests were conducted at variable ozone doses and constant hydrogen peroxide : ozone mole ratio of 2.5. The 1,4-dioxane was treated from the influent concentrations of 104 ug/L in the MW-13-22 well and 148 ug/L in the Composite sample to less than 1 ug/L.

The bromate formation was controlled to less than 10 ug/L. Tests were done using the ozone dose of 15.1 mg/L based on the preliminary destruction test results. This dose was estimated to treat the 1,4-dioxane to less than 3.2 ug/L. Various mole ratios and injection points were used to determine bromate formation parameters. All tests conducted for the bromate control tests were controlled to less than 10 ug/L bromate.

There were no VOCs identified in the raw water at the Racer Trust Site. However low levels acetone was identified in the effluent. The acetone is a result of the oxidation of TOC.

2.1 1,4-Dioxane Destruction Test Results

The data from the Destruction Tests for the MW13-22 and Composite samples show that 1,4dioxane was treated at an applied rate of 13 mg/L ozone to less than 5 ug/L. The selected test ozone doses for Destruction Tests ranged from 8.0 to 33.0 mg/l. The hydrogen peroxide mole ratio was kept at 2.5 for this range of ozone applications. The initial 1,4-dioxane concentrations were found to be 104 ug/L and 148 ug/l in MW-13-22 and the Composite samples respectively.

The untreated water sample MW13-22 was identified as P3453-SP-0. The initial trial of P3453-SP-1 used ozone dosing at 8 mg/L with a hydrogen peroxide to ozone mole ratio of 2.5, resulting in a 1,4-dioxane concentration of 16 ug/L. The successive trials P3453-SP-2, 3, and 4 preceded using ozone dosing of 13, 21 and 30 mg/L respectively and maintaining a consistent hydrogen peroxide to ozone mole ratio of 2.5 for all trials. These trials showed reductions of each 1,4-dioxane concentrations to <5ug/L. A revised analysis report showed the 1,4-dioxane concentrations of 3, < 1 and < 1 respectively.

The composite of untreated water sample from selected wells labeled composite was identified as P3453-SP-10. The initial trial of P3453-SP-11 used ozone dosing at 8 mg/L with a hydrogen peroxide to ozone mole ratio of 2.5 resulting in a 1,4-dioxane concentration of 21 ug/L. The successive trials P3453-SP-12, 13, and 14 preceded using ozone dosing of 13, 22 and 33 mg/L respectively and maintaining a consistent hydrogen peroxide to ozone mole ratio of 2.5 for all trials. These trials each showed reductions of 1,4-dioxane concentrations to < 5 ug/L. A revised analysis report showed the 1,4-dioxane concentrations of 5, < 1 and < 1 ug/L respectively.

Figure 1 below shows the destruction of the 1,4-dioxane versus applied ozone in both samples.

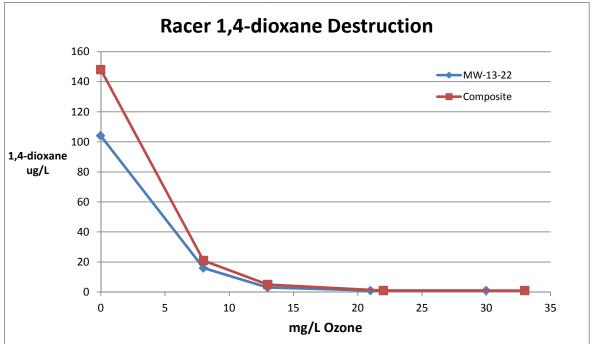


Figure 1: 1,4-dioxane Dose Response Curve

	Destruction Test Results MW13-22									
suc	Samples									
Conditions	Sample ID#	P3453-SP-0	P3453-SP-1	P3453-SP-2	P3453-SP-3	P3453-SP-4				
jone	Run#	0	1	2	3	4				
0	Ozone Dose (mg/L)	-	8.0	13.0	21.0	30.0				
	H2O2:O3 Mole Ratio	-	2.5	2.5	2.5	2.5				
	рН	6.98	7.11	7.55	7.23	7.21				
	Alkalinity (mg/L)	340	400	540	450	400				
p	Turbidity (NTU)	54.9	75.1	45.1	49.1	50				
ULTURA Lab	Temperature (deg C)	17.6	20.2	20.1	21	20.3				
JRA	UVT (cm-1)	68.5	68.7	88.5	84.5	84.1				
ורדו	O3 Residual-DPD (mg/L)	0.0	0.0	0.1	0.3	0.3				
<u>ر</u>	H2O2 Residual-Hach (mg/L)	0.0	10	10	15	30				
	H2O2 Residual-Strips (mg/L)	0.0	11	15	23	33				
	COD (mg/L)	13	9	9	8	9				
sq	TOC (mg/L)	4.7	na	na	4.7	na				
/ La	1,4-dioxane (ug/L)	104	16	< 5	< 5	< 5				
3rd Party Labs	1,4-dioxane (ug/L)*	104	16	3	< 1	< 1				
а р	Bromide (ug/L)	71	71	72	73	67				
3rc	Bromate (ug/L)	1	9.4	1.2	1.3	2.9				

*revised at lower detection

Table 1a: Analytic Results for Destruction Tests

	Des	Destruction Test Results Composite									
suc	Samples										
Conditions	Sample ID#	P3453-SP-10	P3453-SP-11	P3453-SP-12	P3453-SP-13	P3453-SP-14					
ouc	Run#	10	11	12	13	14					
0	Ozone Dose (mg/L)	-	8.0	13.0	22.0	33.0					
	H2O2:O3 Mole Ratio	-	2.5	2.5	2.5	2.5					
	рН	7.11	7.51	7.63	7.64	7.64					
	Alkalinity (mg/L)	360	460	500	420	500					
Lab	Turbidity (NTU)	134	135	104	104	97.2					
JLTURA Lab	UVT (cm-1)	46.5	46.4	52.6	53	52.2					
Ē	O3 Residual-DPD (mg/L)	na	0.05	0.1	0.15	0.15					
Ъ	H2O2 Residual-Hach (mg/L)	na	9	13	18	34					
	H2O2 Residual-Strips (mg/L)	na	10	10	15	25					
	COD (mg/L)	30	13	14	10	25					
ab	TOC (mg/L)	6	na	na	5.9	na					
۲ ۲	1,4-dioxane (ug/L)	148	21	< 5	< 5	< 5					
art	1,4-dioxane (ug/L)*	148	21	5	< 1	<1					
3rd Party Lab	Bromide (ug/L)	140	130	130	130	130					
3	Bromate (ug/L)	1	1.6	5.7	6.6	13					

*revised at lower detection

Table 1b: Analytic Results for Destruction Tests

2.2 VOC Destruction Test Results

There were no VOCs detected in the MW-13-22 and composite samples. The treated samples had traces of acetone. Acetone can be formed from the oxidation of TOC in the water. MW-13-22 water contained 4.7 mg/L of TOC and the Composite water contained 6.0 mg/L TOC.

				VOC An	alysis MW	/13-22				
suc	Samples									
litio	Sample ID#	P3453-SP-0	P3453-SP-1	P3453-SP-2	P3453-SP-3	P3453-SP-4	P3453-SP-5	P3453-SP-6	P3453-SP-7	P3453-SP-8
ono	Run#	0	1	2	3	4	5	6	7	8
0	Ozone Dose (mg/L)	-	8	13	21	30	15.1	15.1	15.1	15.1
	H2O2:O3 Mole Ratio	-	2.5	2.5	2.5	2.5	3.2	2.5	2	2.0
Merit	Acetone	<1	13	14	21	18	15	15	15	18

Table 2a: VOC Analytic Results

0				VOC An	alysis Com	nposite				
Si C	Samples									
ditio	Sample ID#	P3453-SP-10	P3453-SP-11	P3453-SP-12	P3453-SP-13	P3453-SP-14	P3453-SP-15	P3453-SP-16	P3453-SP-17	P3453-SP-18
	Run#	10	11	12	13	14	15	16	17	18
0	Ozone Dose (mg/L)	-	8	13	21	30	15.1	15.1	15.1	15.1
	H2O2:O3 Mole Ratio	-	2.5	2.5	2.5	2.5	3.2	2.5	2.0	2.0
Merit	Acetone	<10	12	15	18	15	15	15	16	15

Table 2b: VOC Analytic Results

2.3 Bromate Control Test Results

Based on the preliminary analytic results from the destruction testing samples, an ozone dosing of 15.1 mg/L was estimated to be effective at treating 1,4-dioxane to less than 3.2 ug/L of 1,4-dioxane in both MW 13-22 and Composite water samples. For this reason, the bromate control testing proceeded at an ozone dose rate of 15.1 mg/L for both test cases. Testing was

conducted using 10 and 15 injectors along with varied mole ratios of hydrogen peroxide to ozone to minimize bromate formation. Refer to table 3a and 3b for injector detail.

The untreated MW13-22 raw water was found to have a 1,4-dioxane concentration of 104 ug/L and a concentration of 71 ug/L for Bromide and levels of less than 1 ug/L Bromate. The bromate control tests were conducted with a 15.1 mg/L ozone dose with mole ratios of ozone to hydrogen peroxide of 3.0, 2.5, 2.0 and 2.0. This resulted in reducing the 1,4-dioxane to below detection level of less than 1 ug/L in all tests. The resulting bromate concentrations were found to be 2.2, 2.9, 2.9 and 7.6 ug/L.

The untreated Composite raw water was found to have a 1,4-dioxane concentration of 148 ug/L and a concentration of 140 ug/L for Bromide and levels of less than 1 ug/L Bromate. The bromate control tests were conducted with 15.1 mg/l ozone dose and mole ratios of ozone to hydrogen peroxide of 3.2, 2.5, 2.7 and 2.2. This resulted in reducing the 1,4-dioxane to below detection level of less than 1ug/L in all tests. The resulting bromate concentrations were found to be 1.6, 8.4, 8.5 and 9.6 ug/L.

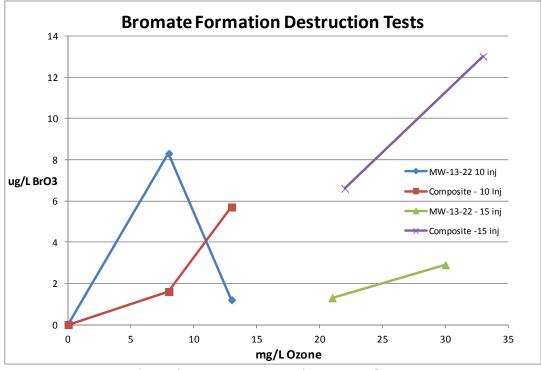


Figure 2 : Bromate Formation versus Ozone

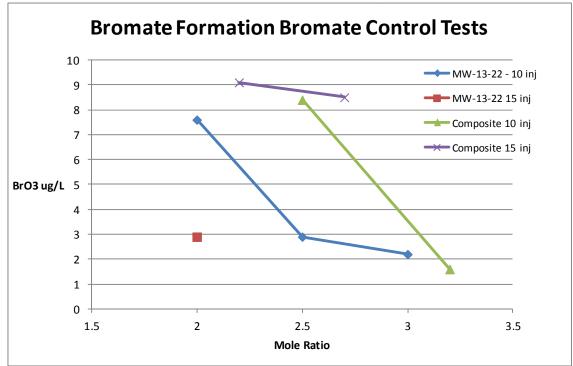


Figure 3 : Bromate Formation versus Mole Ratio at Constant Ozone Dose

	Bromate Control Test Results MW13-22								
S		Samp	les						
Conditions	Sample ID#	P3453-SP-5	P3453-SP-6	P3453-SP-7	P3453-SP-8				
libr	Run#	5	6	7	8				
Cor	Ozone Dose (mg/L)	15.1	15.1	15.1	15.1				
	H2O2:O3 Mole Ratio	3.0	2.5	2.0	2.0				
	# of injectors	10	10	15	10				
	рН	7.14	7.22	7.26	7.22				
	Alkalinity (mg/L)	440	420	420	400				
٩	Turbidity (NTU)	187	152	150	178				
ULTURA Lab	Temperature (deg C)	16.5	16.1	16.4	15.6				
JRA	UVT (cm-1)	58.8	62.5	63	64.2				
L	O3 Residual-DPD (mg/L)	0.05	0.01	0.01	0.02				
	H2O2 Residual-Hach (mg/L)	22	17	10	11				
	H2O2 Residual-Strips (mg/L)	10-30	10-30	10	10				
	COD (mg/L)	na	na	8	na				
- <u>></u> _	1,4-dioxane (ug/L)	<1	<1	<1	<1				
3rd Party Lab	Bromide (ug/L)	65	74	70	67				
L	Bromate (ug/L)	1.6	8.4	8.4	9.1				

Table 3a: Analytic Results for Bromate Control Tests

	Bromate Control Test Results Composite									
S	Samples									
io	Sample ID#	P3453-SP-15	P3453-SP-16	P3453-SP-17	P3453-SP-18					
Conditions	Run#	15	16	17	18					
ē	Ozone Dose (mg/L)	15.1	15.1	15.1	15.1					
	H2O2:O3 Mole Ratio	3.0	2.5	2.7	2.2					
	# of injectors	10	10	15	15					
	рН	7.29	7.54	7.55	7.61					
	Alkalinity (mg/L)	380	400	400	420					
٩	Turbidity (NTU)	162	153	117	100					
ULTURA Lab	Temperature (deg C)	16.2	15.8	15.9	16.3					
JRA	UVT (cm-1)	63.5	57.6	49.2	51.1					
TLI	O3 Residual-DPD (mg/L)	0.01	0.01	0.01	0.01					
	H2O2 Residual-Hach (mg/L)	20	20	16	20					
	H2O2 Residual-Strips (mg/L)	10-30	10-30	10-30	10-30					
	COD (mg/L)			12						
- Z -	1,4-dioxane (ug/L)	<1	<1	<1	<1					
3rd Party Lab	Bromide (ug/L)	65	130	130	130					
<u> </u>	Bromate (ug/L)	1.6	8.4	8.5	9.1					

Table 3b: Analytic Results for Bromate Control Tests

			Me	tals Analys	sis MW13	-22				
Conditions	Samples									
	Sample ID#	P3453-SP-0	P3453-SP-1	P3453-SP-2	P3453-SP-3	P3453-SP-4	P3453-SP-5	P3453-SP-6	P3453-SP-7	
ouo	Run#	0	1	2	3	4	0	1	2	
0	Ozone Dose (mg/L)	-	8	13	21	30	15.1	15.1	15.1	
	H2O2:O3 Mole Ratio	-	2.5	2.5	2.5	2.5	3.0	2.5	2.0	
	Antimony(mg/L)	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	
	Arsenic(mg/L)	0.006	0.006	0.005	0.005	0.009	0.007	0.006	0.006	
	Barium(mg/L)	0.031	0.078	0.038	0.032	0.036	0.048	0.034	0.032	
	Boron(mg/L)	0.33	0.32	0.33	0.33	0.33	0.26	0.26	0.27	
	Cadmium(mg/L)	<0.0005	<0.0005	<0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	
Ś	Chromium(mg/L)	<0.005	0.055	< 0.005	<0.005	0.005	0.048	0.013	< 0.005	
orie	Cobalt(mg/L)	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	
rato	Copper(mg/L)	<0.005	0.013	0.25	0.006	0.02	0.016	0.009	0.007	
Merit Laboratories	Iron(mg/L)* report(2)	11.1	na	na	na	na	15.4	12.3	13.1	
t La	Lead(mg/L)	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	
leri	Manganese(mg/L)	0.099	0.126	0.094	0.093	0.097	0.102	0.097	0.097	
2	Mercury(mg/L)	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	
	Nickel(mg/L)	0.019	0.184	0.029	0.021	0.31	0.072	0.028	0.019	
	Selenium(mg/L)	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	
	Silver(mg/L)	<0.0005	<0.0005	<0.0005	< 0.0005	0.0013	<0.0005	<0.0005	<0.0005	
	Vanadium(mg/L)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	
	Zinc(mg/L)	0.006	0.015	0.01	0.008	0.064	0.011	0.008	0.008	

Table 4a: Analytic Results for Metals in MW 13-22

		9	,		C THORE ROATE TO SEA 1	0				
	Metals Analysis Composite									
suc	Samples									
Conditions	Sample ID#	P3453-SP-10	P3453-SP-11	P3453-SP-12	P3453-SP-13	P3453-SP-14	P3453-SP-15	P3453-SP-16	P3453-SP-17	
ouc	Run#	10	11	12	13	14	15	16	17	
0	Ozone Dose (mg/L)	-	8	13	21	30	15.1	15.1	15.1	
	H2O2:O3 Mole Ratio	-	2.5	2.5	2.5	2.5	3.0	2.5	2.7	
	Arsenic(mg/L)	0.004	0.005	0.005	0.005	0.004	0.007	0.006	0.005	
	Barium(mg/L)	0.226	0.215	0.224	0.229	0.226	0.033	0.221	0.232	
ies	Boron(mg/L)	0.2	0.2	0.2	0.2	0.2	0.28	0.16	0.16	
oratories	Cadmium(mg/L)	0.0012	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0005	
ora	Chromium(mg/L)	< 0.005	0.005	< 0.005	< 0.005	< 0.005	0.01	0.009	0.013	
Labo	Copper(mg/L)	< 0.005	0.006	0.006	0.005	0.005	0.007	0.007	0.006	
Merit I	Iron(mg/L)	13	na	na	na	na	13.5	7.57	8.23	
Ae	Manganese(mg/L)	0.133	0.104	0.102	0.104	0.1	0.097	0.101	0.103	
	Nickel(mg/L)	0.015	0.017	0.016	0.015	0.015	0.023	0.018	0.016	
	Zinc	0.013	0.026	0.016	0.014	0.016	0.008	0.014	0.017	

Table 4b: Analytic Results for Metals in Composite Sample

3. DISCUSSION

3.1 HiPOx Treatment

The tests described in this report demonstrate the suitability of the HiPOx process to treat 1,4dioxane to target effluent goals of less than 3.2 ug/L at the Racer Trust Site.

Bromate formation was controlled below the 10 ug/L limit with and ozone dose of 15.1 mg/L. The MW-13-22 well required a hydrogen peroxide:ozone mole ratio of 2.0 or higher, and 10 ozone injectors. The Composite sample required a hydrogen peroxide:ozone mole ratio of 2.5 or higher, and 10 ozone injectors.

3.2 HiPOx Dosing Projections for Full-Scale System

Destruction models were generated within the limitations of the data to extrapolate ozone and hydrogen peroxide dosing levels to meet the treatment objectives assuming the current sample water constituent concentrations. Table 5 a and 5b presents the destruction model dosing levels recommended to meet the design 1,4-dioxane and bromate limits for discharge.

Parameter	Design Influent	Effluent Limit
Ozone	15.0 mg/L	NA
Hydrogen Peroxide	21.3 mg/L	NA
O3/H2O2 mole ratio	2.0	NA
1,4-Dioxane	150 ug/L	< 3.2 ug/L
Bromide	71 ug/L	NA
BrO3	<1 ug/L	< 10 ug/L

Table 5a: Recommended Full Scale MW-13-22

Parameter	Design Influent	Effluent Limit
Ozone	15.0 mg/L	NA
Hydrogen Peroxide	26.6 mg/L	NA
O3/H2O2 mole ratio	2.5	NA
1,4-Dioxane	150 ug/L	< 3.2 ug/L
Bromide	130 ug/L	NA
BrO3	<1 ug/L	< 10 ug/L

Table 5b: Recommended Full Scale Composite

3.3 Recommendations

The full scale HiPOx system to treat 150 ug/l of 1,4-dioxane to less than 3.2 ug/l should be configured to deliver a minimum of 15.0 mg/L ozone, 26.6 mg/L hydrogen peroxide for the Composite water. The MW-13-22 water the system should be configured to deliver a minimum of 15.0 mg/L ozone and 21.3 mg/L hydrogen peroxide.

4. ATTACHMENTS

ATTACHMENT 1 3rd Party Analytical Reports

LABORATORY REPORT

This report contains <u>16</u> pages. (including the cover page)

If you have any questions concerning this report, please do not hesitate to call us at (800) 332-4345 or (574) 233-4777.

This report may not be reproduced, except in full, without written approval from UL.

Laboratory Report

Client: Ultura

Attn: Douglas Gustafson 2516 Verne Roberts Circle Suite H-102 Antioch, CA 94509 Report: Priority: Status: PWS ID: 312512 Immediate Verbal Final Not Supplied

Copies

to: None

		Sample Information			
UL ID #	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time
2980183	P-3453-SP-0	300.0	02/24/14 08:30	Client	02/25/14 09:15
2980193	P-3453-SP-0	317.0	02/24/14 08:30	Client	02/25/14 09:15
2980184	P-3453-SP-1	300.0	02/24/14 09:30	Client	02/25/14 09:15
2980194	P-3453-SP-1	317.0	02/24/14 09:30	Client	02/25/14 09:15
2980185	P-3453-SP-2	300.0	02/24/14 10:30	Client	02/25/14 09:15
2980195	P-3453-SP-2	317.0	02/24/14 10:30	Client	02/25/14 09:15
2980186	P-3453-SP-3	300.0	02/24/14 11:00	Client	02/25/14 09:15
2980196	P-3453-SP-3	317.0	02/24/14 11:00	Client	02/25/14 09:15
2980187	P-3453-SP-4	300.0	02/24/14 11:30	Client	02/25/14 09:15
2980197	P-3453-SP-4	317.0	02/24/14 11:30	Client	02/25/14 09:15
2980188	P-3453-SP-10	300.0	02/24/14 12:10	Client	02/25/14 09:15
2980198	P-3453-SP-10	317.0	02/24/14 12:10	Client	02/25/14 09:15
2980189	P-3453-SP-11	300.0	02/24/14 12:30	Client	02/25/14 09:15
2980199	P-3453-SP-11	317.0	02/24/14 12:30	Client	02/25/14 09:15
2980190	P-3453-SP-12	300.0	02/24/14 12:50	Client	02/25/14 09:15
2980200	P-3453-SP-12	317.0	02/24/14 12:50	Client	02/25/14 09:15
2980191	P-3453-SP-13	300.0	02/24/14 13:10	Client	02/25/14 09:15
2980201	P-3453-SP-13	317.0	02/24/14 13:10	Client	02/25/14 09:15
2980192	P-3453-SP-14	300.0	02/24/14 13:45	Client	02/25/14 09:15
2980202	P-3453-SP-14	317.0	02/24/14 13:45	Client	02/25/14 09:15
		Report Summary			

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call James Van Fleit at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from UL.

Page 1 of 5

Client Name: Ultura

Authorized Signature

Client Name: Ultura Report #: 312512 Title

Date

Sampling Point: P-3453-SP-0

PWS ID: Not Supplied

	General Chemistry											
Analyte ID #	Analyte	Method	Preparation Date	Analyzed Date	UL ID#							
24959-67-9	Bromide	300.0		0.010	0.071	mg/L		02/26/14 14:06	2980183			
15541-45-4	Bromate	317.0	10 *	1.0	< 1.0	ug/L		02/27/14 01:40	2980193			

Sampling Point: P-3453-SP-1

PWS ID: Not Supplied

PWS ID: Not Supplied

	General Chemistry											
Analyte ID #	Analyte	Method	Method Reg MRL† Result Units Preparation An Limit Date I									
24959-67-9	Bromide	300.0		0.010	0.071	mg/L		02/26/14 15:14	2980184			
15541-45-4	Bromate	317.0	10 *	1.0	9.4	ug/L		02/27/14 02:43	2980194			

Sampling Point: P-3453-SP-2

General Chemistry MRL† Result Units Preparation Analyzed UL Analyte Analyte Method Reg ID # ID # Limit Date Date ----24959-67-9 Bromide 300.0 ---0.010 0.072 mg/L 02/26/14 15:36 2980185 15541-45-4 Bromate 317.0 10 * 1.0 1.2 ug/L ____ 02/27/14 03:04 2980195

Sampling Point: P-3453-SP-3

PWS ID: Not Supplied

	General Chemistry									
Analyte ID #	Analyte	Method	Preparation Date	Analyzed Date	UL ID #					
24959-67-9	Bromide	300.0		0.010	0.073	mg/L		02/26/14 15:59	2980186	
15541-45-4	Bromate	317.0	10 *	1.0	1.3	ug/L		02/27/14 03:25	2980196	

Sampling Point: P-3453-SP-4

PWS ID: Not Supplied

	General Chemistry											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Units	Preparation Date	Analyzed Date	UL ID#				
24959-67-9	Bromide	300.0		0.010	0.067	mg/L		02/26/14 16:21	2980187			
15541-45-4	Bromate	317.0	10 *	1.0	2.9	ug/L		02/27/14 03:46	2980197			

Sampling Point: P-3453-SP-10

PWS ID: Not Supplied

	General Chemistry											
Analyte ID #	Analyte	Method	Preparation Date	Analyzed Date	UL ID#							
24959-67-9	Bromide	300.0		0.010	0.14	mg/L		02/26/14 16:44	2980188			
15541-45-4	Bromate	317.0	10 *	1.0	< 1.0	ug/L		02/27/14 04:07	2980198			

Sampling Point: P-3453-SP-11

PWS ID: Not Supplied

PWS ID: Not Supplied

PWS ID: Not Supplied

	General Chemistry											
Analyte ID #	Analyte	Method	Method Reg MRL† Result Units Preparation Limit Date									
24959-67-9	Bromide	300.0		0.010	0.13	mg/L		02/26/14 17:06	2980189			
15541-45-4	Bromate	317.0	10 *	1.0	1.6	ug/L		02/27/14 04:28	2980199			

Sampling Point: P-3453-SP-12

	General Chemistry											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Units	Preparation Date	Analyzed Date	UL ID #				
24959-67-9	Bromide	300.0		0.010	0.13	mg/L		02/26/14 17:29	2980190			
15541-45-4	Bromate	317.0	10 *	1.0	5.7	ug/L		02/27/14 04:49	2980200			

Sampling Point: P-3453-SP-13

General Chemistry Result Units UL Analyte Analyte Method Reg MRL† Preparation Analyzed ID # Limit Date Date ID # 24959-67-9 Bromide 300.0 ----0.010 0.13 mg/L ----02/26/14 18:36 2980191 15541-45-4 Bromate 317.0 10 * 1.0 ug/L ----02/27/14 05:10 2980201 6.6

Sampling Point: P-3453-SP-14

PWS ID: Not Supplied

	General Chemistry								
Analyte ID #	Analyte	Method	Method Reg MRL† Result Units Preparation Limit Date						
24959-67-9	Bromide	300.0		0.010	0.13	mg/L		02/26/14 18:59	2980192
15541-45-4	Bromate	317.0	10 *	1.0	13	ug/L		02/27/14 05:31	2980202

† UL has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	*	۸	!

Lab Definitions

Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis.

Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control.

Laboratory Method Blank (LMB) / Laboratory Reagent Blank (LRB) - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.

Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample aliquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results.

Quality Control Standard (QCS) / **Second Source Calibration Verification (SSCV)** - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / Surrogate Analyte (SUR) - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

110 S. Hill Street South Bend, IN 46617 Order # T: 1.800.332.4345 F: 1.574.233.8207 Batch # www.ul.com/water CHAIN OF CUSTODY RECORD Page REPORT TO: SAMPLER (Signature) STATE (sample origin) PROJECT NAME PO# PWS ID # dgus ta fson withora water. com B 0064480 P-3453 Mi Randy Christenser O Avcedis, Com BILL TO: mall 0014 0 **TURNAROUND TIME** POPULATION SERVED SOURCE WATER CONTAINERS No Arcadis COMPLIANCE 005010 CODE 10 559 Citition Drive Suite 100 Ground Witte MONITORING X Brighton 4811 MATRIX (LAB Number COLLECTION CHLORINATED SAMPLING SITE TEST NAME SAMPLE REMARKS OF DATE TIME AM PM (For UL use only) YES NO ** 0 Brancte 317 2 229.14 R:30 X 50-17 remile Boo. х GW 9:30 × × 2 GW 11 8 2 11 10:30 X SD 640 -11 R 11 Z 11:00 X. SP × EW NU 8 X 2 × 11 11:30 64 14 Bromak 317 XX 224-14 2 12:10 300 X 10 rom. GU 89 4 12:30 50-11 2 6-10 IQC 9 4 2:50 3462 10 2 11 640 iV 19 4 13:10 0.3463 - SP-13 11 2 10 11 × CW 16 SP-11 3:45 1. × 11 7 6-10 iV 13 14 RELINQUISHED BY:(Signature) DATE TIME RECEIVED BY:(Signature) DATE TIME LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT LAB COMMENTS (For UL use only) TAT ruled pr AM PM AM PM RELINQUISHED BY: (Signature) DATE DATE TIME RECEIVED BY:(Signature) TIME Dung GustaFron. AM PM AM PM TIME RELINQUISHED BY:(Signature) DATE RECEIVED FOR LABORATORY BY DATE TIME CONDITIONS UPON RECEIPT (check one): M14 Iced: Wet/Blue Ambient °C Upon Receipt AM PM AM PM **MATRIX CODES:** TURN-AROUND TIME (TAT) - SURCHARGES SW = Standard Written: (15 working days) 0% IV* = Immediate Verbal: (3 working days) 100% **DW-DRINKING WATER** Samples received unannounced **RW-REAGENT WATER** RV* = Rush Verbal: (5 working days) IW* =Immediate Written: (3 working days) 125% 50% GW-GROUND WATER with less than 48 hours holding time **EW-EXPOSURE WATER** RW" = Rush Written: (5 working days) SP* = Weekend, Holiday CALL 75% remaining may be subject to SW-SURFACE WATER additional charges. STAT* = Less than 48 hours CALL PW-POOL WATER WW-WASTE WATER Please call, expedited service not available for all testing 06-LO-F0435 Issue 3.0 Effective Date: 2013-09-11

Sample analysis will be provided according to the standard UL GSAWater Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agree to in writing by UL.

WW	(G	n/water									110 S. Hill S Bouch Ban T: 1 899.33 F: 1 574.23	1, IN 46617	2	Irdor # latch #			
								CHAIN OF	CUST	ODY RECO	RD		Page	K	of	K	5
	PORT			1		SAMPLER (Signature	e)	1		PWS ID #	STATE (sample origin)	PROJECT NAME	PC	7#	5	Fri	L
		ta fson@u				Junile	n	h	8		Mi	P-3453	B 006	4480	2	251	T
BIL	L TO:	dy . Christer	1507 CA	rcidi 5.	Com	1 miles	Yes	No	POPL	JLATION SERVED	SOURCE WATER	-	OD14	0	S		ЩЩ
1	0 5;	cadis 9 Citition 14ton M	Drive 1 48	Suite 1	00	COMPLIANCE		×			Ground WAte		0050	010	CONTAINERS	CODE	TURNAROUND TIME
	1	AB Number	C	OLLECTION			SAMPLING SIT	2		TEST N	AME	SAMPLE REMARKS	CHLORI	INATED		MATRIX CODE	RNAR
h		or UL use only) 980,193	DATE	TIME	AM PN		000						YES	NO	# OF		5
1	-2	194	2:24.14	8:30	X	0-3459 -	SP-0				Bromate 312			X	2	GW	IV
2		1 195	11	9:30	X		SP-1		1		11			X	2	GW	IV
4		196	11	10:30			<u>SP - 2</u>				l_			X	2	6.40	10
4		197	11	11:30	X	P-3459 -				1	<u> </u>			X	2	6.40	10
6			1 "	11.26		P-24.25	<u>sp - 4</u>				11			X	2	64	10
7		198	224-14	12:10		P-Zura	- SP-10		Beau	16 300.0 /	Bromak 317			~	2	01.	
8		199	11	12:30		P.3462	SP-11		Vrown	00 200.0 K	promate 211			X	2	GW	
9		200	11	12:50		P-3452 -	SP-12		11		11			×	2	6-10	_
10		, 201	1	13:10		and the second se	SP-13		11					<u>A</u>	2	60	
11	V	202	11	13:45		1	- SP-14		11		4			X	2	GW	IV IV
12			1	12.42		1-202			-						1	0.00	10
13								mme	CIT	ate v	erbal				-		
14								· · · · · · · · · · ·			UINUI						
	-	ISHED BY: (Signature	In	DATE 2/24/14 DATE		VP.	5.	DATE	TIME AM PM TIME	LAB COMMENTS (F			AQUEOUS S	AMPLES T	O CLIENT	1	
			-,		AM P			Site -	AM PM	Dung	AT rueled per Gusta Fron.						
RE	LINQU	ISHED BY:(Signature	AM PM Staton					DATE - 2.25-11	TIME	CONDITIONS UPON I	RECEIPT (check one); /et/Blue	°C Upon Rece	hipt	N/A			
		MATRIX CODES:		TURN-AROUND TIME (TAT) - SURCHARGES													
	DW-DRINKING WATER SW = Standard Written: (15 working days) 0% RW-REAGENT WATER RV* = Rush Verbal: (5 working days) 50% GW-GROUND WATER RV* = Rush Verbal: (5 working days) 50% EW-EXPOSURE WATER RW* = Rush Written: (5 working days) 75% SW-SURFACE WATER PW-POOL WATER 75%				W* ≈Immedia SP* = Weeke	te Verbal: (3 wo te Written: (3 wo nd, Holiday than 48 hours)	Samples received of with less than 48 ho remaining may be s additional charges.	ours holdin							
MAN MARTE MATED						6-LO-F0435 Issue 3.0 Effective Date: 2013-09-11											

Sample analysis will be provided according to the standard UL GSA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agree to in writing by UL.

(UL)		ULT	vest.	Bill to i Broad way					110 S. Hill S South Bend T: 1.800.33 F: 1.574.23	, IN 46617 2.4345	20 01 Bi	der # atch #	Y.A.	G	II STATES
www.ut.com/water				, CA 90802	CH/	AIN OF O	CUSTO	DY RECO	RD		Page	1	of	1	
REPORT TO:	nalady is manufactor which is a particular approximation			SAMPLI-R (Signature)		,		PWS ID #	STATE (sample origin)	PROJECT NAME	PO	#		T	
dgista foonlas			twy?	In my ma	In				M;	1-3453	Beel				111
Randy c Christ BILL TO: Au cudis io 554 Citity Brighton	on Doute 1	5 to 10	0	COMPLIANCE	Yes	No X	POPUL	ATION SERVED	Groce WATER		0014 0050	- 1	CONTAINERS	CODE	SOUND TIME
LAB Number	DATE	OLLECTION	AM PM	SAMPLIN	IG SITE.			TEST NA	ME	SAMPLE REMARKS	CHLORI	NATED	# OF CO	MATRIX	TURNAROUND
(For UL use only)	2.24.14	R:30	X	0-3457-5P-	D		Brownie	1- 300.0 / :	Brenate 317			X	2	GW	11
2	1	\$1:30	2	P-3459 - 5P -	and the second s	an a	22	and the second se	11			×	2	OW	14
3	11	10:30	X	P-3457 - SP -	4		41		1. J	1		X	2	640	1
4	11	11:00	8	P-3459 - SP -			La		11			X	2.	6.10	11
5	17	11:30	X	P 3453 - SP -					11			X	2	64	1
9	224-14	12:10		1-3452 - SP-	-10		Brown	6 300 0 /	Bisana k 317			X	2	i-u	11
р П	11	12:30		1-3459 - 51-			Li		11			X	2	i-ll	11
9	- 11	12:50		P-3493 . 5P	Party Street West and Street S		te		11			X	2	6-10	10
10	4	13:10		P-3453 . 5P			1.		4	1		X	2	linth	11
11	11	13.45		P-3453 - 5P			4		11			X	2	i-W	14
12		1-12												_	-
13				 applications and consider damage, product Section 1. According (Automation Department of Application Departme											
14				Manadalance - Interna angelangana dalaka katala na mangala na mangala na mangala na mangala na mangala na manga										1	
RELINQUISHED BY:(Signa	stura) 4	DATE	TIME	RECEIVED BY:(Signature)		1 DATE	TIME	LAB RESEI	IVES THE RIGHT TO RETURN UP	USED PORTIONS OF NON	AQUEOUS	AMPLES I	O CLIEN	T	_
RELINQUISHED DT.(Signa	nore)	UNIC /	1501	1.00				LAB COMMENTS (F							No. 246-1004
1-16 M	An	2/24/14		VPS.			AM PM								
RELINQUISHED BY:(Signa	Mure)	DATE	AM PM TIME	RECEIVED BY (Signature)		DATE	TIME								
			AM PM				AM PM								
RELINQUISHED BY:(Sign:	ature)	DATE	TIME	RECEIVED FOR LABORATOR	RY BY:	DATE	TIME	CONDITIONS UPON	RECEIPT (check one):						
			AM PM	_			AM PM		Vet/Blue Ambient	ºC Upon Rec	eipt	NIA			
MATRIX COL	DES:	TURN-ARC		IE (TAT) - SURCHARGES		ister and the second se									-
DW DRINKING WATER RW-REAGENT WATER GW-GROUND WATER EW-EXPOSURE WATER SW-SURFACE WATER PW-POOL WATER WW WASTE WATER	¢	RV* = Rush Ve RW* - Rush W	abat. (5 work Intlen: (5 wor		too Nime.	SP* = Wooken STAT* =1 ess	ie Written (3 w et Haliday thau 48 hours		11	Samples received with less than 48 h remaining may be additional charges	ours Isold subject to	ing time			

Sample analysis will be provided according to the standard UL GSAWater Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agree to in writing by UL.

VanFleit, James A

From:	Douglas Gustafson <dgustafson@ulturawater.com></dgustafson@ulturawater.com>
Sent:	Tuesday, February 25, 2014 12:44 PM
То:	VanFleit, James A
Cc:	Christensen, Randy (Randy Christensen@arcadis-us com), Hartz, Matthew W, Peter
	Herlihy
Subject:	RE: Bromate / Bromide Testing
Attachments:	02251402.PDF
Follow Up Flag:	Follow up
Flag Status:	Completed

Jim

Attached is a change to the COC to be billed to Ultura. APTwater changed its name to Ultura on Monday 2-24-14. The billing address is still the same. If you have any questions let me know.

Doug Gustafson Senior Design Specialist

Our brands

APTwater

[]iPOx

This message and any attachments are confidential, proprietary, and may be legally privileged. The information in this email is for use only by the intended recipient. If this message was misdirected, ULTURA, Inc. and its affiliates do not waive any confidentiality or privilege. Any unauthorized use, disclosure, or distribution by individuals that are not the intended recipient is prohibited. If this message has been sent to you or received by you in error, please notify the sender by reply email or telephone and destroy all copies of the message. Thank you for your cooperation.

From: VanFleit, James A [mailto:James.A.VanFleit@ul.com]
Sent: Tuesday, February 25, 2014 9:22 AM
To: Douglas Gustafson
Cc: Christensen, Randy (Randy.Christensen@arcadis-us.com); Hartz, Matthew W
Subject: Bromate / Bromide Testing

Doug,

In speaking with you earlier today and just recently with Randy Christensen, it is now my understanding that UL will perform the analysis on the samples received today and report and bill direct to APT Water.

Since the COC says to report and bill to Arcadis, can you please respond via email that my understanding is correct and we are to bill and report direct to APT Water only.

Thanks, Jim

Jim Van Fleit Project Manager Water Quality Laboratory

UL LLC

110 South Hill Street South Bend, IN 46617 Main: 800-332-4345 ext. 45535 Direct: 574-472-5535 Cell: 574-210-9679 Fax: 847-513-7887

Website

http://www.ul.com/global/eng/pages/offerings/industries/waterandfood/water/

Drinking Water Certifications www.ul.com/watercertifications

Online Schedule of Services

http://www.ulwaterschedule.com/cgi-bin/WebObjects/ScheduleofServices

This e-mail may contain privileged or confidential information. If you are not the intended recipient: (1) you may not disclose, use, distribute, copy or rely upon this message or attachment(s); and (2) please notify the sender by reply e-mail, and then delete this message and its attachment(s). Underwriters Laboratories Inc. and its affiliates disclaim all liability for any errors, omissions, corruption or virus in this message or any attachments.

UL Drinking Water Laboratory

Run Log

Run ID: 188437 Method: 300.0

<u>Type</u>	Sample Id	Sample Site	<u>Matrix</u>	Instrument ID	<u>Analysis Date</u>	Calibration File
ICB	2980387		RW	BK	02/24/2014 11:08	
LRB	2980410		RW	BK	02/26/2014 11:51	
LFB	2980413		RW	BK	02/26/2014 12:36	
IPC	2980419		RW	BK	02/26/2014 12:59	
FS	2980183	P-3453-SP-0	GW	BK	02/26/2014 14:06	
MS	2982445	P-3453-SP-0	GW	BK	02/26/2014 14:29	
MSD	2982446	P-3453-SP-0	GW	BK	02/26/2014 14:51	
FS	2980184	P-3453-SP-1	GW	BK	02/26/2014 15:14	
FS	2980185	P-3453-SP-2	GW	BK	02/26/2014 15:36	
FS	2980186	P-3453-SP-3	GW	BK	02/26/2014 15:59	
FS	2980187	P-3453-SP-4	GW	BK	02/26/2014 16:21	
FS	2980188	P-3453-SP-10	GW	BK	02/26/2014 16:44	
FS	2980189	P-3453-SP-11	GW	BK	02/26/2014 17:06	
FS	2980190	P-3453-SP-12	GW	BK	02/26/2014 17:29	
IPC	2980423		RW	BK	02/26/2014 17:51	
LRB	2980422		RW	BK	02/26/2014 18:14	
FS	2980191	P-3453-SP-13	GW	BK	02/26/2014 18:36	
FS	2980192	P-3453-SP-14	GW	BK	02/26/2014 18:59	
IPC	2980428		RW	BK	02/26/2014 23:06	
LRB	2980425		RW	ВК	02/26/2014 23:29	

	QC Summary Report															
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	UL ID #
ICB	Bromide	300.0	10		<	10		ug/L					1.0		02/24/2014 11:08	2980387
LRB	Bromide	300.0	10		<	10		ug/L					1.0		02/26/2014 11:51	2980410
LFB	Bromide	300.0	10			97.5300	100	ug/L	98	90 - 110			1.0		02/26/2014 12:36	2980413
IPC	Bromide	300.0	10			96.2400	100	ug/L	96	90 - 110			1.0		02/26/2014 12:59	2980419
FS	Bromide	300.0	10	P-3453-SP-0		71		ug/L					1.0		02/26/2014 14:06	2980183
MS	Bromide	300.0	10	P-3453-SP-0		309.1500	320.59	ug/L	95	90 - 110			1.0		02/26/2014 14:29	2982445
MSD	Bromide	300.0	10	P-3453-SP-0		319.7700	320.59	ug/L	100	90 - 110	3.4	20	1.0		02/26/2014 14:51	2982446
FS	Bromide	300.0	10	P-3453-SP-1		71		ug/L					1.0		02/26/2014 15:14	2980184
FS	Bromide	300.0	10	P-3453-SP-2		72		ug/L					1.0		02/26/2014 15:36	2980185
FS	Bromide	300.0	10	P-3453-SP-3		73		ug/L					1.0		02/26/2014 15:59	2980186
FS	Bromide	300.0	10	P-3453-SP-4		67		ug/L					1.0		02/26/2014 16:21	2980187
FS	Bromide	300.0	10	P-3453-SP-10		140		ug/L					1.0		02/26/2014 16:44	2980188
FS	Bromide	300.0	10	P-3453-SP-11		130		ug/L					1.0		02/26/2014 17:06	2980189
FS	Bromide	300.0	10	P-3453-SP-12		130		ug/L					1.0		02/26/2014 17:29	2980190
IPC	Bromide	300.0	10			104.4100	100	ug/L	104	90 - 110			1.0		02/26/2014 17:51	2980423
LRB	Bromide	300.0	10		<	10		ug/L					1.0		02/26/2014 18:14	2980422
FS	Bromide	300.0	10	P-3453-SP-13		130		ug/L					1.0		02/26/2014 18:36	2980191
FS	Bromide	300.0	10	P-3453-SP-14		130		ug/L					1.0		02/26/2014 18:59	2980192
IPC	Bromide	300.0	10			92.5400	100	ug/L	93	90 - 110			1.0		02/26/2014 23:06	2980428
LRB	Bromide	300.0	10		<	10		ug/L					1.0		02/26/2014 23:29	2980425

UL Drinking Water Laboratory

Run Log

Run ID: 188424 Method: 317.0

te			Matrix	Instrument ID	
	Run ID:	188424	Method:	317.0	

Type	Sample Id	Sample Site	Matrix	Instrument ID	Analysis Date	Calibration File
ICB	2981738		RW	DT	02/26/2014 17:37	
LRB	2981744		RW	DT	02/26/2014 19:43	
LFB	2981745		RW	DT	02/26/2014 20:04	
IPC	2981746		RW	DT	02/26/2014 20:25	
QCS	2981747		RW	DT	02/26/2014 20:46	
CCC	2974873		RW	DT	02/27/2014 01:19	
FS	2980193	P-3453-SP-0	GW	DT	02/27/2014 01:40	
MS	2981750	P-3453-SP-0	GW	DT	02/27/2014 02:01	
MSD	2981751	P-3453-SP-0	GW	DT	02/27/2014 02:22	
FS	2980194	P-3453-SP-1	GW	DT	02/27/2014 02:43	
FS	2980195	P-3453-SP-2	GW	DT	02/27/2014 03:04	
FS	2980196	P-3453-SP-3	GW	DT	02/27/2014 03:25	
FS	2980197	P-3453-SP-4	GW	DT	02/27/2014 03:46	
FS	2980198	P-3453-SP-10	GW	DT	02/27/2014 04:07	
FS	2980199	P-3453-SP-11	GW	DT	02/27/2014 04:28	
FS	2980200	P-3453-SP-12	GW	DT	02/27/2014 04:49	
FS	2980201	P-3453-SP-13	GW	DT	02/27/2014 05:10	
FS	2980202	P-3453-SP-14	GW	DT	02/27/2014 05:31	
CCC	2981752		RW	DT	02/27/2014 05:52	

	QC Summary Report															
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	UL ID #
ICB	Bromate	317.0	1.0		<	1.0		ug/L					1.0		02/26/2014 17:37	2981738
LRB	Bromate	317.0	1.0		<	1.0		ug/L					1.0		02/26/2014 19:43	2981744
LFB	Bromate	317.0	1.0			4.8687	5.0	ug/L	97	85 - 115			1.0		02/26/2014 20:04	2981745
IPC	Bromate	317.0	1.0			1.0314	1.0	ug/L	103	75 - 125			1.0		02/26/2014 20:25	2981746
QCS	Bromate	317.0	1.0			5.0367	5.0	ug/L	101	85 - 115			1.0		02/26/2014 20:46	2981747
CCC	Bromate	317.0	1.0			11.3081	10.0	ug/L	113	85 - 115			1.0		02/27/2014 01:19	2974873
FS	Bromate	317.0	1.0	P-3453-SP-0	<	1.0		ug/L					1.0		02/27/2014 01:40	2980193
MS	Bromate	317.0	1.0	P-3453-SP-0		4.3075	5.0	ug/L	86	75 - 125			1.0		02/27/2014 02:01	2981750
MSD	Bromate	317.0	1.0	P-3453-SP-0		4.0308	5.0	ug/L	81	75 - 125	6.6	10	1.0		02/27/2014 02:22	2981751
FS	Bromate	317.0	1.0	P-3453-SP-1		9.4		ug/L					1.0		02/27/2014 02:43	2980194
FS	Bromate	317.0	1.0	P-3453-SP-2		1.2		ug/L					1.0		02/27/2014 03:04	2980195
FS	Bromate	317.0	1.0	P-3453-SP-3		1.3		ug/L					1.0		02/27/2014 03:25	2980196
FS	Bromate	317.0	1.0	P-3453-SP-4		2.9		ug/L					1.0		02/27/2014 03:46	2980197
FS	Bromate	317.0	1.0	P-3453-SP-10	<	1.0		ug/L					1.0		02/27/2014 04:07	2980198
FS	Bromate	317.0	1.0	P-3453-SP-11		1.6		ug/L					1.0		02/27/2014 04:28	2980199
FS	Bromate	317.0	1.0	P-3453-SP-12		5.7		ug/L					1.0		02/27/2014 04:49	2980200
FS	Bromate	317.0	1.0	P-3453-SP-13		6.6		ug/L					1.0		02/27/2014 05:10	2980201
FS	Bromate	317.0	1.0	P-3453-SP-14		13		ug/L					1.0		02/27/2014 05:31	2980202
CCC	Bromate	317.0	1.0			16.7072	15.0	ug/L	111	85 - 115			1.0		02/27/2014 05:52	2981752

Sample Type Key						
<u>Type (Abbr.)</u>	Sample Type	<u>Type (Abbr.)</u>	Sample Type			
CCC	Continuing Calibration Check					
FS	Field Sample					
ICB	Initial Calibration Blank					
IPC	Instrument Performance Check					
LFB	Laboratory Fortified Blank					
LRB	Laboratory Reagent Blank					
MS	Matrix Spike					
MSD	Matrix Spike Duplicate					
QCS	Quality Control Sample					

Report ID: S60126.01(02) Generated on 03/04/2014 Replaces report S60126.01(01) generated on 02/27/2014

Report to

Attention: Randy Christensen Arcadis 10559 Citation Drive Suite 100 Brighton, MI 48116

Phone: 810-225-1940 FAX: 810-229-8837 Email: Randy.Christensen@arcadis-us.com

Addtional Contacts: Sarah Carman, Doug Gustafson

Report Summary

Lab Sample ID(s): S60126.01-S60126.10 Project: B0064480.0014.00501 / RACER Lansing Plt 3 Collected Date: 02/24/2014 Submitted Date/Time: 02/26/2014 10:20 Sampled by: Unknown P.O. #: B0064480.0014.00501

Reporting limits for 1,4-Dioxane changed per client request.

Report Notes

Results relate only to items tested as received by the laboratory.

Methods may be modified for improved performance.

Results reported on a dry weight basis where applicable.

'Not detected' indicates that parameter was not found at a level equal to or greater than the reporting limit (RL).

Samples are held by the lab for 30 days from the final report date unless a written request to hold longer is provided by the client.

Report shall not be reproduced except in full, without the written approval of Merit Laboratories, Inc..

Laboratory Certifications:

Michigan DNRE (#9956), DOD/ISO 17025 (#69699), WBENC (#2005110032), Ohio EPA (#CL0002) IN Drinking Water (#C-MI-07), NELAC NY (#11814), NCDENR (#680), NC Drinking Water (#26702) Some analytes reported may not be certified. Full certification lists are available upon request.

Violetta F. Murshah

Violetta F. Murshak Laboratory Director

Report produced by

Merit Laboratories, Inc. 2680 East Lansing Drive East Lansing, MI 48823

Phone: (517) 332-0167 FAX: (517) 332-6333

Contacts for report questions: Kevin George (kgeorge@meritlabs.com) Barbara Ball (bball@meritlabs.com)

Sample Sumr	nary (10 samples)		
Sample ID	Sample Tag	Matrix	Collected Date/Time
S60126.01	P3453-SP-0	Groundwater	02/24/2014 08:30
S60126.02	P-3453-SP-1	Groundwater	02/24/2014 09:30
S60126.03	P-3453-SP-2	Groundwater	02/24/2014 10:30
S60126.04	P-3453-SP-3	Groundwater	02/24/2014 11:00
S60126.05	P-3453-SP-4	Groundwater	02/24/2014 11:30
S60126.06	P3453-SP-10	Groundwater	02/24/2014 12:10
S60126.07	P-3453-SP-11	Groundwater	02/24/2014 12:30
S60126.08	P-3453-SP-12	Groundwater	02/24/2014 12:50
S60126.09	P-3453-SP-13	Groundwater	02/24/2014 13:10
S60126.10	P-3453-SP-14	Groundwater	02/24/2014 13:45

Lab Sample ID: S60126.01 Sample Tag: P3453-SP-0 Collected Date/Time: 02/24/2014 08:30 Matrix: Groundwater COC Reference: 76463

Sample Containers

#	Туре	Preservative(s	5)	Refrigerated?	Arrival Te	mp. (C) Thermon	neter #			
3	40ml Glass	HCL		Yes	6.0	IR				
1	125ml Plastic	HNO3		Yes	6.0	IR				
2	40ml Glass	H2SO4		Yes	6.0	IR				
Ana	alysis		Results	Units	RL	Method	Run Date/Time	Analyst I	ИDL	Flags
Ex	traction / Prep.									
Ме	rcury Digestion		Completed			SW7471B	02/26/14 11:55	CCM		
Me	tal Digestion		Completed			SW3015A	02/26/14 11:36	PER		
pН	check for VOCs		<2	STD Units		N/A	02/27/14 10:25	LBR		
Inc	organics									
то			5.2	mg/L	1	SM 5310C	02/26/14 16:26	JKB		
Ме	tals									
Ant	timony		Not detected	mg/L	0.005	SW6020A	02/26/14 13:20	PER 0.	00042	
Ars	enic		0.006	mg/L	0.002	SW6020A	02/26/14 13:20	PER 0.	000052	
Bai	rium		0.031	mg/L	0.005	SW6020A	02/26/14 13:20	PER 0.	00022	
Boi	ron		0.33	mg/L	0.04	SW6020A	02/26/14 16:21	PER 0.	00032	
Ca	dmium		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:20	PER 0.	000067	
Ch	romium		Not detected	mg/L	0.005	SW6020A	02/26/14 13:20	PER 0.	00013	
Co	balt		Not detected	mg/L	0.005	SW6020A	02/26/14 13:20	PER 0.	000050	
Co	pper		Not detected	mg/L	0.005	SW6020A	02/26/14 13:20	PER 0.	00006	
Lea	ad		Not detected	mg/L	0.003	SW6020A	02/26/14 13:20	PER 0.	000043	
Ма	nganese		0.095	mg/L	0.005	SW6020A	02/26/14 13:20	PER 0.	000060	
	rcury		Not detected	mg/L	0.0001	SW7471B	02/26/14 15:57	CCM 0.	800000	
Nic	kel		0.019	mg/L	0.005	SW6020A	02/26/14 13:20	PER 0.	000036	
Sel	enium		Not detected	mg/L	0.005	SW6020A	02/26/14 13:20	PER 0.	00027	
Silv	ver		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:20	PER 0.	000018	
Va	nadium		Not detected	mg/L	0.004	SW6020A	02/26/14 13:20	PER 0.	000025	
Zin	с		0.006	mg/L	0.005	SW6020A	02/26/14 13:20	PER 0.	00014	
Or	ganics - Volatiles									
1,4	-Dioxane		104	ug/L	1	SW8260B - SIM	02/26/14 12:55	WAT 0.	79	М
тс	L Volatile Organics 8260									
1,1	,2-Trichloro-1,2,2-trifluoroet	hane	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.	18	
Ace	etone		Not detected	ug/L	10	SW8260C	02/26/14 13:32	WAT 0.	56	
Са	rbon disulfide		Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.2		
Ме	thyl Acetate		Not detected	ug/L	10	SW8260C	02/26/14 13:32	WAT 0.3		
	-Methyl butyl ether (MTBE)		Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.		
	Butanone (MEK)		Not detected	ug/L	10	SW8260C	02/26/14 13:32	WAT 0.		
	hlorodifluoromethane		Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.		
	loromethane		Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.		
	yl chloride		Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.		
	omomethane		Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.		
	loroethane		Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.		
2.1										

Lab Sample ID: S60126.01 (continued) Sample Tag: P3453-SP-0

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst MDL	Flags
Organics - Volatiles (continued)							
TCL Volatile Organics 8260 (continued)							
Trichlorofluoromethane	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.33	
1,1-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.27	
Methylene chloride	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.29	
trans-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.20	
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.20	
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.26	
Chloroform	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.21	
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.28	
Cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.29	
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	02/26/14 13:32	WAT 0.14	
2-Hexanone	Not detected	ug/L	10	SW8260C	02/26/14 13:32	WAT 0.29	
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.20	
Benzene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.20	
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.16	
Trichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.23	
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.20	
Bromodichloromethane	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.23	
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.21	
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.19	
Toluene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.25	
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.25	
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.28	
Tetrachloroethene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.20	
Dibromochloromethane	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.24	
Chlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.17	
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.18	
Ethylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.26	
p,m-Xylene	Not detected	ug/L	2	SW8260C	02/26/14 13:32	WAT 0.41	
o-Xylene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.25	
Styrene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.18	
Isopropylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.25	
Bromoform	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.22	
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.24	
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.23	
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.28	
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.19	
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.30	
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	02/26/14 13:32	WAT 0.47	

Lab Sample ID: S60126.02 Sample Tag: P-3453-SP-1 Collected Date/Time: 02/24/2014 09:30 Matrix: Groundwater COC Reference: 76463

Sample Containers

#	Туре	Preservative(s)		Refrigerated?	Arrival Te	mp. (C) Thermor	neter #		
3	40ml Glass	HCL		Yes	6.0	IR			
1	125ml Plastic	HNO3		Yes	6.0	IR			
Ana	Ivsis		Results	Units	RL	Method	Run Date/Time	Analyst MDL	Flags
	raction / Prep.								
	cury Digestion		Completed			SW7471B	02/26/14 11:55	CCM	
Meta	al Digestion		Completed			SW3015A	02/26/14 11:36	PER	
pНо	check for VOCs		<2	STD Units		N/A	02/27/14 10:25	LBR	
Met	als								
Antii	mony		Not detected	mg/L	0.005	SW6020A	02/26/14 13:32	PER 0.00042	
Arse	enic		0.006	mg/L	0.002	SW6020A	02/26/14 13:32	PER 0.000052	
Bari	um		0.078	mg/L	0.005	SW6020A	02/26/14 13:32	PER 0.00022	
Borc	on		0.32	mg/L	0.04	SW6020A	02/26/14 16:23	PER 0.00032	
Cad	mium		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:32	PER 0.000067	
Chro	omium		0.055	mg/L	0.005	SW6020A	02/26/14 13:32	PER 0.00013	
Cob	alt		Not detected	mg/L	0.005	SW6020A	02/26/14 13:32	PER 0.000050	
Сор	per		0.013	mg/L	0.005	SW6020A	02/26/14 13:32	PER 0.00006	
Lead	d		Not detected	mg/L	0.003	SW6020A	02/26/14 13:32	PER 0.000043	
Man	iganese		0.126	mg/L	0.005	SW6020A	02/26/14 13:32	PER 0.000060	
Mer	cury		Not detected	mg/L	0.0001	SW7471B	02/26/14 15:59	CCM 0.00008	
Nick	el		0.184	mg/L	0.005	SW6020A	02/26/14 13:32	PER 0.000036	
Sele	enium		Not detected	mg/L	0.005	SW6020A	02/26/14 13:32	PER 0.00027	
Silve	er		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:32	PER 0.000018	
Van	adium		Not detected	mg/L	0.004	SW6020A	02/26/14 13:32	PER 0.000025	
Zinc	;		0.015	mg/L	0.005	SW6020A	02/26/14 13:32	PER 0.00014	
Org	anics - Volatiles								
1,4-l	Dioxane		16	ug/L	1	SW8260B - SIM	02/26/14 13:13	WAT 0.79	М
TCL	Volatile Organics 8260								
1,1,2	2-Trichloro-1,2,2-trifluoroeth	ane	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.18	
Acet	tone		13	ug/L	10	SW8260C	02/26/14 13:54	WAT 0.56	
Cart	bon disulfide		Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.24	
Meth	hyl Acetate		Not detected	ug/L	10	SW8260C	02/26/14 13:54	WAT 0.25	
tert-	Methyl butyl ether (MTBE)		Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.19	
2-Bı	utanone (MEK)		Not detected	ug/L	10	SW8260C	02/26/14 13:54	WAT 0.26	
Dich	lorodifluoromethane		Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.50	
Chlo	promethane		Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.26	
Viny	/l chloride		Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.31	
Bror	nomethane		Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.32	
Chlo	proethane		Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.34	
Trich	hlorofluoromethane		Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.33	
1,1-	Dichloroethene		Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.27	
Meth	hylene chloride		Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.29	
trans	s-1,2-Dichloroethene		Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.20	

Lab Sample ID: S60126.02 (continued) Sample Tag: P-3453-SP-1

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst MDL	Flags
Organics - Volatiles (continued)							
TCL Volatile Organics 8260 (continued)							
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.20	
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.26	
Chloroform	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.21	
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.28	
Cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.29	
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	02/26/14 13:54	WAT 0.14	
2-Hexanone	Not detected	ug/L	10	SW8260C	02/26/14 13:54	WAT 0.29	
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.20	
Benzene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.20	
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.16	
Trichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.23	
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.20	
Bromodichloromethane	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.23	
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.21	
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.19	
Toluene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.25	
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.25	
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.28	
Tetrachloroethene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.20	
Dibromochloromethane	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.24	
Chlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.17	
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.18	
Ethylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.26	
p,m-Xylene	Not detected	ug/L	2	SW8260C	02/26/14 13:54	WAT 0.41	
o-Xylene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.25	
Styrene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.18	
Isopropylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.25	
Bromoform	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.22	
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.24	
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.23	
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.28	
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.19	
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.30	
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	02/26/14 13:54	WAT 0.47	

Lab Sample ID: S60126.03 Sample Tag: P-3453-SP-2 Collected Date/Time: 02/24/2014 10:30 Matrix: Groundwater COC Reference: 76463

Sample Containers

#	Туре	Preservative(s)		Refrigerated?	Arrival Te	mp. (C) Thermor	neter #			
3	40ml Glass	HCL		Yes	6.0	IR				
1	125ml Plastic	HNO3		Yes	6.0	IR				
An	alysis		Results	Units	RL	Method	Run Date/Time	Analys	t MDL	Flags
Ex	traction / Prep.									
Me	ercury Digestion		Completed			SW7471B	02/26/14 11:55	CCM		
Me	etal Digestion		Completed			SW3015A	02/26/14 11:36	PER		
pН	check for VOCs		<2	STD Units		N/A	02/27/14 10:25	LBR		
Ме	etals									
An	timony		Not detected	mg/L	0.005	SW6020A	02/26/14 13:34	PER	0.00042	
Ars	senic		0.005	mg/L	0.002	SW6020A	02/26/14 13:34	PER	0.000052	
Ва	rium		0.038	mg/L	0.005	SW6020A	02/26/14 13:34	PER	0.00022	
Bo	ron		0.33	mg/L	0.04	SW6020A	02/26/14 16:25	PER	0.00032	
Ca	dmium		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:34	PER	0.000067	
Ch	romium		Not detected	mg/L	0.005	SW6020A	02/26/14 13:34	PER	0.00013	
Co	balt		Not detected	mg/L	0.005	SW6020A	02/26/14 13:34	PER	0.000050	
Co	pper		0.250	mg/L	0.005	SW6020A	02/26/14 13:34	PER	0.00006	
Lea	ad		Not detected	mg/L	0.003	SW6020A	02/26/14 13:34	PER	0.000043	
Ма	inganese		0.094	mg/L	0.005	SW6020A	02/26/14 13:34	PER	0.000060	
Me	ercury		Not detected	mg/L	0.0001	SW7471B	02/26/14 16:11	CCM	800000.0	
Nic	ckel		0.029	mg/L	0.005	SW6020A	02/26/14 13:34	PER	0.000036	
Se	lenium		Not detected	mg/L	0.005	SW6020A	02/26/14 13:34	PER	0.00027	
Silv	ver		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:34	PER	0.000018	
Va	nadium		Not detected	mg/L	0.004	SW6020A	02/26/14 13:34	PER	0.000025	
Zin	IC		0.010	mg/L	0.005	SW6020A	02/26/14 13:34	PER	0.00014	
Or	ganics - Volatiles									
1,4	-Dioxane		3	ug/L	1	SW8260B - SIM	02/26/14 13:31	WAT	0.79	JM
тс	L Volatile Organics 8260									
	,2-Trichloro-1,2,2-trifluoroet	hane	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT	0.18	
Ac	etone		14	ug/L	10	SW8260C	02/26/14 14:16	WAT	0.56	
Са	rbon disulfide		Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT	0.24	
Me	ethyl Acetate		Not detected	ug/L	10	SW8260C	02/26/14 14:16	WAT	0.25	
ter	t-Methyl butyl ether (MTBE)		Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT	0.19	
2-E	Butanone (MEK)		Not detected	ug/L	10	SW8260C	02/26/14 14:16	WAT	0.26	
Dic	chlorodifluoromethane		Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT	0.50	
Ch	loromethane		Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT		
Vir	nyl chloride		Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT	0.31	
	omomethane		Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT	0.32	
Ch	loroethane		Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT		
Tri	chlorofluoromethane		Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT		
1,1	-Dichloroethene		Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT		
,	thylene chloride		Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT		
	ns-1,2-Dichloroethene		Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT		
				0			-			

J-Estimated value less than reporting limit, but greater than MDL M-Result reported to MDL not RDL

Lab Sample ID: S60126.03 (continued) Sample Tag: P-3453-SP-2

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst MDL	Flags
Organics - Volatiles (continued)							
TCL Volatile Organics 8260 (continued)						
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.20	
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.26	
Chloroform	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.21	
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.28	
Cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.29	
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	02/26/14 14:16	WAT 0.14	
2-Hexanone	Not detected	ug/L	10	SW8260C	02/26/14 14:16	WAT 0.29	
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.20	
Benzene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.20	
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.16	
Trichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.23	
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.20	
Bromodichloromethane	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.23	
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.21	
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.19	
Toluene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.25	
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.25	
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.28	
Tetrachloroethene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.20	
Dibromochloromethane	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.24	
Chlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.17	
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.18	
Ethylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.26	
p,m-Xylene	Not detected	ug/L	2	SW8260C	02/26/14 14:16	WAT 0.41	
o-Xylene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.25	
Styrene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.18	
Isopropylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.25	
Bromoform	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.22	
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.24	
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.23	
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.28	
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.19	
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.30	
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	02/26/14 14:16	WAT 0.47	

Lab Sample ID: S60126.04 Sample Tag: P-3453-SP-3 Collected Date/Time: 02/24/2014 11:00 Matrix: Groundwater COC Reference: 76463

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Te	mp. (C) Thermon	neter #		
3	40ml Glass	HCL		Yes	6.0	IR			
1	125ml Plastic	HNO3		Yes	6.0	IR			
2	40ml Glass	H2SO4		Yes	6.0	IR			
Ana	alysis		Results	Units	RL	Method	Run Date/Time	Analyst MDL	Flags
Ex	traction / Prep.							-	
Ме	rcury Digestion		Completed			SW7471B	02/26/14 11:55	ССМ	
Me	tal Digestion		Completed			SW3015A	02/26/14 11:36	PER	
pН	check for VOCs		<2	STD Units		N/A	02/27/14 10:25	LBR	
Inc	organics								
то	•		4.7	mg/L	1	SM 5310C	02/26/14 16:46	JKB	
Ме	tals								
	timony		Not detected	mg/L	0.005	SW6020A	02/26/14 13:36	PER 0.0004	12
Ars	enic		0.005	mg/L	0.002	SW6020A	02/26/14 13:36	PER 0.0000)52
Bar	rium		0.032	mg/L	0.005	SW6020A	02/26/14 13:36	PER 0.0002	
Bor	ron		0.33	mg/L	0.04	SW6020A	02/26/14 16:26	PER 0.0003	32
Ca	dmium		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:36	PER 0.0000)67
Ch	romium		Not detected	mg/L	0.005	SW6020A	02/26/14 13:36	PER 0.000 ²	13
Col	balt		Not detected	mg/L	0.005	SW6020A	02/26/14 13:36	PER 0.0000	
Co	pper		0.006	mg/L	0.005	SW6020A	02/26/14 13:36	PER 0.0000	
Lea			Not detected	mg/L	0.003	SW6020A	02/26/14 13:36	PER 0.0000	
Ма	nganese		0.093	mg/L	0.005	SW6020A	02/26/14 13:36	PER 0.0000	
	rcury		Not detected	mg/L	0.0001	SW7471B	02/26/14 16:13	CCM 0.0000	
Nic	•		0.021	mg/L	0.005	SW6020A	02/26/14 13:36	PER 0.0000	
Sel	enium		Not detected	mg/L	0.005	SW6020A	02/26/14 13:36	PER 0.0002	
Silv	ver		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:36	PER 0.0000	
	nadium		Not detected	mg/L	0.004	SW6020A	02/26/14 13:36	PER 0.0000	
Zin	с		0.008	mg/L	0.005	SW6020A	02/26/14 13:36	PER 0.000 ²	
Ore	ganics - Volatiles								
	-Dioxane		Not detected	ug/L	1	SW8260B - SIM	02/26/14 13:50	WAT 0.79	М
тс	L Volatile Organics 8260								
	,2-Trichloro-1,2,2-trifluoroe		Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.18	
Ace	etone		21	ug/L	10	SW8260C	02/26/14 14:38	WAT 0.56	
Ca	rbon disulfide		Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.24	
	thyl Acetate		Not detected	ug/L	10	SW8260C	02/26/14 14:38	WAT 0.25	
	-Methyl butyl ether (MTBE)	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.19	
	Butanone (MEK)	,	Not detected	ug/L	10	SW8260C	02/26/14 14:38	WAT 0.26	
	hlorodifluoromethane		Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.50	
	loromethane		Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.26	
	yl chloride		Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.31	
	omomethane		Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.32	
	loroethane		Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.34	

Lab Sample ID: S60126.04 (continued) Sample Tag: P-3453-SP-3

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst MDL	Flags
Organics - Volatiles (continued)							
TCL Volatile Organics 8260 (continued)							
Trichlorofluoromethane	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.33	
1,1-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.27	
Methylene chloride	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.29	
trans-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.20	
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.20	
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.26	
Chloroform	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.21	
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.28	
Cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.29	
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	02/26/14 14:38	WAT 0.14	
2-Hexanone	Not detected	ug/L	10	SW8260C	02/26/14 14:38	WAT 0.29	
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.20	
Benzene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.20	
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.16	
Trichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.23	
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.20	
Bromodichloromethane	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.23	
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.21	
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.19	
Toluene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.25	
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.25	
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.28	
Tetrachloroethene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.20	
Dibromochloromethane	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.24	
Chlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.17	
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.18	
Ethylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.26	
p,m-Xylene	Not detected	ug/L	2	SW8260C	02/26/14 14:38	WAT 0.41	
o-Xylene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.25	
Styrene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.18	
Isopropylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.25	
Bromoform	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.22	
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.24	
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.23	
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.28	
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.19	
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.30	
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	02/26/14 14:38	WAT 0.47	

Lab Sample ID: S60126.05 Sample Tag: P-3453-SP-4 Collected Date/Time: 02/24/2014 11:30 Matrix: Groundwater COC Reference: 76463

Sample Containers

#	Туре	Preservative(s)		Refrigerated?	Arrival Te	mp. (C) Thermor	neter #		
3	40ml Glass	HCL		Yes	6.0	IR			
1	125ml Plastic	HNO3		Yes	6.0	IR			
An	alysis		Results	Units	RL	Method	Run Date/Time	Analyst MDL	Flags
-	traction / Prep.							- y	
	ercury Digestion		Completed			SW7471B	02/26/14 11:55	CCM	
Me	etal Digestion		Completed			SW3015A	02/26/14 11:36	PER	
рH	check for VOCs		<2	STD Units		N/A	02/27/14 10:25	LBR	
Ме	etals								
An	timony		Not detected	mg/L	0.005	SW6020A	02/26/14 14:08	PER 0.00042	
Ars	senic		0.009	mg/L	0.002	SW6020A	02/26/14 14:08	PER 0.000052	
Ba	rium		0.036	mg/L	0.005	SW6020A	02/26/14 14:08	PER 0.00022	
Во	ron		0.33	mg/L	0.04	SW6020A	02/26/14 16:27	PER 0.00032	
Ca	dmium		Not detected	mg/L	0.0005	SW6020A	02/26/14 14:08	PER 0.000067	
Ch	romium		0.005	mg/L	0.005	SW6020A	02/26/14 14:08	PER 0.00013	
Co	balt		Not detected	mg/L	0.005	SW6020A	02/26/14 14:08	PER 0.000050	
Co	pper		0.020	mg/L	0.005	SW6020A	02/26/14 14:08	PER 0.00006	
Lea	ad		Not detected	mg/L	0.003	SW6020A	02/26/14 14:08	PER 0.000043	
Ma	inganese		0.097	mg/L	0.005	SW6020A	02/26/14 14:08	PER 0.000060	
Me	ercury		Not detected	mg/L	0.0001	SW7471B	02/26/14 16:15	CCM 0.000008	
Nic	ckel		0.031	mg/L	0.005	SW6020A	02/26/14 14:08	PER 0.000036	
Se	lenium		Not detected	mg/L	0.005	SW6020A	02/26/14 14:08	PER 0.00027	
Sil	ver		0.0013	mg/L	0.0005	SW6020A	02/26/14 14:08	PER 0.000018	
Va	nadium		Not detected	mg/L	0.004	SW6020A	02/26/14 14:08	PER 0.000025	
Zir	IC		0.064	mg/L	0.005	SW6020A	02/26/14 14:08	PER 0.00014	
Or	ganics - Volatiles								
1,4	-Dioxane		Not detected	ug/L	1	SW8260B - SIM	02/26/14 14:08	WAT 0.79	М
тс	L Volatile Organics 8260								
1,1	,2-Trichloro-1,2,2-trifluoroeth	ane	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.18	
Ac	etone		18	ug/L	10	SW8260C	02/26/14 15:00	WAT 0.56	
Ca	rbon disulfide		Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.24	
Me	ethyl Acetate		Not detected	ug/L	10	SW8260C	02/26/14 15:00	WAT 0.25	
ter	t-Methyl butyl ether (MTBE)		Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.19	
2-E	Butanone (MEK)		Not detected	ug/L	10	SW8260C	02/26/14 15:00	WAT 0.26	
Dio	chlorodifluoromethane		Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.50	
Ch	loromethane		Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.26	
Vir	nyl chloride		Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.31	
Bro	omomethane		Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.32	
Ch	loroethane		Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.34	
Tri	chlorofluoromethane		Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.33	
1,1	-Dichloroethene		Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.27	
Me	thylene chloride		Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.29	
tra	ns-1,2-Dichloroethene		Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.20	

Lab Sample ID: S60126.05 (continued) Sample Tag: P-3453-SP-4

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst MDL	Flags
Organics - Volatiles (continued)							
TCL Volatile Organics 8260 (continued)							
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.20	
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.26	
Chloroform	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.21	
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.28	
Cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.29	
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	02/26/14 15:00	WAT 0.14	
2-Hexanone	Not detected	ug/L	10	SW8260C	02/26/14 15:00	WAT 0.29	
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.20	
Benzene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.20	
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.16	
Trichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.23	
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.20	
Bromodichloromethane	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.23	
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.21	
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.19	
Toluene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.25	
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.25	
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.28	
Tetrachloroethene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.20	
Dibromochloromethane	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.24	
Chlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.17	
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.18	
Ethylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.26	
p,m-Xylene	Not detected	ug/L	2	SW8260C	02/26/14 15:00	WAT 0.41	
o-Xylene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.25	
Styrene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.18	
Isopropylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.25	
Bromoform	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.22	
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.24	
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.23	
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.28	
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.19	
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.30	
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	02/26/14 15:00	WAT 0.47	

Lab Sample ID: S60126.06 Sample Tag: P3453-SP-10 Collected Date/Time: 02/24/2014 12:10 Matrix: Groundwater COC Reference: 76463

Sample Containers

# Type	Preservative	(s)	Refrigerated?	Arrival Te	mp. (C) Thermon	neter #		
3 40ml Glass	HCL		Yes	6.0	IR			
1 125ml Plastic	HNO3		Yes	6.0	IR			
2 40ml Glass	H2SO4		Yes	6.0	IR			
Analysis		Results	Units	RL	Method	Run Date/Time	Analyst MDL	Flags
Extraction / Prep.							2	
Mercury Digestion		Completed			SW7471B	02/26/14 11:55	CCM	
Metal Digestion		Completed			SW3015A	02/26/14 11:36	PER	
pH check for VOCs		<2	STD Units		N/A	02/27/14 10:25	LBR	
Inorganics								
TOC		6.0	mg/L	1	SM 5310C	02/26/14 17:05	JKB	
Metals								
Antimony		Not detected	mg/L	0.005	SW6020A	02/26/14 13:48	PER 0.00042	
Arsenic		0.004	mg/L	0.002	SW6020A	02/26/14 13:48	PER 0.00005	2
Barium		0.226	mg/L	0.005	SW6020A	02/26/14 13:48	PER 0.00022	
Boron		0.20	mg/L	0.04	SW6020A	02/26/14 16:29	PER 0.00032	
Cadmium		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:48	PER 0.00006	7
Chromium		Not detected	mg/L	0.005	SW6020A	02/26/14 13:48	PER 0.00013	
Cobalt		Not detected	mg/L	0.005	SW6020A	02/26/14 13:48	PER 0.00005)
Copper		Not detected	mg/L	0.005	SW6020A	02/26/14 13:48	PER 0.00006	
Lead		Not detected	mg/L	0.003	SW6020A	02/26/14 13:48	PER 0.000043	3
Manganese		0.102	mg/L	0.005	SW6020A	02/26/14 13:48	PER 0.00006)
Mercury		Not detected	mg/L	0.0001	SW7471B	02/26/14 16:17	CCM 0.00000	3
Nickel		0.015	mg/L	0.005	SW6020A	02/26/14 13:48	PER 0.00003	3
Selenium		Not detected	mg/L	0.005	SW6020A	02/26/14 13:48	PER 0.00027	
Silver		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:48	PER 0.00001	3
Vanadium		Not detected	mg/L	0.004	SW6020A	02/26/14 13:48	PER 0.00002	5
Zinc		0.013	mg/L	0.005	SW6020A	02/26/14 13:48	PER 0.00014	
Organics - Volatiles								
1,4-Dioxane		148	ug/L	1	SW8260B - SIM	02/26/14 14:26	WAT 0.79	М
TCL Volatile Organics 826	D							
1,1,2-Trichloro-1,2,2-trifluoro	ethane	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.18	
Acetone		Not detected	ug/L	10	SW8260C	02/26/14 15:22	WAT 0.56	
Carbon disulfide		Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.24	
Methyl Acetate		Not detected	ug/L	10	SW8260C	02/26/14 15:22	WAT 0.25	
tert-Methyl butyl ether (MTBE	E)	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.19	
2-Butanone (MEK)		Not detected	ug/L	10	SW8260C	02/26/14 15:22	WAT 0.26	
Dichlorodifluoromethane		Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.50	
Chloromethane		Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.26	
Vinyl chloride		Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.31	
Bromomethane		Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.32	
Chloroethane		Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.34	

Lab Sample ID: S60126.06 (continued) Sample Tag: P3453-SP-10

Organics 2-Volatiles (continued) TCL Volatile Continued) Thichorofitoromethane Not detected ug/L 1 SW8260C 0.226/14 15.22 WAT 0.33 1.1-Dichlorofitoroethene Not detected ug/L 1 SW8260C 0.226/14 15.22 WAT 0.27 trans-12-Dichloroethene Not detected ug/L 1 SW8260C 0.226/14 15.22 WAT 0.20 1.1-Dichloroethene Not detected ug/L 1 SW8260C 0.226/14 15.22 WAT 0.26 1.1-Dichloroethene Not detected ug/L 1 SW8260C 0.226/14 15.22 WAT 0.26 Choroform Not detected ug/L 1 SW8260C 0.226/14 15.22 WAT 0.28 Cyclohexane Not detected ug/L 10 SW8260C 0.226/14 15.22 WAT 0.20 Carbon tetrachionice Not detected ug/L 1 SW8260C 0.226/14 15.22 WAT 0.20 Carbon tetrachionice Not detected ug/L 1	Analysis	Results	Units	RL	Method	Run Date/Time	Analyst MDL	Flags
Trichicorducomentanae Not detected ug/L 1 SVW 280C 02/26/14 15.22 WAT 0.33 1.1-Dichloroethene Not detected ug/L 1 SVW 280C 02/26/14 15.22 WAT 0.27 trans-1.2-Dichloroethene Not detected ug/L 1 SVW 280C 02/26/14 15.22 WAT 0.29 trans-1.2-Dichloroethene Not detected ug/L 1 SVW 280C 02/26/14 15.22 WAT 0.20 cis-1.2-Dichloroethene Not detected ug/L 1 SVW 280C 02/26/14 15.22 WAT 0.26 Chioroform Not detected ug/L 1 SVW 280C 02/26/14 15.22 WAT 0.28 Cyclohexane Not detected ug/L 10 SVW 280C 02/26/14 15.22 WAT 0.29 4-Methyl-2-pentanoe (MIBK) Not detected ug/L 1 SVW 280C 02/26/14 15.22 WAT 0.20 2-Hexanoe Not detected ug/L 1 SVW 280C 02/26/14 15.22 WAT 0.20 <td>Organics - Volatiles (continued)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Organics - Volatiles (continued)							
1,1-Dichloroethene Not detected ug/L 1 SW8280C 02/28/14 15:22 WAT 0.27 Methylene chloride Not detected ug/L 1 SW8280C 02/28/14 15:22 WAT 0.29 1.1-Dichloroethane Not detected ug/L 1 SW8280C 02/28/14 15:22 WAT 0.20 cis-1.2-Dichloroethane Not detected ug/L 1 SW8280C 02/28/14 15:22 WAT 0.26 Chloroform Not detected ug/L 1 SW8280C 02/28/14 15:22 WAT 0.21 1.1.1-Trichloroethane Not detected ug/L 10 SW8280C 02/28/14 15:22 WAT 0.24 4/Methyl-2-pentanone (MIBK) Not detected ug/L 10 SW8280C 02/28/14 15:22 WAT 0.20 Carbon tetrachloride Not detected ug/L 1 SW8280C 02/28/14 15:22 WAT 0.20 Lablohorothene Not detected ug/L 1 SW8280C 02/28/14 15:22 WAT 0.23	TCL Volatile Organics 8260 (continued)							
Methylene chloride Not detected ug/L 1 SW8280C 0226/14 15:22 WAT 0.29 trans-1,2-Dichloroethene Not detected ug/L 1 SW8280C 0226/14 15:22 WAT 0.20 cis-1,2-Dichloroethene Not detected ug/L 1 SW8280C 0226/14 15:22 WAT 0.20 cis-1,2-Dichloroethene Not detected ug/L 1 SW8280C 0226/14 15:22 WAT 0.21 L11-Trichloroethane Not detected ug/L 1 SW8280C 0226/14 15:22 WAT 0.28 Cyclohexane Not detected ug/L 10 SW8280C 0226/14 15:22 WAT 0.29 Carbon tetrachloride Not detected ug/L 1 SW8280C 0226/14 15:22 WAT 0.20 Benzene Not detected ug/L 1 SW8280C 0226/14 15:22 WAT 0.20 L2-Dichloroethane Not detected ug/L 1 SW8280C 0226/14 15:22 WAT 0.23 <td< td=""><td>Trichlorofluoromethane</td><td>Not detected</td><td>ug/L</td><td>1</td><td>SW8260C</td><td>02/26/14 15:22</td><td>WAT 0.33</td><td></td></td<>	Trichlorofluoromethane	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.33	
trans.1.2-Dichloroethene Not detected ug/L 1 SW8260C 0.2/26/14 15:22 WAT 0.20 1.1-Dichloroethene Not detected ug/L 1 SW8260C 0.2/26/14 15:22 WAT 0.26 Chioroform Not detected ug/L 1 SW8260C 0.2/26/14 15:22 WAT 0.26 Chioroform Not detected ug/L 1 SW8260C 0.2/26/14 15:22 WAT 0.29 2.4/Methyl-2.pentanone (MIBK) Not detected ug/L 10 SW8260C 0.2/26/14 15:22 WAT 0.29 2.4/Lexanone Not detected ug/L 10 SW8260C 0.2/26/14 15:22 WAT 0.20 2.4/Lexanone Not detected ug/L 1 SW8260C 0.2/26/14 15:22 WAT 0.20 2.2/Dichloroethane Not detected ug/L 1 SW8260C 0.2/26/14 15:22 WAT 0.20 1.2/Dichloroethane Not detected ug/L 1 SW8260C 0.2/26/14 15:22 WAT 0.20	1,1-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.27	
1,1-Dichloroethane Not detected ug/L 1 SW3260C 0.2/26/14 15:22 WAT 0.20 cis-1,2-Dichloroethane Not detected ug/L 1 SW3260C 0.2/26/14 15:22 WAT 0.24 1,1,1-Trichloroethane Not detected ug/L 1 SW3260C 0.2/26/14 15:22 WAT 0.28 Cyclohexane Not detected ug/L 10 SW3260C 0.2/26/14 15:22 WAT 0.29 A/Methyl-2pentarone (MIBK) Not detected ug/L 10 SW3260C 0.2/26/14 15:22 WAT 0.29 Carbon tetrachloride Not detected ug/L 1 SW3260C 0.2/26/14 15:22 WAT 0.20 Carbon tetrachloride Not detected ug/L 1 SW3260C 0.2/26/14 15:22 WAT 0.23 1.2-Dichloropropane Not detected ug/L 1 SW3260C 0.2/26/14 15:22 WAT 0.23 1.2-Dichloropropane Not detected ug/L 1 SW3260C 0.2/26/14 15:22 WAT 0.23<	Methylene chloride	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.29	
cis-1,2-Dichloroethene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 Chloroform Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 1,1,1-Tichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.29 4-Methyl-2-pentanore (MIBK) Not detected ug/L 10 SW8260C 02/26/14 15:22 WAT 0.29 Carbon tetrachloride Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Carbon tetrachloride Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Earcene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 1/2-Dichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 1/2-Dichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23	trans-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.20	
Chloroform Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.21 1.1.1-Trichtoroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.28 4-Methyl-2-pentanone (MIBK) Not detected ug/L 10 SW8260C 02/26/14 15:22 WAT 0.29 2-Hexanone Not detected ug/L 10 SW8260C 02/26/14 15:22 WAT 0.20 Carbon tetrachoride Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Lacbichtoroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 1.2-Dichtoroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 1.2-Dichtoroptopane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.21 Heihry cyclochexane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.21	1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.20	
1,1,1-Trichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.28 Cyclohexane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.29 4-Methyl-2-pentanone (MIBK) Not detected ug/L 10 SW8260C 02/26/14 15:22 WAT 0.29 Carbon tetrachloride Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Benzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 1.2-Dichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 1.2-Dichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 1.2-Dichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 1.2-Dichloropropane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24	cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.26	
Cyclohexane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.29 4-Methyl-2-pentanone (MIBK) Not detected ug/L 10 SW8260C 02/26/14 15:22 WAT 0.14 2-Hexanone Not detected ug/L 10 SW8260C 02/26/14 15:22 WAT 0.29 Carbon tetrachioride Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Benzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 1,2-Dichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 1,2-Dichloroptopane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.21 12-Dichloroptopane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 12-Dichloroptopane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 1	Chloroform	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.21	
4-Methyl-2-pentanone (MIBK) Not detected ug/L 10 SW8260C 02/26/14 15:22 WAT 0.14 2-Hexanone Not detected ug/L 10 SW8260C 02/26/14 15:22 WAT 0.20 Carbon tetrachioride Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Benzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 1,2-Dichtoroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Bromodichtoropropane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 Strip-1,3-Dichtoropropane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 Strip-1,3-Dichtoropropane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 Strip-1,3-Dichtoropropane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26	1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.28	
2-Hexanone Not detected ug/L 10 SW8260C 02/26/14 15:22 WAT 0.29 Carbon tetrachloride Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Benzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 J2.Dichloropthane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 J2.Dichloroptopane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 Bromodichloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.21 dis-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.21 trans-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 1,1,2-Trichloropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26	Cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.29	
Carbon tetrachloride Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Benzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 1,2-Dichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 1,2-Dichloropthane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Bromodichloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Bromodichloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.21 cis-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 trans-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 Dibromochloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24	4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	02/26/14 15:22	WAT 0.14	
Benzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 1,2-Dichoroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.16 Trichoroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Bromodichloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Bromodichloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.21 cis.1.3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 trans-1.3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 trans-1.3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 Dibromochiomethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.28	2-Hexanone	Not detected	ug/L	10	SW8260C	02/26/14 15:22	WAT 0.29	
1,2-Dichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.16 Trichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 1,2-Dichloropropane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Bromodichloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.21 dis-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.21 robuene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 trans-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 Tetrachloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 Dibromochloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 Chloroberzene Not detected ug/L 1 SW8260C 02/26/	Carbon tetrachloride	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.20	
Trichloroethene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 1,2-Dichloropropane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Bromodichloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 detryl cyclohexane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.21 dis-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 trans-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 1,1,2-Trichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Dibromochloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 Chiorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 <td>Benzene</td> <td>Not detected</td> <td>ug/L</td> <td>1</td> <td>SW8260C</td> <td>02/26/14 15:22</td> <td>WAT 0.20</td> <td></td>	Benzene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.20	
1,2-Dichloropropane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Bromodichloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 Methyl cyclohexane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.21 cis-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 trans-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 trans-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 1,1,2-Trichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.28 Chlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 Chlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 <	1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.16	
Bromodichloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 Methyl cyclohexane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.21 cis-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 trans-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 trans-1,3-Dichloroptopene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 trans-1/3-Dichloroptopene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 Tetrachloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 Chlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.17 1,1,2.2-Tetrachloroethane Not detected </td <td>Trichloroethene</td> <td>Not detected</td> <td>ug/L</td> <td>1</td> <td>SW8260C</td> <td>02/26/14 15:22</td> <td>WAT 0.23</td> <td></td>	Trichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.23	
Methyl cyclohexane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.21 cis-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 trans-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 trans-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 1,1,2-Trichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Dibromochloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 Chlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.17 1,1,2,2-Tetrachloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 p,m-Xylene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25	1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.20	
cis-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.19 Toluene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 trans-1,3-Dichloropropene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 1,1,2-Trichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 Dibromochloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Dibromochloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.17 1,1,2-Z-Tetrachloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.18 Ethylbenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 p.m-Xylene Not detected ug/L	Bromodichloromethane	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.23	
TolueneNot detectedug/L1SW8260C02/26/14 15:22WAT0.25trans-1,3-DichloropropeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.261,1,2-TrichloroethaneNot detectedug/L1SW8260C02/26/14 15:22WAT0.28TetrachloroethaneNot detectedug/L1SW8260C02/26/14 15:22WAT0.20DibromochloromethaneNot detectedug/L1SW8260C02/26/14 15:22WAT0.20ChlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.171,1,2-TetrachloroethaneNot detectedug/L1SW8260C02/26/14 15:22WAT0.18EthylbenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.26p.m-XyleneNot detectedug/L1SW8260C02/26/14 15:22WAT0.26o-XyleneNot detectedug/L1SW8260C02/26/14 15:22WAT0.26styreneNot detectedug/L1SW8260C02/26/14 15:22WAT0.25StyreneNot detectedug/L1SW8260C02/26/14 15:22WAT0.26IsopropylbenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.25IsopropylbenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.261,3-DichlorobenzeneNot detectedug/L1<	Methyl cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.21	
trans-1,3-DichloropropeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.251,1,2-TrichloroethaneNot detectedug/L1SW8260C02/26/14 15:22WAT0.20DibromochloromethaneNot detectedug/L1SW8260C02/26/14 15:22WAT0.20DibromochloromethaneNot detectedug/L1SW8260C02/26/14 15:22WAT0.24ChlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.171,1,2,2-TetrachloroethaneNot detectedug/L1SW8260C02/26/14 15:22WAT0.18EthylbenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.26p,m-XyleneNot detectedug/L1SW8260C02/26/14 15:22WAT0.26o-XyleneNot detectedug/L1SW8260C02/26/14 15:22WAT0.26styreneNot detectedug/L1SW8260C02/26/14 15:22WAT0.25styreneNot detectedug/L1SW8260C02/26/14 15:22WAT0.25IsopropylbenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.241,3-DichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.25IsopropylbenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.241,3-DichlorobenzeneNot detected <t< td=""><td>cis-1,3-Dichloropropene</td><td>Not detected</td><td>ug/L</td><td>1</td><td>SW8260C</td><td>02/26/14 15:22</td><td>WAT 0.19</td><td></td></t<>	cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.19	
1,1,2-Trichloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.28 Tetrachloroethene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Dibromochloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 Chlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.17 1,1,2,2-Tetrachloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.18 Ethylbenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.41 o-Xylene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.41 o-Xylene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.41 o-Xylene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 Styrene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT	Toluene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.25	
Tetrachloroethene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.20 Dibromochloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 Chlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.17 1,1,2,2-Tetrachloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.18 Ethylbenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 p,m-Xylene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.41 o-Xylene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 Styrene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 Bromoform Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 1,4-Dichlorobenzene	trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.25	
Dibromochloromethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 Chlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.17 1,1,2,2-Tetrachloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.18 Ethylbenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 p,m-Xylene Not detected ug/L 2 SW8260C 02/26/14 15:22 WAT 0.41 o-Xylene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 Styrene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 Bromoform Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 1,3-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.22 1,3-Dichlorobenzene	1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.28	
Chlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.17 1,1,2,2-Tetrachloroethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.18 Ethylbenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.26 p,m-Xylene Not detected ug/L 2 SW8260C 02/26/14 15:22 WAT 0.41 o-Xylene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 Styrene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 Bromoform Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.22 1,3-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 1,4-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 1,4-Dichlorobenzene	Tetrachloroethene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.20	
1,1,2,2-TetrachloroethaneNot detectedug/L1SW8260C02/26/14 15:22WAT0.18EthylbenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.26p,m-XyleneNot detectedug/L2SW8260C02/26/14 15:22WAT0.41o-XyleneNot detectedug/L1SW8260C02/26/14 15:22WAT0.25StyreneNot detectedug/L1SW8260C02/26/14 15:22WAT0.18IsopropylbenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.25BromoformNot detectedug/L1SW8260C02/26/14 15:22WAT0.251,3-DichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.241,4-DichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.241,2-DichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.231,2-DichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.281,2-DibromoethaneNot detectedug/L1SW8260C02/26/14 15:22WAT0.281,2-DibromoethaneNot detectedug/L1SW8260C02/26/14 15:22WAT0.30	Dibromochloromethane	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.24	
EthylbenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.26p,m-XyleneNot detectedug/L2SW8260C02/26/14 15:22WAT0.41o-XyleneNot detectedug/L1SW8260C02/26/14 15:22WAT0.25StyreneNot detectedug/L1SW8260C02/26/14 15:22WAT0.18IsopropylbenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.25BromoformNot detectedug/L1SW8260C02/26/14 15:22WAT0.251,3-DichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.221,3-DichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.241,4-DichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.231,2-DichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.281,2,4-TrichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.281,2-DibromoethaneNot detectedug/L1SW8260C02/26/14 15:22WAT0.19	Chlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.17	
p,m-XyleneNot detectedug/L2SW8260C02/26/14 15:22WAT0.41o-XyleneNot detectedug/L1SW8260C02/26/14 15:22WAT0.25StyreneNot detectedug/L1SW8260C02/26/14 15:22WAT0.18IsopropylbenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.25BromoformNot detectedug/L1SW8260C02/26/14 15:22WAT0.251,3-DichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.221,3-DichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.241,4-DichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.231,2-DichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.281,2,4-TrichlorobenzeneNot detectedug/L1SW8260C02/26/14 15:22WAT0.191,2-DibromoethaneNot detectedug/L1SW8260C02/26/14 15:22WAT0.30	1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.18	
o-Xylene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 Styrene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.18 Isopropylbenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 Bromoform Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 1,3-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.22 1,3-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 1,4-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 1,2-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.28 1,2,4-Trichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.19 1,2-Dibromoet	Ethylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.26	
Styrene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.18 Isopropylbenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 Bromoform Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.22 1,3-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.22 1,3-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 1,4-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 1,2-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.28 1,2,4-Trichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.19 1,2-Dibromoethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.30	p,m-Xylene	Not detected	ug/L	2	SW8260C	02/26/14 15:22	WAT 0.41	
Isopropylbenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.25 Bromoform Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.22 1,3-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 1,4-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 1,2-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 1,2-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.28 1,2,4-Trichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.19 1,2-Dibromoethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.30	o-Xylene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.25	
Bromoform Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.22 1,3-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 1,4-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 1,2-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 1,2-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.28 1,2,4-Trichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.19 1,2-Dibromoethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.30	Styrene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.18	
1,3-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.24 1,4-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 1,2-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.28 1,2-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.19 1,2-Dibromoethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.19	Isopropylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.25	
1,4-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.23 1,2-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.28 1,2,4-Trichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.19 1,2-Dibromoethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.30	Bromoform	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.22	
1,2-Dichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.28 1,2,4-Trichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.19 1,2-Dibromoethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.30	1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.24	
1,2,4-Trichlorobenzene Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.19 1,2-Dibromoethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.30	1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.23	
1,2-Dibromoethane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.30	1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.28	
· · · · · · · · · · · · · · · · · · ·	1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.19	
1,2-Dibromo-3-chloropropane Not detected ug/L 1 SW8260C 02/26/14 15:22 WAT 0.47	1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.30	
	1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	02/26/14 15:22	WAT 0.47	

Lab Sample ID: S60126.07 Sample Tag: P-3453-SP-11 Collected Date/Time: 02/24/2014 12:30 Matrix: Groundwater COC Reference: 76463

Sample Containers

# Ту	/ре	Preservative(s)		Refrigerated?	Arrival Te	mp. (C) Thermor	neter #		
3 40	ml Glass	HCL		Yes	6.0	IR			
1 12	25ml Plastic	HNO3		Yes	6.0	IR			
Analysis	S		Results	Units	RL	Method	Run Date/Time	Analyst M	DL Flags
-	tion / Prep.								
Mercury	/ Digestion		Completed			SW7471B	02/26/14 11:55	CCM	
Metal D	igestion		Completed			SW3015A	02/26/14 11:36	PER	
pH cheo	ck for VOCs		<2	STD Units		N/A	02/27/14 10:25	LBR	
Metals									
Antimor	лy		Not detected	mg/L	0.005	SW6020A	02/26/14 13:50	PER 0.0	0042
Arsenic			0.005	mg/L	0.002	SW6020A	02/26/14 13:50	PER 0.0	00052
Barium			0.215	mg/L	0.005	SW6020A	02/26/14 13:50	PER 0.0	0022
Boron			0.20	mg/L	0.04	SW6020A	02/26/14 16:30	PER 0.0	0032
Cadmiu	Im		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:50	PER 0.0	00067
Chromi	um		0.005	mg/L	0.005	SW6020A	02/26/14 13:50	PER 0.0	0013
Cobalt			Not detected	mg/L	0.005	SW6020A	02/26/14 13:50	PER 0.0	00050
Copper			0.006	mg/L	0.005	SW6020A	02/26/14 13:50	PER 0.0	0006
Lead			Not detected	mg/L	0.003	SW6020A	02/26/14 13:50	PER 0.0	00043
Mangar	nese		0.104	mg/L	0.005	SW6020A	02/26/14 13:50	PER 0.0	00060
Mercury	ý		Not detected	mg/L	0.0001	SW7471B	02/26/14 16:19	CCM 0.0	00008
Nickel			0.017	mg/L	0.005	SW6020A	02/26/14 13:50	PER 0.0	00036
Seleniu	m		0.005	mg/L	0.005	SW6020A	02/26/14 13:50	PER 0.0	0027
Silver			Not detected	mg/L	0.0005	SW6020A	02/26/14 13:50	PER 0.0	00018
Vanadiu	um		Not detected	mg/L	0.004	SW6020A	02/26/14 13:50	PER 0.0	00025
Zinc			0.026	mg/L	0.005	SW6020A	02/26/14 13:50	PER 0.0	0014
Organi	cs - Volatiles								
1,4-Dio	xane		21	ug/L	1	SW8260B - SIM	02/26/14 14:44	WAT 0.7	9 M
TCL Vo	platile Organics 8260								
1,1,2-Tr	richloro-1,2,2-trifluoroetha	ane	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.1	8
Acetone	e		12	ug/L	10	SW8260C	02/26/14 15:44	WAT 0.5	6
Carbon	disulfide		Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.2	4
Methyl /	Acetate		Not detected	ug/L	10	SW8260C	02/26/14 15:44	WAT 0.2	5
tert-Met	hyl butyl ether (MTBE)		Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.1	9
2-Butan	ione (MEK)		Not detected	ug/L	10	SW8260C	02/26/14 15:44	WAT 0.2	6
Dichloro	odifluoromethane		Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.5	0
Chloron	nethane		Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.2	6
Vinyl ch	lloride		Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.3	1
Bromon	nethane		Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.3	2
Chloroe	thane		Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.3	4
Trichlor	ofluoromethane		Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.3	3
1,1-Dicł	nloroethene		Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.2	7
Methyle	ene chloride		Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.2	9
trans-1,	2-Dichloroethene		Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.2	0

Lab Sample ID: S60126.07 (continued) Sample Tag: P-3453-SP-11

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst MDL	Flags
Organics - Volatiles (continued)							
TCL Volatile Organics 8260 (continued)							
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.20	
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.26	
Chloroform	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.21	
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.28	
Cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.29	
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	02/26/14 15:44	WAT 0.14	
2-Hexanone	Not detected	ug/L	10	SW8260C	02/26/14 15:44	WAT 0.29	
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.20	
Benzene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.20	
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.16	
Trichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.23	
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.20	
Bromodichloromethane	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.23	
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.21	
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.19	
Toluene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.25	
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.25	
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.28	
Tetrachloroethene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.20	
Dibromochloromethane	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.24	
Chlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.17	
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.18	
Ethylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.26	
p,m-Xylene	Not detected	ug/L	2	SW8260C	02/26/14 15:44	WAT 0.41	
o-Xylene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.25	
Styrene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.18	
Isopropylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.25	
Bromoform	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.22	
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.24	
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.23	
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.28	
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.19	
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.30	
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	02/26/14 15:44	WAT 0.47	

Lab Sample ID: S60126.08 Sample Tag: P-3453-SP-12 Collected Date/Time: 02/24/2014 12:50 Matrix: Groundwater COC Reference: 76463

Sample Containers

#	Туре	Preservative(s)		Refrigerated?	Arrival Te	mp. (C) Thermor	neter #			
3	40ml Glass	HCL		Yes	6.0	IR				
1	125ml Plastic	HNO3		Yes	6.0	IR				
An	alysis		Results	Units	RL	Method	Run Date/Time	Analys	st MDL	Flags
Ex	traction / Prep.									
Me	ercury Digestion		Completed			SW7471B	02/26/14 11:55	CCM		
Me	tal Digestion		Completed			SW3015A	02/26/14 11:36	PER		
pН	check for VOCs		<2	STD Units		N/A	02/27/14 10:25	LBR		
Ме	etals									
An	timony		Not detected	mg/L	0.005	SW6020A	02/26/14 13:52	PER	0.00042	
Ars	senic		0.005	mg/L	0.002	SW6020A	02/26/14 13:52	PER	0.000052	
Ва	rium		0.224	mg/L	0.005	SW6020A	02/26/14 13:52	PER	0.00022	
Во	ron		0.20	mg/L	0.04	SW6020A	02/26/14 16:31	PER	0.00032	
Са	dmium		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:52	PER	0.000067	
Ch	romium		Not detected	mg/L	0.005	SW6020A	02/26/14 13:52	PER	0.00013	
Со	balt		Not detected	mg/L	0.005	SW6020A	02/26/14 13:52	PER	0.000050	
Со	pper		0.006	mg/L	0.005	SW6020A	02/26/14 13:52	PER	0.00006	
Lea	ad		Not detected	mg/L	0.003	SW6020A	02/26/14 13:52	PER	0.000043	
Ма	inganese		0.102	mg/L	0.005	SW6020A	02/26/14 13:52	PER	0.000060	
Me	ercury		Not detected	mg/L	0.0001	SW7471B	02/26/14 16:21	CCM	800000.0	
Nic	kel		0.016	mg/L	0.005	SW6020A	02/26/14 13:52	PER	0.000036	
Se	lenium		Not detected	mg/L	0.005	SW6020A	02/26/14 13:52	PER	0.00027	
Silv	/er		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:52	PER	0.000018	
Va	nadium		Not detected	mg/L	0.004	SW6020A	02/26/14 13:52	PER	0.000025	
Zir	c		0.016	mg/L	0.005	SW6020A	02/26/14 13:52	PER	0.00014	
Or	ganics - Volatiles									
1,4	-Dioxane		5	ug/L	1	SW8260B - SIM	02/26/14 15:02	WAT	0.79	JM
тс	L Volatile Organics 8260									
1,1	,2-Trichloro-1,2,2-trifluoroe	thane	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT	0.18	
Ac	etone		15	ug/L	10	SW8260C	02/26/14 16:05	WAT	0.56	
Са	rbon disulfide		Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT	0.24	
Me	thyl Acetate		Not detected	ug/L	10	SW8260C	02/26/14 16:05	WAT	0.25	
ter	t-Methyl butyl ether (MTBE)	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT	0.19	
2-E	Butanone (MEK)		Not detected	ug/L	10	SW8260C	02/26/14 16:05	WAT	0.26	
Dic	chlorodifluoromethane		Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT	0.50	
Ch	loromethane		Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT	0.26	
Vir	yl chloride		Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT	0.31	
Bro	omomethane		Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT	0.32	
Ch	loroethane		Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT	0.34	
Tri	chlorofluoromethane		Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT	0.33	
1,1	-Dichloroethene		Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT	0.27	
Me	thylene chloride		Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT	0.29	
tra	ns-1,2-Dichloroethene		Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT	0.20	

J-Estimated value less than reporting limit, but greater than MDL M-Result reported to MDL not RDL

Lab Sample ID: S60126.08 (continued) Sample Tag: P-3453-SP-12

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst MDL	Flags
Organics - Volatiles (continued)							
TCL Volatile Organics 8260 (continued)							
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.20	
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.26	
Chloroform	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.21	
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.28	
Cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.29	
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	02/26/14 16:05	WAT 0.14	
2-Hexanone	Not detected	ug/L	10	SW8260C	02/26/14 16:05	WAT 0.29	
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.20	
Benzene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.20	
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.16	
Trichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.23	
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.20	
Bromodichloromethane	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.23	
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.21	
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.19	
Toluene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.25	
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.25	
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.28	
Tetrachloroethene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.20	
Dibromochloromethane	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.24	
Chlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.17	
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.18	
Ethylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.26	
p,m-Xylene	Not detected	ug/L	2	SW8260C	02/26/14 16:05	WAT 0.41	
o-Xylene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.25	
Styrene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.18	
Isopropylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.25	
Bromoform	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.22	
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.24	
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.23	
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.28	
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.19	
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.30	
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	02/26/14 16:05	WAT 0.47	

Lab Sample ID: S60126.09 Sample Tag: P-3453-SP-13 Collected Date/Time: 02/24/2014 13:10 Matrix: Groundwater COC Reference: 76463

Sample Containers

3 40nt Glass HCL Yes 6.0 IR 1 125mt Pastic HN03 Yes 6.0 IR Analysis Results HN03 Results Results <t< th=""><th>#</th><th>Туре</th><th>Preservative(s)</th><th>)</th><th>Refrigerated?</th><th>Arrival Te</th><th>mp. (C) Thermor</th><th>neter #</th><th></th><th></th><th></th></t<>	#	Туре	Preservative(s))	Refrigerated?	Arrival Te	mp. (C) Thermor	neter #			
2 40mi Glass H2SQ4 Yes 6.0. IR Analysis Results Units RL Method Run Date/Time Analysis MDL Flags Extraction //Fog. Completed SW7471B 0226/14 11:55 CCM Flags Metal Digetion Completed SW7471B 0226/14 11:25 CLM Flags Interpretein Completed SW7471B 0226/14 11:25 CLM Flags Interpretein Completed SW7471B Curr 226/14 11:25 CLM Flags Interpretein Not detected mg1 0.005 SW6020A 0228/14 13:54 PER 0.00042 Assentic Out detected mg1 0.005 SW6020A 0228/14 13:54 PER 0.00042 Barium 0.229 mg1 0.005 SW6020A 0228/14 13:54 PER 0.00022 Codmium Not detected mg1 0.005 SW6020A 0228/14 13:54 PER 0.00026 Codmium Not detected mg	3	40ml Glass	HCL		Yes	6.0	IR				
Analysis Results Units RL Method Run Date/Time Analyst MDL Plage Extraction / Prop. Mercury Digestion Completed SW7471B 02/26/14 11:55 CCM Methol Digestion Completed SW3015A 02/26/14 11:35 CEM Image: Completed SW3015A 02/26/14 11:35 CEM Image: Completed SW3015A 02/26/14 11:25 LBR Image: Completed SW3015A 02/26/14 11:25 LBR Image: Completed SW3015A 02/26/14 11:25 LBR Image: Completed SW3015A 02/26/14 11:354 PER 0.00042 Assenic 0.005 mg1 0.005 SW6020A 02/26/14 13:54 PER 0.00042 Assenic 0.005 mg1 0.005 SW6020A 02/26/14 13:54 PER 0.00062 Completed Mitinum 0.005 SW6020A 02/26/14 13:54 PER 0.00032 Completed Completed Mitinum Not detected mg1 0.005 SW6020A 02/26/14 13:54 PER 0.00006 Comonia Comonia Comonia </td <td>1</td> <td>125ml Plastic</td> <td>HNO3</td> <td></td> <td>Yes</td> <td>6.0</td> <td>IR</td> <td></td> <td></td> <td></td> <td></td>	1	125ml Plastic	HNO3		Yes	6.0	IR				
Ertraction / Prop. Completed SW7471B 0226/14 CCM Marcury Digestion Completed SW3015A 0226/14 11:35 PER pit check for VOCs -2 STD Units N/A 0226/14 11:35 PER Inorganics TOC 5.9 mg/L 1 SM 5310C 0226/14 17:25 JKB Metals Antimore Na 0.025 SW6020A 0226/14 15:4 PER 0.00042 Antimory Not detected mg/L 0.005 SW6020A 0226/14 15:4 PER 0.00042 Barium 0.229 mg/L 0.005 SW6020A 0226/14 15:4 PER 0.00032 Cadmium Not detected mg/L 0.005 SW6020A 0226/14 15:4 PER 0.00061 Chronium Not detected mg/L 0.005 SW6020A 0226/14 15:4 PER 0.00061 Coper 0.005 mg/L 0.005 SW6020A	2	40ml Glass	H2SO4		Yes	6.0	IR				
Extraction / Prep. SW7471B 0.2/26/14 11:55 CCM Mercury Digestion Completed SW3015A 0.2/26/14 11:35 PER pH check for VOCs -2 STD Units N/A 0.2/26/14 11:35 PER Inorganics TOC 5.9 mgL 1 SM 5310C 0.2/26/14 17:25 JKB Markin Antinony Not detected mgL 0.005 SW6020A 0.2/26/14 13:54 PER 0.00042 Arsenic 0.005 mgL 0.005 SW6020A 0.2/26/14 13:54 PER 0.00052 Barium 0.229 mgL 0.004 SW6020A 0.2/26/14 13:54 PER 0.00032 Commium Not detected mgL 0.005 SW6020A 0.2/26/14 13:54 PER 0.00032 Commium Not detected mgL 0.005 SW6020A 0.2/26/14 13:54 PER 0.00032 Commium Not detected mgL 0.005 SW6020A 0.2/26/14 13:54 PER 0.00006 Ch	Ana	alysis		Results	Units	RL	Method	Run Date/Time	Analyst	MDL	Flags
Metal Digestion ph check for VOCs Completed -2 STD Units W3015A N/A 0.226/14 11:36 0.227/14 10:25 PER LBR LLR Incoganics TOC 5.9 ng/L 1 Sh 5310C 0.226/14 17:25 JKB JKB Metal TOC 5.9 ng/L 0.005 SW6020A 0.226/14 13:54 PER 0.0042 Antimory Not detected mg/L 0.005 SW6020A 0.226/14 13:54 PER 0.00052 Barlum 0.029 mg/L 0.005 SW6020A 0.226/14 13:54 PER 0.00052 Barlum 0.229 ng/L 0.005 SW6020A 0.226/14 13:54 PER 0.00052 Chromium Not detected mg/L 0.005 SW6020A 0.226/14 13:54 PER 0.00051 Cobalt Mot detected mg/L 0.005 SW6020A 0.226/14 13:54 PER 0.00051 Cobalt Mot detected mg/L 0.005 SW6020A 0.226/14 13:54 PER 0.00051 Marganese 0.104	Ext	traction / Prep.							•		
pH check for VOCs -2 STD Units N/A 0/2/27/14 10.25 LBR Inorganics TOC 5.9 mg/L 1 SM 5310C 0/2/2/14 13.54 PER 0.00042 Attennony Not detected mg/L 0.002 SW6020A 0/2/26/14 13.54 PER 0.000052 Barium 0.229 mg/L 0.005 SW6020A 0/2/26/14 13.54 PER 0.000052 Barium 0.229 mg/L 0.005 SW6020A 0/2/26/14 13.54 PER 0.000052 Goron 0.200 mg/L 0.005 SW6020A 0/2/26/14 13.54 PER 0.000067 Chamium Not detected mg/L 0.005 SW6020A 0/2/26/14 13.54 PER 0.000067 Chamium Not detected mg/L 0.005 SW6020A 0/2/26/14 13.54 PER 0.000067 Chapper 0.005 mg/L 0.005 SW6020A 0/2/26/14 13.54 PER 0.000067 Lead Not detected mg/L 0	Me	rcury Digestion		Completed			SW7471B	02/26/14 11:55	CCM		
Integration Seg mg/L 1 SM 5310C 02/26/14 17:25 JKB TOC 5.9 mg/L 1 SM 5310C 02/26/14 17:25 JKB Antimony Not detected mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00042 Arsenic 0.005 mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00052 Barium 0.20 mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00052 Commium Not detected mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00067 Chromium Not detected mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00060 Coper 0.005 mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00060 Marganese 0.104 mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00008 Nockel 0.015 mg/L 0.005 SW6020A 02/26/14 1	Me	tal Digestion		Completed			SW3015A	02/26/14 11:36	PER		
TOC 5.9 mg/L 1 SM 5310C 0.226/14 17.25 JKB Metais Animony Not detected mg/L 0.002 SW6020A 0.226/14 13.54 PER 0.00052 Barum 0.229 mg/L 0.005 SW6020A 0.226/14 13.54 PER 0.00052 Boron 0.20 mg/L 0.005 SW6020A 0.226/14 13.54 PER 0.00052 Cadmium Not detected mg/L 0.005 SW6020A 0.226/14 13.54 PER 0.00067 Chromium Not detected mg/L 0.005 SW6020A 0.226/14 13.54 PER 0.00006 Cobalt Not detected mg/L 0.005 SW6020A 0.226/14 13.54 PER 0.00008 Lead Not detected mg/L 0.005 SW6020A 0.226/14 13.54 PER 0.00008 Mercury Not detected mg/L 0.005 SW6020A 0.226/14 13.54 PER </td <td>pН</td> <td>check for VOCs</td> <td></td> <td><2</td> <td>STD Units</td> <td></td> <td>N/A</td> <td>02/27/14 10:25</td> <td>LBR</td> <td></td> <td></td>	pН	check for VOCs		<2	STD Units		N/A	02/27/14 10:25	LBR		
Matais Not detected mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00042 Arsenic 0.005 mg/L 0.002 SW6020A 0.2/26/14 13:54 PER 0.00052 Barium 0.229 mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00052 Barium 0.229 mg/L 0.04 SW6020A 0.2/26/14 13:54 PER 0.00052 Cadmium Not detected mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00061 Cobalt Not detected mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00060 Cobalt Not detected mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00060 Manganese 0.014 mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00060 Mercury Not detected mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00060 Steinum Not detected	Ino	rganics									
Antimony Not detected mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.0002 Arsenic 0.005 mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.0002 Barium 0.229 mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.0002 Barium Not detected mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.0003 Cadmium Not detected mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.00015 Chomium Not detected mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.00005 Cobalt Not detected mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.00006 Maganese 0.104 mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.00018 Vickel Mot detected mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.00014 Vickel Mot detected <t< td=""><td>то</td><td>c</td><td></td><td>5.9</td><td>mg/L</td><td>1</td><td>SM 5310C</td><td>02/26/14 17:25</td><td>JKB</td><td></td><td></td></t<>	то	c		5.9	mg/L	1	SM 5310C	02/26/14 17:25	JKB		
Antimony Not detected mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.0002 Arsenic 0.005 mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.0002 Barium 0.229 mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.0002 Barium Not detected mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.0003 Cadmium Not detected mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.00015 Chomium Not detected mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.00005 Cobalt Not detected mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.00006 Maganese 0.104 mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.00018 Vickel Mot detected mg/L 0.005 SW6020A 0.2261/4 13:54 PER 0.00014 Vickel Mot detected <t< td=""><td>Ме</td><td>tals</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Ме	tals									
Barlum 0.229 mg/L 0.005 SW6020A 0.226/14 13:54 PER 0.0002 Goron 0.20 mg/L 0.04 SW6020A 0.226/14 16:33 PER 0.00032 Cadmium Not detected mg/L 0.005 SW6020A 0.226/14 13:54 PER 0.00067 Chromium Not detected mg/L 0.005 SW6020A 0.226/14 13:54 PER 0.00060 Cobalt Not detected mg/L 0.005 SW6020A 0.226/14 13:54 PER 0.00006 Lead Not detected mg/L 0.005 SW6020A 0.226/14 13:54 PER 0.00006 Maganese 0.104 mg/L 0.005 SW6020A 0.226/14 13:54 PER 0.00006 Nickel 0.105 mg/L 0.005 SW6020A 0.226/14 13:54 PER 0.00007 Silver Not detected mg/L 0.005 SW6020A 0.226/14 13:54 PER 0.00018 Varadum Not detected mg/L <td></td> <td></td> <td></td> <td>Not detected</td> <td>mg/L</td> <td>0.005</td> <td>SW6020A</td> <td>02/26/14 13:54</td> <td>PER 0</td> <td>.00042</td> <td></td>				Not detected	mg/L	0.005	SW6020A	02/26/14 13:54	PER 0	.00042	
Barium0.229mg/L0.005SW6020A0.2/26/14 13:54PER0.00021Boron0.20mg/L0.04SW6020A0.2/26/14 13:54PER0.0032CadmiumNot detectedmg/L0.0005SW6020A0.2/26/14 13:54PER0.00061ChromiumNot detectedmg/L0.005SW6020A0.2/26/14 13:54PER0.00061CobaltNot detectedmg/L0.005SW6020A0.2/26/14 13:54PER0.00061LeadNot detectedmg/L0.005SW6020A0.2/26/14 13:54PER0.00061MaganeseNot detectedmg/L0.005SW6020A0.2/26/14 13:54PER0.00061MercuryNot detectedmg/L0.005SW6020A0.2/26/14 13:54PER0.000081NickelNot detectedmg/L0.005SW6020A0.2/26/14 13:54PER0.00071SilverNot detectedmg/L0.005SW6020A0.2/26/14 13:54PER0.00025SilverNot detectedmg/L0.005SW6020A0.2/26/14 13:54PER0.00027SilverNot detectedmg/L0.005SW6020A0.2/26/14 13:54PER0.00027SilverNot detectedmg/L0.005SW6020A0.2/26/14 13:54PER0.00027SilverNot detectedmg/L0.005SW6020A0.2/26/14 13:54PER0.00027TorNot detectedmg/L1SW8260C0.2/26/14	Ars	enic		0.005	•	0.002	SW6020A	02/26/14 13:54			
Boron 0.20 ng/L 0.04 SW6020A 0.226/14 16.33 PER 0.0003 Cadmium Not detected ng/L 0.0005 SW6020A 0.226/14 13.54 PER 0.00067 Chromium Not detected ng/L 0.005 SW6020A 0.226/14 13.54 PER 0.0005 Cobalt Not detected ng/L 0.005 SW6020A 0.226/14 13.54 PER 0.00060 Copper 0.005 mg/L 0.005 SW6020A 0.226/14 13.54 PER 0.00060 Manganese 0.104 ng/L 0.005 SW6020A 0.226/14 13.54 PER 0.00060 Marcury Not detected ng/L 0.005 SW6020A 0.226/14 13.54 PER 0.0007 Stlear Not detected ng/L 0.005 SW6020A 0.226/14 13.54 PER 0.00018 Stlear Not detected ng/L 0.005 SW6020A 0.226/14 13.54 PER 0.00027 Stlear Not detected <td< td=""><td>Bar</td><td>ium</td><td></td><td>0.229</td><td>-</td><td></td><td>SW6020A</td><td></td><td>PER 0</td><td>.00022</td><td></td></td<>	Bar	ium		0.229	-		SW6020A		PER 0	.00022	
Chromium Not detected mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00013 Cobalt Not detected mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00006 Copper 0.005 mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00006 Manganese 0.104 mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00008 Marganese 0.104 mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00008 Mercury Not detected mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00007 Silver Not detected mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00025 Silver Not detected mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00014 Vanadium Not detected mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00014 Vanadium Not detec	Bor	on		0.20	mg/L	0.04	SW6020A	02/26/14 16:33	PER 0	.00032	
Cobalt Not detected mg/L 0.005 SW6020A 0.2/26/14 13:54 PER 0.00006 Copper 0.005 mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00006 Lead Not detected mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.000080 Manganese 0.014 mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.000080 Nickel 0.015 mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.000036 Selenium Not detected mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00018 Vanadium Not detected mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00018 Vanadium Not detected mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00018 Vanadium Not detected mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00014 Tr mg/L	Cad	dmium		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:54	PER 0	.000067	
Copper 0.005 mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.0006 Lead Not detected mg/L 0.03 SW6020A 02/26/14 13:54 PER 0.00060 Manganese 0.104 mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00060 Mercury Not detected mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00003 SW6020A 02/26/14 13:54 PER 0.00003 SW6020A 02/26/14 13:54 PER 0.00027 SW6020A 02/26/14 13:54 PER 0.00018 SW6020A 02/26/14 13:54 PER 0.00027 SW6020A 02/26/14 13:54 PER 0.00018 SW6020A 02/26/14 13:54 PER 0.00018 SW6020A 02/26/14 13:54 PER 0.00018 SW6020A 02/26/14 13:54 PER 0.00025 SW6020A 02/26/14 13:54 PER 0.00018 SW6020A 02/26/14 13:54 PER 0.00018 SW6020A 02/26/14 13:54 PER 0.00014 SW6020A 02/26/14 13:54	Chr	omium		Not detected	mg/L	0.005	SW6020A	02/26/14 13:54	PER 0	.00013	
Lead Not detected mg/L 0.003 SW6020A 02/26/14 13:54 PER 0.00003 Manganese 0.104 mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00008 Mercury Not detected mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00008 Nickel 0.015 mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00027 Silver Not detected mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00027 Silver Not detected mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00025 Vanadium Not detected mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00018 Zinc 0.014 mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00014 Totam mg/L 0.005 SW6020A 02/26/14 15:21 WA 0.79 M J1,4-Dixoare mg/L 1 <t< td=""><td>Col</td><td>palt</td><td></td><td>Not detected</td><td>mg/L</td><td>0.005</td><td>SW6020A</td><td>02/26/14 13:54</td><td>PER 0</td><td>.000050</td><td></td></t<>	Col	palt		Not detected	mg/L	0.005	SW6020A	02/26/14 13:54	PER 0	.000050	
LeadNot detectedmg/L0.003SW6020A02/26/14 13:54PER0.00003Manganese0.104mg/L0.005SW6020A02/26/14 13:54PER0.00008MercuryNot detectedmg/L0.005SW6020A02/26/14 13:54PER0.00036Nickel0.015mg/L0.005SW6020A02/26/14 13:54PER0.00037SileniumNot detectedmg/L0.005SW6020A02/26/14 13:54PER0.00027SilverNot detectedmg/L0.005SW6020A02/26/14 13:54PER0.00014VanadiumNot detectedmg/L0.005SW6020A02/26/14 13:54PER0.00025Zinc0.014mg/L0.005SW6020A02/26/14 13:54PER0.00014The provide sector0.014mg/L0.005SW6020A02/26/14 13:54PER0.00014YandiumNot detectedmg/L0.005SW6020A02/26/14 13:54PER0.00014YandiumNot detectedmg/L0.005SW6020A02/26/14 13:54PER0.00014YandiumNot detectedug/L1SW8260C02/26/14 13:54PER0.00014YandiumNot detectedug/L1SW8260C02/26/14 16:27WAT0.56YandiumNot detectedug/L1SW8260C02/26/14 16:27WAT0.24YandiuhNot detectedug/L1SW8260C02/26/14 16:27WAT <t< td=""><td>Cop</td><td>oper</td><td></td><td>0.005</td><td>mg/L</td><td>0.005</td><td>SW6020A</td><td>02/26/14 13:54</td><td>PER 0</td><td>.00006</td><td></td></t<>	Cop	oper		0.005	mg/L	0.005	SW6020A	02/26/14 13:54	PER 0	.00006	
Mercury Not detected ng/L 0.001 SW7471B 0/2/26/14 16:23 CCM 0.00008 Nickel 0.015 mg/L 0.005 SW6020A 0/2/26/14 13:54 PER 0.00036 Selenium Not detected mg/L 0.005 SW6020A 0/2/26/14 13:54 PER 0.00027 Silver Not detected mg/L 0.005 SW6020A 0/2/26/14 13:54 PER 0.000025 Vanadium Not detected mg/L 0.004 SW6020A 0/2/26/14 13:54 PER 0.000025 Zinc 0.014 mg/L 0.005 SW6020A 0/2/26/14 13:54 PER 0.000025 Zinc 0.014 mg/L 0.005 SW6020A 0/2/26/14 15:21 WAT 0.79 M CLybarne ug/L 1 SW8260C 0/2/26/14 15:21 WAT 0.79 M CLybarne ug/L 1 SW8260C 0/2/26/14 16:27 WAT 0.18 Lybarne vg/L 100 SW8260C </td <td></td> <td></td> <td></td> <td>Not detected</td> <td>-</td> <td>0.003</td> <td>SW6020A</td> <td>02/26/14 13:54</td> <td>PER 0</td> <td>.000043</td> <td></td>				Not detected	-	0.003	SW6020A	02/26/14 13:54	PER 0	.000043	
Mercury Not detected mg/L 0.001 SW7471B 0/2/26/14 16:23 CCM 0.00008 Nickel 0.015 mg/L 0.005 SW6020A 0/2/26/14 13:54 PER 0.00036 Selenium Not detected mg/L 0.005 SW6020A 0/2/26/14 13:54 PER 0.00027 Silver Not detected mg/L 0.005 SW6020A 0/2/26/14 13:54 PER 0.000025 Vanadium Not detected mg/L 0.004 SW6020A 0/2/26/14 13:54 PER 0.000025 Zinc 0.014 mg/L 0.005 SW6020A 0/2/26/14 13:54 PER 0.000025 Zinc 0.014 mg/L 0.005 SW6020A 0/2/26/14 13:54 PER 0.000025 J1,2-Trichloro-1,2,2-trifluoroethane Not detected ug/L 1 SW8260C 0/2/26/14 15:21 WAT 0.79 M Acetone 17 ug/L 10 SW8260C 0/2/26/14 16:27 WAT 0.24 L	Ma	nganese		0.104	mg/L	0.005	SW6020A	02/26/14 13:54	PER 0	.000060	
Selenium Not detected mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00027 Silver Not detected mg/L 0.0005 SW6020A 02/26/14 13:54 PER 0.00018 Vanadium Not detected mg/L 0.004 SW6020A 02/26/14 13:54 PER 0.00025 Zinc 0.014 mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00025 Zinc 0.014 mg/L 0.005 SW620A 02/26/14 13:54 PER 0.00025 Zinc 0.014 mg/L 0.05 SW620A 02/26/14 15:21 WAT 0.79 M J_4-Dioxane Not detected ug/L 1 SW8260B - SIM 02/26/14 16:27 WAT 0.79 M J_4-Dioxane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.79 M J_4-Dioxane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.75 Carbo				Not detected	mg/L	0.0001	SW7471B	02/26/14 16:23	CCM 0	.000008	
Silver Not detected mg/L 0.0005 SW6020A 02/26/14 13:54 PER 0.00018 Vanadium Not detected mg/L 0.004 SW6020A 02/26/14 13:54 PER 0.00025 Zinc 0.014 mg/L 0.005 SW6020A 02/26/14 13:54 PER 0.00025 Organics - Volatiles Not detected ug/L 1 SW8260B - SIM 02/26/14 15:21 WAT 0.79 M TCL Volatile Organics 8260 ug/L 1 SW8260C 02/26/14 16:27 WAT 0.18 Acetone 17 ug/L 10 SW8260C 02/26/14 16:27 WAT 0.56 Carbon disulfide Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.24 Methyl Acetate Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.24 2-Butanone (MEK) Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.26 Dichlorodifl	Nic	kel		0.015	mg/L	0.005	SW6020A	02/26/14 13:54	PER 0	.000036	
Vanadium Zinc Not detected 0.014 mg/L mg/L 0.004 SW602A 02/26/14 13:54 PER 0.00025 Organics - Volatiles Not detected ug/L 1 SW8260B - SIM 02/26/14 13:54 PER 0.00025 Organics - Volatiles Not detected ug/L 1 SW8260B - SIM 02/26/14 15:21 WAT 0.79 M TCL Volatile Organics 8260 Ug/L 1 SW8260C 02/26/14 16:27 WAT 0.18 Acetone 17 ug/L 10 SW8260C 02/26/14 16:27 WAT 0.56 Carbon disulfide Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.54 Methyl Acetate Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.55 Settert-Methyl butyl ether (MTBE) Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.50 Settert-Methyl butyl ether (MTBE) Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT	Sel	enium		Not detected	mg/L	0.005	SW6020A	02/26/14 13:54	PER 0	.00027	
Zinc0.014mg/L0.005SW6020A02/26/14 13:54PER0.0014Organics - Volatiles 1,4-DioxaneNot detectedug/L1SW8260B - SIM02/26/14 15:21WAT0.79MTCL Volatile Organics 8260TCL Volatile Organics 8260Acetone17ug/L1SW8260C02/26/14 16:27WAT0.18Acetone17ug/L10SW8260C02/26/14 16:27WAT0.24Carbon disulfideNot detectedug/L1SW8260C02/26/14 16:27WAT0.24Methyl AcetateNot detectedug/L10SW8260C02/26/14 16:27WAT0.24Dethyl Jobel ether (MTBE)Not detectedug/L10SW8260C02/26/14 16:27WAT0.25Ether Methyl butyl ether (MTBE)Not detectedug/L10SW8260C02/26/14 16:27WAT0.26DichlorodifluoromethaneNot detectedug/L1SW8260C02/26/14 16:27WAT0.26DichlorodifluoromethaneNot detectedug/L1SW8260C02/26/14 16:27WAT0.26DichlorodifluoromethaneNot detectedug/L1SW8260C02/26/14 16:27WAT0.31ChloromethaneNot detectedug/L1SW8260C02/26/14 16:27WAT0.31ChloromethaneNot detectedug/L1SW8260C02/26/14 16:27WAT0.32DichlorodifluoromethaneNot detectedug/L1 <td>Silv</td> <td>er</td> <td></td> <td>Not detected</td> <td>mg/L</td> <td>0.0005</td> <td>SW6020A</td> <td>02/26/14 13:54</td> <td>PER 0</td> <td>.000018</td> <td></td>	Silv	er		Not detected	mg/L	0.0005	SW6020A	02/26/14 13:54	PER 0	.000018	
Organics - Volatiles 1,4-Dioxane Not detected ug/L 1 SW8260B - SIM 0/2/26/14 15:21 WAT 0.79 M TCL Volatile Organics 8260	Var	nadium		Not detected	mg/L	0.004	SW6020A	02/26/14 13:54	PER 0	.000025	
1,4-Dioxane Not detected ug/L 1 SW8260B - SIM 02/26/14 15:21 WAT 0.79 M TCL Volatile Organics 8260 1,1,2-Trichloro-1,2,2-trifluoroethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.18 Acetone 17 ug/L 10 SW8260C 02/26/14 16:27 WAT 0.56 Carbon disulfide Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.24 Methyl Acetate Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.24 Methyl Acetate Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.25 tert-Methyl butyl ether (MTBE) Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.19 2-Butanone (MEK) Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.50 Chloromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.50 Uinyl chloride Not detec	Zin	C		0.014	mg/L	0.005	SW6020A	02/26/14 13:54	PER 0	.00014	
1,4-Dioxane Not detected ug/L 1 SW8260B - SIM 02/26/14 15:21 WAT 0.79 M TCL Volatile Organics 8260 1,1,2-Trichloro-1,2,2-trifluoroethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.18 Acetone 17 ug/L 10 SW8260C 02/26/14 16:27 WAT 0.56 Carbon disulfide Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.24 Methyl Acetate Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.24 Methyl Acetate Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.25 tert-Methyl butyl ether (MTBE) Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.19 2-Butanone (MEK) Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.50 Chloromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.50 Uinyl chloride Not detec	Org	ganics - Volatiles									
1,1,2-Trichloro-1,2,2-trifluoroethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.18 Acetone 17 ug/L 10 SW8260C 02/26/14 16:27 WAT 0.56 Carbon disulfide Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.24 Methyl Acetate Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.24 Methyl Acetate Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.25 tert-Methyl butyl ether (MTBE) Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.19 2-Butanone (MEK) Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.26 Dichlorodifluoromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.26 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.26 Vinyl chloride Not detected ug/L 1 SW8260C 02/2	1,4	-Dioxane		Not detected	ug/L	1	SW8260B - SIM	02/26/14 15:21	WAT 0	.79	М
Acetone 17 ug/L 10 SW8260C 02/26/14 16:27 WAT 0.56 Carbon disulfide Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.24 Methyl Acetate Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.25 tert-Methyl butyl ether (MTBE) Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.19 2-Butanone (MEK) Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.26 Dichlorodifluoromethane Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.26 Chloromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.26 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.26 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.31 Bromomethane Not detected ug/L 1 SW8260C 02/26/14 16:27	тс	L Volatile Organics 8260									
Carbon disulfide Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.24 Methyl Acetate Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.25 tert-Methyl butyl ether (MTBE) Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.19 2-Butanone (MEK) Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.26 Dichlorodifluoromethane Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.50 Chloromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.50 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.26 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.31 Bromomethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.32	1,1	2-Trichloro-1,2,2-trifluoroet	hane	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0	.18	
Carbon disulfide Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.24 Methyl Acetate Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.25 tert-Methyl butyl ether (MTBE) Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.19 2-Butanone (MEK) Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.26 Dichlorodifluoromethane Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.50 Chloromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.50 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.26 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.31 Bromomethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.32	Ace	etone		17	•	10	SW8260C	02/26/14 16:27	WAT 0	.56	
Methyl Acetate Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.25 tert-Methyl butyl ether (MTBE) Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.19 2-Butanone (MEK) Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.26 Dichlorodifluoromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.50 Chloromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.26 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.26 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.31 Bromomethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.32	Car	bon disulfide		Not detected							
tert-Methyl butyl ether (MTBE) Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.19 2-Butanone (MEK) Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.26 Dichlorodifluoromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.50 Chloromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.26 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.26 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.31 Bromomethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.32	Met	thyl Acetate		Not detected		10	SW8260C	02/26/14 16:27	WAT 0	.25	
2-Butanone (MEK) Not detected ug/L 10 SW8260C 02/26/14 16:27 WAT 0.26 Dichlorodifluoromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.50 Chloromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.50 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.26 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.31 Bromomethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.32		,			•						
Dichlorodifluoromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.50 Chloromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.26 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.31 Bromomethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.31	2-B	utanone (MEK)									
Chloromethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.26 Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.31 Bromomethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.32	Dic	hlorodifluoromethane									
Vinyl chloride Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.31 Bromomethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.32											
Bromomethane Not detected ug/L 1 SW8260C 02/26/14 16:27 WAT 0.32											
						1					
	Chl	oroethane		Not detected		1	SW8260C	02/26/14 16:27	WAT 0	.34	

Lab Sample ID: S60126.09 (continued) Sample Tag: P-3453-SP-13

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst MDL	Flags
Organics - Volatiles (continued)							
TCL Volatile Organics 8260 (continued)							
Trichlorofluoromethane	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.33	
1,1-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.27	
Methylene chloride	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.29	
trans-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.20	
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.20	
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.26	
Chloroform	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.21	
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.28	
Cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.29	
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	02/26/14 16:27	WAT 0.14	
2-Hexanone	Not detected	ug/L	10	SW8260C	02/26/14 16:27	WAT 0.29	
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.20	
Benzene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.20	
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.16	
Trichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.23	
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.20	
Bromodichloromethane	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.23	
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.21	
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.19	
Toluene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.25	
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.25	
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.28	
Tetrachloroethene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.20	
Dibromochloromethane	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.24	
Chlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.17	
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.18	
Ethylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.26	
p,m-Xylene	Not detected	ug/L	2	SW8260C	02/26/14 16:27	WAT 0.41	
o-Xylene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.25	
Styrene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.18	
Isopropylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.25	
Bromoform	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.22	
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.24	
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.23	
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.28	
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.19	
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.30	
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	02/26/14 16:27	WAT 0.47	

Lab Sample ID: S60126.10 Sample Tag: P-3453-SP-14 Collected Date/Time: 02/24/2014 13:45 Matrix: Groundwater COC Reference: 76463

Sample Containers

# Туре		Preservative(s)		Refrigerated?	Arrival Te	mp. (C) Thermor	neter #		
3 40ml Gl	ass	HCL		Yes	6.0	IR			
1 125ml P	lastic	HNO3		Yes	6.0	IR			
Analysis			Results	Units	RL	Method	Run Date/Time	Analyst MDL	Flags
Extraction /	Prep.								
Mercury Dige	-		Completed			SW7471B	02/26/14 11:55	CCM	
Metal Digestic	n		Completed			SW3015A	02/26/14 11:36	PER	
pH check for	VOCs		<2	STD Units		N/A	02/27/14 10:30	LBR	
Metals									
Antimony			Not detected	mg/L	0.005	SW6020A	02/26/14 14:15	PER 0.00042	
Arsenic			0.004	mg/L	0.002	SW6020A	02/26/14 14:15	PER 0.000052	
Barium			0.226	mg/L	0.005	SW6020A	02/26/14 14:15	PER 0.00022	
Boron			0.20	mg/L	0.04	SW6020A	02/26/14 16:34	PER 0.00032	
Cadmium			Not detected	mg/L	0.0005	SW6020A	02/26/14 14:15	PER 0.000067	
Chromium			Not detected	mg/L	0.005	SW6020A	02/26/14 14:15	PER 0.00013	
Cobalt			Not detected	mg/L	0.005	SW6020A	02/26/14 14:15	PER 0.000050	
Copper			0.005	mg/L	0.005	SW6020A	02/26/14 14:15	PER 0.00006	
Lead			Not detected	mg/L	0.003	SW6020A	02/26/14 14:15	PER 0.000043	
Manganese			0.100	mg/L	0.005	SW6020A	02/26/14 14:15	PER 0.000060	
Mercury			Not detected	mg/L	0.0001	SW7471B	02/26/14 16:25	CCM 0.00008	
Nickel			0.015	mg/L	0.005	SW6020A	02/26/14 14:15	PER 0.000036	
Selenium			Not detected	mg/L	0.005	SW6020A	02/26/14 14:15	PER 0.00027	
Silver			Not detected	mg/L	0.0005	SW6020A	02/26/14 14:15	PER 0.000018	
Vanadium			Not detected	mg/L	0.004	SW6020A	02/26/14 14:15	PER 0.000025	
Zinc			0.016	mg/L	0.005	SW6020A	02/26/14 14:15	PER 0.00014	
Organics - V	olatiles								
1,4-Dioxane			Not detected	ug/L	1	SW8260B - SIM	02/26/14 15:39	WAT 0.79	М
TCL Volatile	Organics 8260								
1,1,2-Trichlor	o-1,2,2-trifluoroetha	ne	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.18	
Acetone			18	ug/L	10	SW8260C	02/26/14 16:49	WAT 0.56	
Carbon disulf	de		Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.24	
Methyl Acetat	е		Not detected	ug/L	10	SW8260C	02/26/14 16:49	WAT 0.25	
tert-Methyl bu	tyl ether (MTBE)		Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.19	
2-Butanone (I	MEK)		Not detected	ug/L	10	SW8260C	02/26/14 16:49	WAT 0.26	
Dichlorodifluo	romethane		Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.50	
Chloromethar	e		Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.26	
Vinyl chloride			Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.31	
Bromomethar	ne		Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.32	
Chloroethane			Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.34	
Trichlorofluor	omethane		Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.33	
1,1-Dichloroe	thene		Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.27	
Methylene ch	oride		Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.29	
trans-1,2-Dich	loroethene		Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.20	

Lab Sample ID: S60126.10 (continued) Sample Tag: P-3453-SP-14

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst MDL Flags
Organics - Volatiles (continued)						
TCL Volatile Organics 8260 (continued)						
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.20
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.26
Chloroform	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.21
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.28
Cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.29
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	02/26/14 16:49	WAT 0.14
2-Hexanone	Not detected	ug/L	10	SW8260C	02/26/14 16:49	WAT 0.29
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.20
Benzene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.20
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.16
Trichloroethene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.23
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.20
Bromodichloromethane	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.23
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.21
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.19
Toluene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.25
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.25
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.28
Tetrachloroethene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.20
Dibromochloromethane	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.24
Chlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.17
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.18
Ethylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.26
p,m-Xylene	Not detected	ug/L	2	SW8260C	02/26/14 16:49	WAT 0.41
o-Xylene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.25
Styrene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.18
Isopropylbenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.25
Bromoform	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.22
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.24
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.23
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.28
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.19
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.30
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	02/26/14 16:49	WAT 0.47

A Constant C									C.O.	.C. PAGE #	OF	:		7646	63
REPORT TO CHAIN O	FCL	JST	'OD	YR	ECO	RD							IN	VOICE	ТО
contact NAME Randy Christensen COMPANY Arcadis			CONTA	CT NAN	e G	is f	a f s						SAME		
COMPANY Auradis				1914,	2.412										
ADDRESS DEEG CITITION Prave Sin 10 100		-	ADDRE	ss フラレ	6 V	in	e ƙ	204	tes	Circle	Su	te l	+102		
CITY Brichton	16		CITY	Ans	troch	(C.A.			Circle		STA	ZI	° CODE 9450	Ģ
ADDRESS ADDRESS IO 559 C. titicn Drive Soile 100 CITY Brighton STATE 21P CODE PHONENO. Bio - 229 - 88377 B064480. cold.0 SIO - 225 - 1940 FAX NO. 810 - 229 - 88377 B064480. cold.0 E-MAIL ADDRESS OUIOTE NO.	0050	<u>, </u>	PHONE	NO.	759	-11	91		E-MAI	LADDRESS	fsonl	Dult	10 10 VIA	ter. C	ON
E-MAIL ADDRESS Randy Christenson ante dis, com Quote NO.				-1	- / (<u>بر</u> ۲	NAL	YSIS	G (ATT/	ACH LIST IF I	Construction of the second second	in a saksi -		n andre seg	
PROJECT NO./NAME B0064480,0014,00301 / RACE/LENSING PLT3 SAMPLER(S) - PLEASE PRINT/	/SIGN NA	ME				7	Sims					Cer	rtifications	5	
TURNAROUND TIME REQUIRED 1 DAY 2 DAYS 3 DAYS STANDARD 0	DTHER					-	3							🗆 Drinkin	Ŭ
						NoC	Piere)oD		6
MATRIX GW=GROUNDWATER WW=WASTEWATER S=SOIL L=LIQUID SD=SC	OLID		- 620	ontaine	ers &		4	fils					oject Loca		
CODE: SL=SLUDGE DW=DRINKING WATER O=OIL WP=WIPE A=AIR W=W				servat	रेत जिल	8260	60	e h	700				Detroit	□ New Yo	ork
MERIT YEAR SAMPLE TAG LAB NO. FOR LAB USE ONLY DATE TIME IDENTIFICATION-DESCRIPTION	MATRIX # OF BOTTLES	NONE	HCI	H ₂ SO ₄	MeOH OTHER	8	20	Ŷ	7				Other ecial Instru		
	≥ ª ;w6		31	2		×	×	×	×						
	w 4		31												
.02 11 9:30 P.3453-SP-1 6- .03 11 10:30 P-3453-SP-2 6-			31	<i>i</i>			× ×								
	w 4 w 6		31	2		X			x						
		-	3			∧ ⊀		X X	^						
.05 // 11:30 P-34 53-5P-4	in 4		2 1	4		×		~							
.06 224-1412:10 P3453-5P-10 6	FW 6		3	12		X	×	X	$\boldsymbol{\lambda}$						
	n 4		31	1		X	X	X							
	·n 4	-	3	1		X		×							
	-h' 6		31	2		X	X	X	×						
	w 4		31			X	×	×	<u> </u>						
RELINQUISHED BY: DATE	150			1 I 1QUISH				111	25		۹۹.		0	PATE/11	TM50
SIGNATURE/ORGANIZATION	TIME	v	RECE	IVED BY			/		1	O.L.	2		2	BATTUI	1020
SIGNATURE/ORGANIZATION RELINQUISHED BY: DATE.	TIME	━┥┝	SIGN		ORGANIZ		SEAL II		m	INITIALS	NOTES		L TEMP. ON ARF		1020
SIGNATURE/ORGANIZATION DATE	TIME		SEAL				YES SEAL II		NO	INITIALS				W.	
							YES								

Report ID: S60177.01(01) Generated on 03/07/2014

Report to

Attention: Randy Christensen Arcadis 10559 Citation Drive Suite 100 Brighton, MI 48116

Phone: 810-225-1940 FAX: 810-229-8837 Email: Randy.Christensen@arcadis-us.com

Addtional Contacts: Sarah Carman, Doug Gustafson

Report Summary

Lab Sample ID(s): S60177.01-S60177.10 Project: B0064480.0014.00501 / RACER Lansing Plt 3 Collected Date: 03/03/2014 Submitted Date/Time: 03/04/2014 09:35 Sampled by: Tim Hofieth P.O. #: B0064480.0014.00501 Report produced by

Merit Laboratories, Inc. 2680 East Lansing Drive East Lansing, MI 48823

Phone: (517) 332-0167 FAX: (517) 332-6333

Contacts for report questions: Kevin George (kgeorge@meritlabs.com) Barbara Ball (bball@meritlabs.com)

Report Notes

Results relate only to items tested as received by the laboratory.

Methods may be modified for improved performance.

Results reported on a dry weight basis where applicable.

'Not detected' indicates that parameter was not found at a level equal to or greater than the reporting limit (RL).

Samples are held by the lab for 30 days from the final report date unless a written request to hold longer is provided by the client.

Report shall not be reproduced except in full, without the written approval of Merit Laboratories, Inc..

Laboratory Certifications:

Michigan DNRE (#9956), DOD/ISO 17025 (#69699), WBENC (#2005110032), Ohio EPA (#CL0002) IN Drinking Water (#C-MI-07), NELAC NY (#11814), NCDENR (#680), NC Drinking Water (#26702) Some analytes reported may not be certified. Full certification lists are available upon request.

Violetta F. Murshad

Violetta F. Murshak Laboratory Director

Sample Summary (10 samples)

Sample ID	Sample Tag	Matrix	Collected Date/Time
S60177.01	P-3453-SP-0	Liquid	03/03/2014 09:15
S60177.02	P 3453-SP-10	Liquid	03/03/2014 12:40
S60177.03	P 3453-SP-5	Liquid	03/03/2014 09:15
S60177.04	P 3453-SP-6	Liquid	03/03/2014 09:40
S60177.05	P-3453-SP-7	Liquid	03/03/2014 10:10
S60177.06	P-3453-SP-8	Liquid	03/03/2014 10:30
S60177.07	P-3453-SP-15	Liquid	03/03/2014 11:15
S60177.08	P-3453-SP-16	Liquid	03/03/2014 11:40
S60177.09	P-3453-SP-17	Liquid	03/03/2014 12:05
S60177.10	P-3453-SP-18	Liquid	03/03/2014 12:40

Lab Sample ID: S60177.01 Sample Tag: P-3453-SP-0 Collected Date/Time: 03/03/2014 09:15 Matrix: Liquid COC Reference: 76466

# Туре	Preservative(s)	Refrigerated?	Arrival Te	mp. (C) Therm	nometer #	
1 125ml Plastic	HNO3	Yes	1.2	IR		
Analysis	Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Extraction / Prep.						
Mercury Digestion	Completed			SW7471B	03/04/14 11:35	CCM
Metal Digestion	Completed			SW3015A	03/06/14 12:00	PER
Metals						
Antimony	Not detected	mg/L	0.005	SW6020A	03/06/14 16:11	PER 7440-36-0
Arsenic	0.005	mg/L	0.002	SW6020A	03/06/14 16:11	PER 7440-38-2
Barium	0.031	mg/L	0.005	SW6020A	03/06/14 16:11	PER 7440-39-3
Boron	0.26	mg/L	0.04	SW6020A	03/06/14 16:11	PER 7440-42-8
Cadmium	Not detected	mg/L	0.0005	SW6020A	03/06/14 16:11	PER 7440-43-9
Chromium	Not detected	mg/L	0.005	SW6020A	03/06/14 16:11	PER 7440-47-3
Cobalt	Not detected	mg/L	0.005	SW6020A	03/06/14 16:11	PER 7440-48-4
Copper	Not detected	mg/L	0.005	SW6020A	03/06/14 16:11	PER 7440-50-8
Iron	11.1	mg/L	0.02	SW6020A	03/07/14 12:29	PER 7439-89-6
Lead	Not detected	mg/L	0.003	SW6020A	03/06/14 16:11	PER 7439-92-1
Manganese	0.099	mg/L	0.005	SW6020A	03/06/14 16:11	PER 7439-96-5
Mercury	Not detected	mg/L	0.0001	SW7471B	03/04/14 16:23	CCM 7439-97-6
Nickel	0.017	mg/L	0.005	SW6020A	03/06/14 16:11	PER 7440-02-0
Selenium	Not detected	mg/L	0.005	SW6020A	03/06/14 16:11	PER 7782-49-2
Silver	Not detected	mg/L	0.0005	SW6020A	03/06/14 16:11	PER 7440-22-4
Vanadium	Not detected	mg/L	0.004	SW6020A	03/06/14 16:11	PER 7440-62-2
Zinc	0.006	mg/L	0.005	SW6020A	03/06/14 16:11	PER 7440-66-6

Lab Sample ID: S60177.02 Sample Tag: P 3453-SP-10 Collected Date/Time: 03/03/2014 12:40 Matrix: Liquid COC Reference: 76466

# Туре	Preservative(s)	Refrigerated?	Arrival Te	mp. (C) Therm	nometer #	
1 125ml Plastic	HNO3	Yes	1.2	IR		
Analysis	Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Extraction / Prep.						
Mercury Digestion	Completed			SW7471B	03/04/14 11:35	CCM
Metal Digestion	Completed			SW3015A	03/06/14 12:00	PER
Metals						
Antimony	Not detected	mg/L	0.005	SW6020A	03/06/14 16:18	PER 7440-36-0
Arsenic	0.007	mg/L	0.002	SW6020A	03/06/14 16:18	PER 7440-38-2
Barium	0.260	mg/L	0.005	SW6020A	03/06/14 16:18	PER 7440-39-3
Boron	0.15	mg/L	0.04	SW6020A	03/06/14 16:18	PER 7440-42-8
Cadmium	0.0012	mg/L	0.0005	SW6020A	03/06/14 16:18	PER 7440-43-9
Chromium	0.010	mg/L	0.005	SW6020A	03/06/14 16:18	PER 7440-47-3
Cobalt	Not detected	mg/L	0.005	SW6020A	03/06/14 16:18	PER 7440-48-4
Copper	0.006	mg/L	0.005	SW6020A	03/06/14 16:18	PER 7440-50-8
Iron	13.0	mg/L	0.02	SW6020A	03/07/14 12:31	PER 7439-89-6
Lead	Not detected	mg/L	0.003	SW6020A	03/06/14 16:18	PER 7439-92-1
Manganese	0.133	mg/L	0.005	SW6020A	03/06/14 16:18	PER 7439-96-5
Mercury	Not detected	mg/L	0.0001	SW7471B	03/04/14 16:53	CCM 7439-97-6
Nickel	0.015	mg/L	0.005	SW6020A	03/06/14 16:18	PER 7440-02-0
Selenium	Not detected	mg/L	0.005	SW6020A	03/06/14 16:18	PER 7782-49-2
Silver	Not detected	mg/L	0.0005	SW6020A	03/06/14 16:18	PER 7440-22-4
Vanadium	Not detected	mg/L	0.004	SW6020A	03/06/14 16:18	PER 7440-62-2
Zinc	0.018	mg/L	0.005	SW6020A	03/06/14 16:18	PER 7440-66-6

Lab Sample ID: S60177.03 Sample Tag: P 3453-SP-5 Collected Date/Time: 03/03/2014 09:15 Matrix: Liquid COC Reference: 76466

#	Туре	Preservative(s)		Refrigerated?	Arrival Te	mp. (C) Thermor	neter #	
1	125ml Plastic	HNO3		Yes	1.2	IR		
3	40ml Glass	HCL		Yes	1.2	IR		
Analy	/sis		Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Extra	action / Prep.							<u> </u>
Merc	ury Digestion		Completed			SW7471B	03/04/14 11:35	CCM
Meta	I Digestion		Completed			SW3015A	03/06/14 12:00	PER
pH cl	heck for VOCs		<2	STD Units		N/A	03/04/14 13:00	WAT
Meta	nls							
Antin	nony		Not detected	mg/L	0.005	SW6020A	03/06/14 16:20	PER 7440-36-0
Arsei	nic		0.007	mg/L	0.002	SW6020A	03/06/14 16:20	PER 7440-38-2
Bariu	Im		0.048	mg/L	0.005	SW6020A	03/06/14 16:20	PER 7440-39-3
Boro	n		0.26	mg/L	0.04	SW6020A	03/06/14 16:20	PER 7440-42-8
Cadn	nium		Not detected	mg/L	0.0005	SW6020A	03/06/14 16:20	PER 7440-43-9
Chro	mium		0.048	mg/L	0.005	SW6020A	03/06/14 16:20	PER 7440-47-3
Coba	alt		Not detected	mg/L	0.005	SW6020A	03/06/14 16:20	PER 7440-48-4
Copp	ber		0.016	mg/L	0.005	SW6020A	03/06/14 16:20	PER 7440-50-8
Iron			15.4	mg/L	0.02	SW6020A	03/07/14 12:32	PER 7439-89-6
Lead			Not detected	mg/L	0.003	SW6020A	03/06/14 16:20	PER 7439-92-1
Mang	ganese		0.102	mg/L	0.005	SW6020A	03/06/14 16:20	PER 7439-96-5
Merc	ury		Not detected	mg/L	0.0001	SW7471B	03/04/14 16:49	CCM 7439-97-6
Nicke	el		0.072	mg/L	0.005	SW6020A	03/06/14 16:20	PER 7440-02-0
Seler	nium		Not detected	mg/L	0.005	SW6020A	03/06/14 16:20	PER 7782-49-2
Silve	r		Not detected	mg/L	0.0005	SW6020A	03/06/14 16:20	PER 7440-22-4
Vana	dium		Not detected	mg/L	0.004	SW6020A	03/06/14 16:20	PER 7440-62-2
Zinc			0.011	mg/L	0.005	SW6020A	03/06/14 16:20	PER 7440-66-6
Orga	anics - Volatiles							
1,4-D	Dioxane		Not detected	ug/L	1	SW8260B - SIM	03/04/14 14:16	WAT 123-91-1
TCL	Volatile Organics 826	0						
1,1,2	-Trichloro-1,2,2-trifluoro	bethane	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 76-13-1
Aceto	one		15	ug/L	10	SW8260C	03/04/14 14:28	WAT 67-64-1
Carb	on disulfide		Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 75-15-0
Meth	yl Acetate		Not detected	ug/L	10	SW8260C	03/04/14 14:28	WAT 79-20-9
tert-N	lethyl butyl ether (MTB	E)	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 1634-04-4
2-But	tanone (MEK)		Not detected	ug/L	10	SW8260C	03/04/14 14:28	WAT 78-93-3
Dichl	orodifluoromethane		Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 75-71-8
Chlor	romethane		Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 74-87-3
Vinyl	chloride		Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 75-01-4
Brom	omethane		Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 74-83-9
Chlor	roethane		Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 75-00-3
Trich	lorofluoromethane		Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 75-69-4
1,1-C	Dichloroethene		Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 75-35-4
Meth	ylene chloride		Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 75-09-2
trans	-1,2-Dichloroethene		Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 156-60-5

Lab Sample ID: S60177.03 (continued) Sample Tag: P 3453-SP-5

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Organics - Volatiles (continued)						
TCL Volatile Organics 8260 (continued)						
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 75-34-3
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 156-59-2
Chloroform	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 67-66-3
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 71-55-6
Cyclohexane	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 110-82-7
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	03/04/14 14:28	WAT 108-10-1
2-Hexanone	Not detected	ug/L	10	SW8260C	03/04/14 14:28	WAT 591-78-6
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 56-23-5
Benzene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 71-43-2
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 107-06-2
Trichloroethene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 79-01-6
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 78-87-5
Bromodichloromethane	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 75-27-4
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 108-87-2
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 10061-01-5
Toluene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 108-88-3
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 10061-02-6
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 79-00-5
Tetrachloroethene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 127-18-4
Dibromochloromethane	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 124-48-1
Chlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 108-90-7
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 79-34-5
Ethylbenzene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 100-41-4
p,m-Xylene	Not detected	ug/L	2	SW8260C	03/04/14 14:28	WAT
o-Xylene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 95-47-6
Styrene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 100-42-5
Isopropylbenzene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 98-82-8
Bromoform	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 75-25-2
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 541-73-1
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 106-46-7
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 95-50-1
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 120-82-1
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 106-93-4
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	03/04/14 14:28	WAT 96-12-8

Lab Sample ID: S60177.04 Sample Tag: P 3453-SP-6 Collected Date/Time: 03/03/2014 09:40 Matrix: Liquid COC Reference: 76466

#	Туре	Preservative(s)		Refrigerated?	Arrival Te	mp. (C) Thermon	neter #	
	125ml Plastic	HNO3		Yes	1.2	IR		
3	40ml Glass	HCL		Yes	1.2	IR		
Analy	/sis		Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
	action / Prep.							
	ury Digestion		Completed			SW7471B	03/04/14 11:35	ССМ
	I Digestion		Completed			SW3015A	03/06/14 12:00	PER
pH cł	heck for VOCs		<2	STD Units		N/A	03/04/14 13:00	WAT
Meta	ls							
Antim	nony		Not detected	mg/L	0.005	SW6020A	03/06/14 16:23	PER 7440-36-0
Arser	nic		0.006	mg/L	0.002	SW6020A	03/06/14 16:23	PER 7440-38-2
Bariu	m		0.034	mg/L	0.005	SW6020A	03/06/14 16:23	PER 7440-39-3
Boror	า		0.26	mg/L	0.04	SW6020A	03/06/14 16:23	PER 7440-42-8
Cadn	nium		Not detected	mg/L	0.0005	SW6020A	03/06/14 16:23	PER 7440-43-9
Chro	mium		0.013	mg/L	0.005	SW6020A	03/06/14 16:23	PER 7440-47-3
Coba	llt		Not detected	mg/L	0.005	SW6020A	03/06/14 16:23	PER 7440-48-4
Copp	er		0.009	mg/L	0.005	SW6020A	03/06/14 16:23	PER 7440-50-8
Iron			12.3	mg/L	0.02	SW6020A	03/07/14 12:34	PER 7439-89-6
Lead			Not detected	mg/L	0.003	SW6020A	03/06/14 16:23	PER 7439-92-1
Mang	janese		0.097	mg/L	0.005	SW6020A	03/06/14 16:23	PER 7439-96-5
Merc	ury		Not detected	mg/L	0.0001	SW7471B	03/04/14 16:37	CCM 7439-97-6
Nicke	el 🛛		0.028	mg/L	0.005	SW6020A	03/06/14 16:23	PER 7440-02-0
Seler	nium		Not detected	mg/L	0.005	SW6020A	03/06/14 16:23	PER 7782-49-2
Silver	r		Not detected	mg/L	0.0005	SW6020A	03/06/14 16:23	PER 7440-22-4
Vana	dium		Not detected	mg/L	0.004	SW6020A	03/06/14 16:23	PER 7440-62-2
Zinc			0.008	mg/L	0.005	SW6020A	03/06/14 16:23	PER 7440-66-6
Orga	nics - Volatiles							
1,4-D	Dioxane		Not detected	ug/L	1	SW8260B - SIM	03/04/14 14:34	WAT 123-91-1
TCL	Volatile Organics 826	0						
1,1,2	-Trichloro-1,2,2-trifluoro	bethane	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 76-13-1
Aceto	one		15	ug/L	10	SW8260C	03/04/14 14:50	WAT 67-64-1
Carbo	on disulfide		Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 75-15-0
	yl Acetate		Not detected	ug/L	10	SW8260C	03/04/14 14:50	WAT 79-20-9
tert-N	lethyl butyl ether (MTB	E)	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 1634-04-4
2-But	tanone (MEK)		Not detected	ug/L	10	SW8260C	03/04/14 14:50	WAT 78-93-3
Dichle	orodifluoromethane		Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 75-71-8
Chlor	romethane		Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 74-87-3
Vinyl	chloride		Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 75-01-4
Brom	omethane		Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 74-83-9
Chlor	roethane		Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 75-00-3
Trich	lorofluoromethane		Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 75-69-4
1,1-D	Dichloroethene		Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 75-35-4
	ylene chloride		Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 75-09-2
trans	-1,2-Dichloroethene		Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 156-60-5

Lab Sample ID: S60177.04 (continued) Sample Tag: P 3453-SP-6

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Organics - Volatiles (continued)						
TCL Volatile Organics 8260 (continued)						
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 75-34-3
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 156-59-2
Chloroform	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 67-66-3
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 71-55-6
Cyclohexane	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 110-82-7
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	03/04/14 14:50	WAT 108-10-1
2-Hexanone	Not detected	ug/L	10	SW8260C	03/04/14 14:50	WAT 591-78-6
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 56-23-5
Benzene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 71-43-2
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 107-06-2
Trichloroethene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 79-01-6
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 78-87-5
Bromodichloromethane	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 75-27-4
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 108-87-2
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 10061-01-5
Toluene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 108-88-3
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 10061-02-6
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 79-00-5
Tetrachloroethene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 127-18-4
Dibromochloromethane	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 124-48-1
Chlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 108-90-7
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 79-34-5
Ethylbenzene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 100-41-4
p,m-Xylene	Not detected	ug/L	2	SW8260C	03/04/14 14:50	WAT
o-Xylene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 95-47-6
Styrene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 100-42-5
Isopropylbenzene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 98-82-8
Bromoform	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 75-25-2
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 541-73-1
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 106-46-7
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 95-50-1
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 120-82-1
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 106-93-4
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	03/04/14 14:50	WAT 96-12-8

Lab Sample ID: S60177.05 Sample Tag: P-3453-SP-7 Collected Date/Time: 03/03/2014 10:10 Matrix: Liquid COC Reference: 76466

#	Туре	Preservative(s)		Refrigerated?	Arrival Te	mp. (C) Thermor	neter #	
1	125ml Plastic	HNO3		Yes	1.2	IR		
3	40ml Glass	HCL		Yes	1.2	IR		
Ana	vsis		Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
	raction / Prep.							
	cury Digestion		Completed			SW7471B	03/04/14 11:35	CCM
Meta	al Digestion		Completed			SW3015A	03/06/14 12:00	PER
pН с	check for VOCs		<2	STD Units		N/A	03/04/14 13:00	WAT
Met	als							
Antii	mony		Not detected	mg/L	0.005	SW6020A	03/06/14 16:25	PER 7440-36-0
Arse	enic		0.006	mg/L	0.002	SW6020A	03/06/14 16:25	PER 7440-38-2
Bari	um		0.032	mg/L	0.005	SW6020A	03/06/14 16:25	PER 7440-39-3
Borc	n		0.27	mg/L	0.04	SW6020A	03/06/14 16:25	PER 7440-42-8
Cad	mium		Not detected	mg/L	0.0005	SW6020A	03/06/14 16:25	PER 7440-43-9
Chro	omium		Not detected	mg/L	0.005	SW6020A	03/06/14 16:25	PER 7440-47-3
Cob	alt		Not detected	mg/L	0.005	SW6020A	03/06/14 16:25	PER 7440-48-4
Сор	per		0.007	mg/L	0.005	SW6020A	03/06/14 16:25	PER 7440-50-8
Iron			13.1	mg/L	0.02	SW6020A	03/07/14 12:35	PER 7439-89-6
Lead	1		Not detected	mg/L	0.003	SW6020A	03/06/14 16:25	PER 7439-92-1
Man	ganese		0.097	mg/L	0.005	SW6020A	03/06/14 16:25	PER 7439-96-5
Mer	cury		Not detected	mg/L	0.0001	SW7471B	03/04/14 16:39	CCM 7439-97-6
Nick	el		0.019	mg/L	0.005	SW6020A	03/06/14 16:25	PER 7440-02-0
Sele	nium		Not detected	mg/L	0.005	SW6020A	03/06/14 16:25	PER 7782-49-2
Silve	er		Not detected	mg/L	0.0005	SW6020A	03/06/14 16:25	PER 7440-22-4
Van	adium		Not detected	mg/L	0.004	SW6020A	03/06/14 16:25	PER 7440-62-2
Zinc			0.008	mg/L	0.005	SW6020A	03/06/14 16:25	PER 7440-66-6
Org	anics - Volatiles							
1,4-l	Dioxane		Not detected	ug/L	1	SW8260B - SIM	03/04/14 14:53	WAT 123-91-1
TCL	Volatile Organics 826	60						
1,1,2	2-Trichloro-1,2,2-trifluor	bethane	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 76-13-1
Ace	one		15	ug/L	10	SW8260C	03/04/14 15:11	WAT 67-64-1
Cart	oon disulfide		Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 75-15-0
Meth	nyl Acetate		Not detected	ug/L	10	SW8260C	03/04/14 15:11	WAT 79-20-9
tert-	Methyl butyl ether (MTB	E)	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 1634-04-4
2-Bı	itanone (MEK)		Not detected	ug/L	10	SW8260C	03/04/14 15:11	WAT 78-93-3
Dich	lorodifluoromethane		Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 75-71-8
Chlo	oromethane		Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 74-87-3
Viny	l chloride		Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 75-01-4
Bror	nomethane		Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 74-83-9
Chlo	proethane		Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 75-00-3
	nlorofluoromethane		Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 75-69-4
1,1-	Dichloroethene		Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 75-35-4
Meth	nylene chloride		Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 75-09-2
trans	s-1,2-Dichloroethene		Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 156-60-5

Lab Sample ID: S60177.05 (continued) Sample Tag: P-3453-SP-7

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Organics - Volatiles (continued)						
TCL Volatile Organics 8260 (continued)						
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 75-34-3
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 156-59-2
Chloroform	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 67-66-3
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 71-55-6
Cyclohexane	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 110-82-7
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	03/04/14 15:11	WAT 108-10-1
2-Hexanone	Not detected	ug/L	10	SW8260C	03/04/14 15:11	WAT 591-78-6
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 56-23-5
Benzene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 71-43-2
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 107-06-2
Trichloroethene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 79-01-6
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 78-87-5
Bromodichloromethane	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 75-27-4
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 108-87-2
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 10061-01-5
Toluene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 108-88-3
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 10061-02-6
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 79-00-5
Tetrachloroethene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 127-18-4
Dibromochloromethane	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 124-48-1
Chlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 108-90-7
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 79-34-5
Ethylbenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 100-41-4
p,m-Xylene	Not detected	ug/L	2	SW8260C	03/04/14 15:11	WAT
o-Xylene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 95-47-6
Styrene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 100-42-5
Isopropylbenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 98-82-8
Bromoform	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 75-25-2
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 541-73-1
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 106-46-7
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 95-50-1
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 120-82-1
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 106-93-4
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	03/04/14 15:11	WAT 96-12-8

Lab Sample ID: S60177.06 Sample Tag: P-3453-SP-8 Collected Date/Time: 03/03/2014 10:30 Matrix: Liquid COC Reference: 76466

#	Туре	Preservative(s)		Refrigerated?	Arrival Ter	np. (C) Thermon	neter #	
3	40ml Glass	HCL		Yes	1.2	IR		
Ana	lysis		Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
	raction / Prep.							
pH o	check for VOCs		<2	STD Units		N/A	03/04/14 13:00	WAT
•								
-	anics - Volatiles						00/04/44 45:44	MAT 402 04 4
1,4-	Dioxane		Not detected	ug/L	1	SW8260B - SIM	03/04/14 15:11	WAT 123-91-1
тсі	Volatile Organics 8260							
	2-Trichloro-1,2,2-trifluoroet	hane	Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 76-13-1
	tone		15	ug/L	10	SW8260C	03/04/14 15:33	WAT 67-64-1
Carl	bon disulfide		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 75-15-0
Met	hyl Acetate		Not detected	ug/L	10	SW8260C	03/04/14 15:33	WAT 79-20-9
tert-	Methyl butyl ether (MTBE)		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 1634-04-4
2-Bi	utanone (MEK)		Not detected	ug/L	10	SW8260C	03/04/14 15:33	WAT 78-93-3
Dich	nlorodifluoromethane		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 75-71-8
Chlo	promethane		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 74-87-3
Viny	/l chloride		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 75-01-4
Bror	momethane		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 74-83-9
Chlo	proethane		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 75-00-3
Tric	hlorofluoromethane		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 75-69-4
1,1-	Dichloroethene		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 75-35-4
Met	hylene chloride		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 75-09-2
tran	s-1,2-Dichloroethene		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 156-60-5
1,1-	Dichloroethane		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 75-34-3
cis-	1,2-Dichloroethene		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 156-59-2
	oroform		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 67-66-3
	1-Trichloroethane		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 71-55-6
•	lohexane		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 110-82-7
	ethyl-2-pentanone (MIBK)		Not detected	ug/L	10	SW8260C	03/04/14 15:33	WAT 108-10-1
	exanone		Not detected	ug/L	10	SW8260C	03/04/14 15:33	WAT 591-78-6
	bon tetrachloride		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 56-23-5
	zene		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 71-43-2
	Dichloroethane		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 107-06-2
	hloroethene		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 79-01-6
	Dichloropropane		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 78-87-5
	modichloromethane		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 75-27-4
	hyl cyclohexane		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 108-87-2
	1,3-Dichloropropene		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 10061-01-5
	iene s 1 3 Dichloropropopo		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 108-88-3
	s-1,3-Dichloropropene		Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 10061-02-6
	2-Trichloroethane achloroethene		Not detected Not detected	ug/L	1	SW8260C SW8260C	03/04/14 15:33	WAT 79-00-5 WAT 127-18-4
	romochloromethane		Not detected	ug/L	1 1	SW8260C SW8260C	03/04/14 15:33	WAT 127-18-4 WAT 124-48-1
	orobenzene		Not detected	ug/L ug/L	1	SW8260C SW8260C	03/04/14 15:33 03/04/14 15:33	WAT 124-46-1 WAT 108-90-7
	2,2-Tetrachloroethane		Not detected	-	1	SW8260C SW8260C	03/04/14 15:33	WAT 108-90-7 WAT 79-34-5
1,1,	∠,∠-1 ธแลง แบเบธแเลเเธ			ug/L	I	0002000	00/07/17 10.00	VV/1 / J-J+-J

Lab Sample ID: S60177.06 (continued) Sample Tag: P-3453-SP-8

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst CAS # F	Flags
Organics - Volatiles (continued)							
TCL Volatile Organics 8260 (continued)							
Ethylbenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 100-41-4	
p,m-Xylene	Not detected	ug/L	2	SW8260C	03/04/14 15:33	WAT	
o-Xylene	Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 95-47-6	
Styrene	Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 100-42-5	
Isopropylbenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 98-82-8	
Bromoform	Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 75-25-2	
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 541-73-1	
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 106-46-7	
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 95-50-1	
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 120-82-1	
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 106-93-4	
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	03/04/14 15:33	WAT 96-12-8	

Lab Sample ID: S60177.07 Sample Tag: P-3453-SP-15 Collected Date/Time: 03/03/2014 11:15 Matrix: Liquid COC Reference: 76466

#	Туре	Preservative(s)		Refrigerated?	Arrival Te	mp. (C) Thermor	neter #	
1	125ml Plastic	HNO3		Yes	1.2	IR		
3	40ml Glass	HCL		Yes	1.2	IR		
Ana	alysis		Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
	traction / Prep.							<u> </u>
Mei	rcury Digestion		Completed			SW7471B	03/04/14 11:35	CCM
Met	tal Digestion		Completed			SW3015A	03/06/14 12:00	PER
pН	check for VOCs		<2	STD Units		N/A	03/04/14 13:00	WAT
Ме	tals							
Ant	imony		Not detected	mg/L	0.005	SW6020A	03/06/14 16:27	PER 7440-36-0
Ars	enic		0.007	mg/L	0.002	SW6020A	03/06/14 16:27	PER 7440-38-2
Bar	ium		0.033	mg/L	0.005	SW6020A	03/06/14 16:27	PER 7440-39-3
Bor	on		0.28	mg/L	0.04	SW6020A	03/06/14 16:27	PER 7440-42-8
Cad	dmium		Not detected	mg/L	0.0005	SW6020A	03/06/14 16:27	PER 7440-43-9
Chr	romium		0.010	mg/L	0.005	SW6020A	03/06/14 16:27	PER 7440-47-3
Cot	palt		Not detected	mg/L	0.005	SW6020A	03/06/14 16:27	PER 7440-48-4
Cop	oper		0.007	mg/L	0.005	SW6020A	03/06/14 16:27	PER 7440-50-8
Iron	1		13.5	mg/L	0.02	SW6020A	03/07/14 12:36	PER 7439-89-6
Lea	d		Not detected	mg/L	0.003	SW6020A	03/06/14 16:27	PER 7439-92-1
Mai	nganese		0.097	mg/L	0.005	SW6020A	03/06/14 16:27	PER 7439-96-5
Mei	rcury		Not detected	mg/L	0.0001	SW7471B	03/04/14 16:41	CCM 7439-97-6
Nic	kel		0.023	mg/L	0.005	SW6020A	03/06/14 16:27	PER 7440-02-0
Sel	enium		Not detected	mg/L	0.005	SW6020A	03/06/14 16:27	PER 7782-49-2
Silv	er		Not detected	mg/L	0.0005	SW6020A	03/06/14 16:27	PER 7440-22-4
Var	nadium		Not detected	mg/L	0.004	SW6020A	03/06/14 16:27	PER 7440-62-2
Zino	C		0.008	mg/L	0.005	SW6020A	03/06/14 16:27	PER 7440-66-6
Org	ganics - Volatiles							
1,4-	Dioxane		Not detected	ug/L	1	SW8260B - SIM	03/04/14 15:29	WAT 123-91-1
тсі	L Volatile Organics 826	0						
1,1,	2-Trichloro-1,2,2-trifluoro	bethane	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 76-13-1
Ace	etone		15	ug/L	10	SW8260C	03/04/14 15:55	WAT 67-64-1
Car	bon disulfide		Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 75-15-0
Met	thyl Acetate		Not detected	ug/L	10	SW8260C	03/04/14 15:55	WAT 79-20-9
tert	-Methyl butyl ether (MTB	E)	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 1634-04-4
2-B	utanone (MEK)		Not detected	ug/L	10	SW8260C	03/04/14 15:55	WAT 78-93-3
Dic	hlorodifluoromethane		Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 75-71-8
Chl	oromethane		Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 74-87-3
Vin	yl chloride		Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 75-01-4
Bro	momethane		Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 74-83-9
Chl	oroethane		Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 75-00-3
	chlorofluoromethane		Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 75-69-4
1,1-	-Dichloroethene		Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 75-35-4
Met	thylene chloride		Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 75-09-2
trar	ns-1,2-Dichloroethene		Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 156-60-5

Lab Sample ID: S60177.07 (continued) Sample Tag: P-3453-SP-15

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Organics - Volatiles (continued)						
TCL Volatile Organics 8260 (continued)						
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 75-34-3
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 156-59-2
Chloroform	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 67-66-3
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 71-55-6
Cyclohexane	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 110-82-7
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	03/04/14 15:55	WAT 108-10-1
2-Hexanone	Not detected	ug/L	10	SW8260C	03/04/14 15:55	WAT 591-78-6
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 56-23-5
Benzene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 71-43-2
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 107-06-2
Trichloroethene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 79-01-6
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 78-87-5
Bromodichloromethane	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 75-27-4
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 108-87-2
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 10061-01-5
Toluene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 108-88-3
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 10061-02-6
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 79-00-5
Tetrachloroethene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 127-18-4
Dibromochloromethane	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 124-48-1
Chlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 108-90-7
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 79-34-5
Ethylbenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 100-41-4
p,m-Xylene	Not detected	ug/L	2	SW8260C	03/04/14 15:55	WAT
o-Xylene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 95-47-6
Styrene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 100-42-5
Isopropylbenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 98-82-8
Bromoform	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 75-25-2
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 541-73-1
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 106-46-7
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 95-50-1
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 120-82-1
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 106-93-4
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	03/04/14 15:55	WAT 96-12-8

Lab Sample ID: S60177.08 Sample Tag: P-3453-SP-16 Collected Date/Time: 03/03/2014 11:40 Matrix: Liquid COC Reference: 76466

Sample Containers

#	Туре	Preservative(s)		Refrigerated?	Arrival Te	mp. (C) Thermor	neter #	
1	125ml Plastic	HNO3		Yes	1.2	IR		
3	40ml Glass	HCL		Yes	1.2	IR		
Ana	lysis		Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
	raction / Prep.							<u> </u>
Mer	cury Digestion		Completed			SW7471B	03/04/14 11:35	CCM
Met	al Digestion		Completed			SW3015A	03/06/14 12:00	PER
pН	check for VOCs		<2	STD Units		N/A	03/04/14 13:00	WAT
Met	tals							
Anti	mony		Not detected	mg/L	0.005	SW6020A	03/06/14 16:31	PER 7440-36-0
Arse	enic		0.006	mg/L	0.002	SW6020A	03/06/14 16:31	PER 7440-38-2
Bari	um		0.221	mg/L	0.005	SW6020A	03/06/14 16:31	PER 7440-39-3
Bord	on		0.16	mg/L	0.04	SW6020A	03/06/14 16:31	PER 7440-42-8
Cad	lmium		Not detected	mg/L	0.0005	SW6020A	03/06/14 16:31	PER 7440-43-9
Chro	omium		0.009	mg/L	0.005	SW6020A	03/06/14 16:31	PER 7440-47-3
Cob	alt		Not detected	mg/L	0.005	SW6020A	03/06/14 16:31	PER 7440-48-4
Сор	per		0.007	mg/L	0.005	SW6020A	03/06/14 16:31	PER 7440-50-8
Iron			7.57	mg/L	0.02	SW6020A	03/07/14 12:37	PER 7439-89-6
Lea	d		Not detected	mg/L	0.003	SW6020A	03/06/14 16:31	PER 7439-92-1
Mar	nganese		0.101	mg/L	0.005	SW6020A	03/06/14 16:31	PER 7439-96-5
Mer	cury		Not detected	mg/L	0.0001	SW7471B	03/04/14 16:43	CCM 7439-97-6
Nick	kel		0.018	mg/L	0.005	SW6020A	03/06/14 16:31	PER 7440-02-0
Sele	enium		Not detected	mg/L	0.005	SW6020A	03/06/14 16:31	PER 7782-49-2
Silve	er		Not detected	mg/L	0.0005	SW6020A	03/06/14 16:31	PER 7440-22-4
Van	adium		Not detected	mg/L	0.004	SW6020A	03/06/14 16:31	PER 7440-62-2
Zinc	;		0.014	mg/L	0.005	SW6020A	03/06/14 16:31	PER 7440-66-6
Org	anics - Volatiles							
1,4-	Dioxane		Not detected	ug/L	1	SW8260B - SIM	03/04/14 15:47	WAT 123-91-1
TCL	Volatile Organics 826	60						
1,1,	2-Trichloro-1,2,2-trifluor	oethane	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 76-13-1
Ace	tone		15	ug/L	10	SW8260C	03/05/14 17:52	WAT 67-64-1
Carl	bon disulfide		Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 75-15-0
Met	hyl Acetate		Not detected	ug/L	10	SW8260C	03/05/14 17:52	WAT 79-20-9
tert-	Methyl butyl ether (MTE	BE)	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 1634-04-4
2-Bi	utanone (MEK)		Not detected	ug/L	10	SW8260C	03/05/14 17:52	WAT 78-93-3
Dich	nlorodifluoromethane		Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 75-71-8
Chlo	promethane		Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 74-87-3
Viny	/l chloride		Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 75-01-4
Bror	nomethane		Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 74-83-9
Chlo	proethane		Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 75-00-3
	hlorofluoromethane		Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 75-69-4
	Dichloroethene		Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 75-35-4
	hylene chloride		Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 75-09-2
tran	s-1,2-Dichloroethene		Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 156-60-5

Lab Sample ID: S60177.08 (continued) Sample Tag: P-3453-SP-16

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Organics - Volatiles (continued)						
TCL Volatile Organics 8260 (continued)						
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 75-34-3
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 156-59-2
Chloroform	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 67-66-3
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 71-55-6
Cyclohexane	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 110-82-7
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	03/05/14 17:52	WAT 108-10-1
2-Hexanone	Not detected	ug/L	10	SW8260C	03/05/14 17:52	WAT 591-78-6
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 56-23-5
Benzene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 71-43-2
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 107-06-2
Trichloroethene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 79-01-6
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 78-87-5
Bromodichloromethane	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 75-27-4
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 108-87-2
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 10061-01-5
Toluene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 108-88-3
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 10061-02-6
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 79-00-5
Tetrachloroethene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 127-18-4
Dibromochloromethane	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 124-48-1
Chlorobenzene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 108-90-7
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 79-34-5
Ethylbenzene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 100-41-4
p,m-Xylene	Not detected	ug/L	2	SW8260C	03/05/14 17:52	WAT
o-Xylene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 95-47-6
Styrene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 100-42-5
Isopropylbenzene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 98-82-8
Bromoform	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 75-25-2
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 541-73-1
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 106-46-7
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 95-50-1
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 120-82-1
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 106-93-4
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	03/05/14 17:52	WAT 96-12-8

Lab Sample ID: S60177.09 Sample Tag: P-3453-SP-17 Collected Date/Time: 03/03/2014 12:05 Matrix: Liquid COC Reference: 76466

Sample Containers

	#	Туре	Preservative(s)		Refrigerated?	Arrival Te	mp. (C) Thermor	neter #	
Analysis Results Units RL Method Run DateTime Analysis CAS # Fage Extraction / Prep. SW7471B 03/04/14 11:36 CCM Metall Digestion Completed SW3015A 03/06/14 12:00 PER pit check for VOCs -2 STD Units N/A 03/06/14 12:00 WAT Metall Digestion Completed SW3015A 03/06/14 16:33 PER 7440-38-0 Antimony Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-38-0 Bairum 0.232 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-42-8 Cadmium Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-42-8 Cadmium Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-42-8 Cadmium Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-42-8 Cadmium Not detected	1	125ml Plastic	HNO3		Yes	1.2	IR		
Erractor / Prep. SW7471B 03004/14 11:35 CCM Marcury Digestion Completed SW3315A 03004/14 11:35 CCM pH check for VOCs -2 STD Units N/A 03004/14 11:30 PER Antimony Not detected mg1. 0.005 SW6020A 0306/14 16:33 PER 7440-38-0 Antimony Not detected mg1. 0.005 SW6020A 0306/14 16:33 PER 7440-38-0 Sarenic 0.005 mg1. 0.005 SW6020A 0306/14 16:33 PER 7440-38-0 Sarenic 0.005 mg1. 0.005 SW6020A 0306/14 16:33 PER 7440-38-0 Cadmium Not detected mg1. 0.005 SW6020A 0306/14 16:33 PER 7440-48-8 Cobalt Not detected mg1. 0.005 SW6020A 0306/14 16:33 PER 7440-48-8 Cobalt Not detected mg1. 0.005 SW6020A 0306/14 16:33 PER 7440-68-0 Cobalt	3	40ml Glass	HCL		Yes	1.2	IR		
Extraction / Prep. Completed SW7471B 03/04/14 11:35 CCM Mercury Digestion Completed SW3015A 03/06/14 12:00 PER pH check for VOCs -2 STD Units N/A 03/06/14 12:00 PER Antimony Not detected mgL 0.005 SW6020A 03/06/14 16:33 PER 7.440-38-0 Antimony Not detected mgL 0.005 SW6020A 03/06/14 16:33 PER 7.440-38-0 Barium 0.232 mgL 0.005 SW6020A 03/06/14 16:33 PER 7.440-38-0 Cohalt Not detected mgL 0.005 SW6020A 03/06/14 16:33 PER 7.440-42-8 Cohalt Not detected mgL 0.005 SW6020A 03/06/14 16:33 PER 7.440-43-9 Chomium 0.016 mgL 0.005 SW6020A 03/06/14 16:33 PER 7.440-47-3 Cobalt Not detected mgL 0.005 SW6020A 03/06/14 16:33 PER 7.440-47-3 <td>Ana</td> <td>lysis</td> <td></td> <td>Results</td> <td>Units</td> <td>RL</td> <td>Method</td> <td>Run Date/Time</td> <td>Analyst CAS # Flags</td>	Ana	lysis		Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Meal Dipelion pit check for VOCsCompleted 	-	•							
pH check for VOCs <2 STD Units N/A 0304/14 13:00 WAT Metans SW6020A 0306/14 16:33 PER 740-38-2 Asenicio 0.005 mg/L 0.005 SW6020A 0306/14 16:33 PER 740-38-2 Barium 0.232 mg/L 0.005 SW6020A 0306/14 16:33 PER 740-38-3 Barium 0.232 mg/L 0.005 SW6020A 0306/14 16:33 PER 740-42-8 Cadmium 0.16 mg/L 0.005 SW6020A 0306/14 16:33 PER 740-42-8 Cadmium 0.013 mg/L 0.005 SW6020A 0306/14 16:33 PER 740-42-8 Cobalt Comper 0.006 mg/L 0.005 SW6020A 0306/14 16:33 PER 740-42-8 Cobalt Comper 0.006 mg/L 0.005 SW6020A 0306/14 16:33 PER 740-62-3 Ica Not detected mg/L 0.005 SW6020A <	Mer	cury Digestion		Completed			SW7471B	03/04/14 11:35	CCM
Mateins Not detected mg/L 0.005 SW602DA 0.306/14 16:33 PER 7.440.36-0 Assenic 0.005 mg/L 0.002 SW602DA 0.306/14 16:33 PER 7.440.38-2 Barium 0.232 mg/L 0.005 SW602DA 0.306/14 16:33 PER 7.440.38-2 Cadmium 0.16 mg/L 0.005 SW602DA 0.306/14 16:33 PER 7.440.42-8 Cadmium Not detected mg/L 0.005 SW602DA 0.306/14 16:33 PER 7.440.42-8 Cobatt Not detected mg/L 0.005 SW602DA 0.306/14 16:33 PER 7.440.45-8 Cobatt Not detected mg/L 0.005 SW602DA 0.306/14 16:33 PER 7.440.45-8 Lead Not detected mg/L 0.005 SW602DA 0.306/14 16:33 PER 7.440-45-8 Mercury Not detected mg/L 0.005 SW602DA 0.306/14 16:33 PER 7.439-95-5 SWercury	Met	al Digestion		Completed			SW3015A	03/06/14 12:00	PER
Antimony Not detected mg/L 0.005 SW6020A 0306/14/16/33 PER 7440-38-2 Arsenic 0.005 mg/L 0.005 SW6020A 0306/14/16/33 PER 7440-38-2 Barium 0.232 mg/L 0.005 SW6020A 0306/14/16/33 PER 7440-43-9 Cadmium 0.16 mg/L 0.005 SW6020A 0306/14/16/33 PER 7440-43-9 Cobalt 0.013 mg/L 0.005 SW6020A 0306/14/16/33 PER 7440-43-9 Cobalt Not detected mg/L 0.005 SW6020A 0306/14/16/33 PER 7440-43-9 Copper 0.006 mg/L 0.005 SW6020A 0306/14/16/33 PER 7440-84-9 Manganese 0.103 mg/L 0.003 SW6020A 0306/14/16/33 PER 7440-24-2 Marganese 0.016 mg/L 0.005 SW6020A 0306/14/16/33 PER 7440-22-2 Silver Not detected mg/L	pН	check for VOCs		<2	STD Units		N/A	03/04/14 13:00	WAT
Arsenic 0.005 mg/L 0.002 SW6020A 0.306/t4 16:33 PER 7440-38-2 Barlum 0.232 mg/L 0.005 SW6020A 0.306/t4 16:33 PER 7440-39-3 Boron 0.16 mg/L 0.005 SW6020A 0.306/t4 16:33 PER 7440-47-3 Cadmium Not detected mg/L 0.005 SW6020A 0.306/t4 16:33 PER 7440-47-3 Cobalt Not detected mg/L 0.005 SW6020A 0.306/t4 16:33 PER 7440-47-3 Cobalt 0.006 mg/L 0.005 SW6020A 0.306/t4 16:33 PER 7440-57-8 Iron 8.23 mg/L 0.005 SW6020A 0.306/t4 16:33 PER 7439-97-6 Marganese 0.103 mg/L 0.005 SW6020A 0.306/t4 16:33 PER 7439-97-6 Mercury Not detected mg/L 0.005 SW6020A 0.306/t4 16:33 PER 7440-22-0 SWer Not detected mg/L<	Met	als							
Barium 0.232 mg/L 0.05 SW6020A 0.306/14 16:33 PER 7440-39-3 Boron 0.16 mg/L 0.005 SW6020A 0.306/14 16:33 PER 7440-42-9 Chromium 0.014 detected mg/L 0.005 SW6020A 0.306/14 16:33 PER 7440-47-9 Cobal 0.006 mg/L 0.005 SW6020A 0.306/14 16:33 PER 7440-47-9 Cobal 0.006 mg/L 0.005 SW6020A 0.306/14 16:33 PER 7439-86-6 Lead 0.006 mg/L 0.005 SW6020A 0.306/14 16:33 PER 7439-86-6 Manganese 0.103 mg/L 0.005 SW6020A 0.306/14 16:33 PER 7439-86-6 Mercury Not detected mg/L 0.005 SW6020A 0.306/14 16:33 PER 7439-86-6 Silver Not detected mg/L 0.005 SW6020A 0.306/14 16:33 PER 7440-22-0 Silver Not detected mg/	Anti	mony		Not detected	mg/L	0.005	SW6020A	03/06/14 16:33	PER 7440-36-0
Beron 0.16 mg/L 0.04 SW6020A 0.306/14 16:33 PER 7440-42-8 Cadmium Not detected mg/L 0.005 SW6020A 0.306/14 16:33 PER 7440-47-3 Cobalt Not detected mg/L 0.005 SW6020A 0.306/14 16:33 PER 7440-48-4 Copper 0.006 mg/L 0.005 SW6020A 0.306/14 16:33 PER 7440-48-4 Copper 0.006 mg/L 0.003 SW6020A 0.306/14 16:33 PER 7440-89-6 Lead Not detected mg/L 0.003 SW6020A 0.306/14 16:33 PER 7439-89-6 Mercury Not detected mg/L 0.001 SW7471B 0.306/14 16:33 PER 7440-42-8 Neteled mg/L 0.005 SW6020A 0.306/14 16:33 PER 7440-62-2 Silver Not detected mg/L 0.005 SW6020A 0.306/14 16:33 PER 7440-62-2 Silver Not detected mg/L	Arse	enic		0.005	mg/L	0.002	SW6020A	03/06/14 16:33	PER 7440-38-2
Cadmium Not detected mg/L 0.005 SW6020A 0306/14 16:33 PER 7440-43-9 Chromium 0.013 mg/L 0.005 SW6020A 0306/14 16:33 PER 7440-47-3 Copper 0.006 mg/L 0.005 SW6020A 0306/14 16:33 PER 7440-48-0 Copper 0.006 mg/L 0.005 SW6020A 0306/14 16:33 PER 7439-96-1 Lead Not detected mg/L 0.001 SW6020A 0306/14 16:33 PER 7439-96-5 Manganese 0.103 mg/L 0.005 SW6020A 0306/14 16:33 PER 7439-96-5 Mercury Not detected mg/L 0.005 SW6020A 0306/14 16:33 PER 7440-62-2 Silver Not detected mg/L 0.005 SW6020A 0306/14 16:33 PER 7440-62-2 Silver Not detected mg/L 0.005 SW6020A 0306/14 16:33 PER 7440-62-2 Silver Not detected	Bari	um		0.232	mg/L	0.005	SW6020A	03/06/14 16:33	PER 7440-39-3
Chromium 0.013 mg/L 0.005 SW6020A 0.306/14 16:33 PER 7440-47.3 Cobalt Not detected mg/L 0.005 SW6020A 0.306/14 16:33 PER 7440-48.4 Copper 0.006 mg/L 0.005 SW6020A 0.306/14 16:33 PER 7440-48.4 Iron 8.23 mg/L 0.02 SW6020A 0.306/14 16:33 PER 7439-89-6 Lead Not detected mg/L 0.005 SW6020A 0.306/14 16:33 PER 7439-92-1 Manganese 0.103 mg/L 0.005 SW6020A 0.306/14 16:33 PER 7439-92-1 Marcury Not detected mg/L 0.005 SW6020A 0.306/14 16:33 PER 7440-62-2 Silver Not detected mg/L 0.005 SW6020A 0.306/14 16:33 PER 7440-62-2 Zinc Not detected mg/L 0.004 SW6020A 0.306/14 16:33 PER 7440-62-2 Zinc Not detected	Bord	on		0.16	mg/L	0.04	SW6020A	03/06/14 16:33	PER 7440-42-8
Cobalt Not detected mg/L 0.005 SW6020A 0306/14 16:33 PER 7440-80-31 Copper 0.006 mg/L 0.005 SW6020A 0306/14 16:33 PER 7430-80-31 Iron 8.23 mg/L 0.02 SW6020A 0306/14 16:33 PER 7439-89-61 Lad Not detected mg/L 0.005 SW6020A 0306/14 16:33 PER 7439-89-51 Manganese 0.103 mg/L 0.005 SW6020A 0306/14 16:33 PER 7439-97-61 Nickel 0.016 mg/L 0.005 SW6020A 0306/14 16:33 PER 740-62-0 Steinum Not detected mg/L 0.005 SW6020A 0306/14 16:33 PER 740-62-0 Steinum Not detected mg/L 0.005 SW6020A 0306/14 16:33 PER 740-62-0 Zinc 0.017 mg/L 0.005 SW6020A 0306/14 16:33 PER 740-22-0 Zinc Not detected mg/L	Cad	lmium		Not detected	mg/L	0.0005	SW6020A	03/06/14 16:33	PER 7440-43-9
Copper 0.006 mg/L 0.005 SW6020A 0.306/14 16.33 PER 7440-50-8 Iron 8.23 mg/L 0.02 SW6020A 0.307/14 12.39 PER 7439-89-6 Lead Not detected mg/L 0.003 SW6020A 0.306/14 16.33 PER 7439-89-6 Manganese 0.103 mg/L 0.005 SW6020A 0.306/14 16.33 PER 7439-97-6 Mickel 0.016 mg/L 0.005 SW6020A 0.306/14 16.33 PER 7440-02-0 Selenium Not detected mg/L 0.005 SW6020A 0.306/14 16.33 PER 7440-62-2 Silver Not detected mg/L 0.005 SW6020A 0.306/14 16.33 PER 7440-62-2 Zinc Not detected mg/L 0.005 SW6020A 0.306/14 16.33 PER 7440-62-2 Zinc Not detected mg/L 0.005 SW6020A 0.306/14 16.33 PER 740-62-2 Zinc mg/L 0.004<	Chro	omium		0.013	mg/L	0.005	SW6020A	03/06/14 16:33	PER 7440-47-3
Iron 8.23 mg/L 0.02 SW6020A 03/07/14 12:39 PER 7439-89-6 Lead Not detected mg/L 0.003 SW6020A 03/06/14 16:33 PER 7439-89-1 Manganese 0.103 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7439-97-6 Nickel 0.016 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7449-02-0 Selenium Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-02-0 Silver Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 740-02-0 Silver Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 740-02-2 Vanadium Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 740-62-2 Zinc 0.017 mg/L 0.005 SW6020A 03/06/14 16:33 PER 740-62-2 Zinc 0.017 mg/L	Cob	alt		Not detected	mg/L	0.005	SW6020A	03/06/14 16:33	PER 7440-48-4
Lead Not detected mg/L 0.003 SW6020A 03/06/14 16:33 PER 7439-92-1 Manganese 0.103 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7439-92-1 Mercury Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 7439-97-6 Nickel 0.016 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-02-0 Selenium Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-02-0 Silver Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-62-0 Zinc 0.017 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-62-0 Zinc 0.017 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-62-0 J.4-Dioxane Not detected ug/L 1 SW8260C 03/06/14 16:30 PER 7440-62-0 J.1,2-Trichloro-1,2,2-trifluoroethane<	Сор	per		0.006	mg/L	0.005	SW6020A	03/06/14 16:33	PER 7440-50-8
Maganese 0.103 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7439-96-5 Mercury Not detected mg/L 0.001 SW7471B 03/04/14 16:45 CCM 7439-97-6 Nickel 0.016 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-02-0 Selenium Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-62-2 Silver Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-62-2 Zinc 0.017 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-62-2 Zinc 0.017 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-62-2 Zinc 0.017 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-62-2 Zinc 0.017 mg/L 0.005 SW620A 03/06/14 16:34 WAT 75-15 Detarrichioror-1,2,2-trifiluoroethane Not detecte	Iron			8.23	mg/L	0.02	SW6020A	03/07/14 12:39	PER 7439-89-6
Mercury Not detected mg/L 0.0001 SW7471B 0.3/04/14 16:45 CCM 7439-97-6 Nickel 0.016 mg/L 0.005 SW6020A 0.3/06/14 16:33 PER 7440-02-0 Selenium Not detected mg/L 0.005 SW6020A 0.3/06/14 16:33 PER 7440-02-0 Silver Not detected mg/L 0.005 SW6020A 0.3/06/14 16:33 PER 7440-62-2 Vanadium Not detected mg/L 0.005 SW6020A 0.3/06/14 16:33 PER 7440-62-2 Zinc 0.017 mg/L 0.005 SW6020A 0.3/06/14 16:33 PER 7440-62-2 Zinc 0.017 mg/L 0.005 SW6020A 0.3/06/14 16:33 PER 7440-62-2 Zinc 0.017 mg/L 0.005 SW6020A 0.3/06/14 16:33 PER 7440-62-2 Zinc 0.017 mg/L 1 SW8260C 0.3/05/14 18:14 WAT 76-13-1 Zinc ug/L 1	Lea	d		Not detected	mg/L	0.003	SW6020A	03/06/14 16:33	PER 7439-92-1
Nickel 0.016 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-02-0 Selenium Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 742-49-2 Silver Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-22-4 Vanadium Not detected mg/L 0.004 SW6020A 03/06/14 16:33 PER 7440-62-2 Zinc 0.017 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-66-6 Organics - Volatiles	Mar	nganese		0.103	mg/L	0.005	SW6020A	03/06/14 16:33	PER 7439-96-5
Selenium Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 7782-49-2 Silver Not detected mg/L 0.0005 SW6020A 03/06/14 16:33 PER 7440-62-2 Vanadium Not detected mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-62-2 Zinc 0.017 mg/L 0.005 SW6020A 03/06/14 16:33 PER 7440-62-2 Organics - Volatiles	Mer	cury		Not detected	mg/L	0.0001	SW7471B	03/04/14 16:45	CCM 7439-97-6
Silver Not detected mg/L 0.0005 SW6020A 0.3/06/14 16:33 PER 7440-22-4 Vanadium Not detected mg/L 0.004 SW6020A 0.3/06/14 16:33 PER 7440-62-2 Zinc 0.017 mg/L 0.005 SW6020A 0.3/06/14 16:33 PER 7440-62-2 Organics - Volatiles	Nick	kel		0.016	mg/L	0.005	SW6020A	03/06/14 16:33	PER 7440-02-0
Vanadium Not detected ng/L 0.004 SW6020A 03/06/14 16:33 PER 7440-62-2 Zinc O.017 ng/L 0.005 SW6020A 03/06/14 16:33 PER 7440-62-2 Organics - Volatiles Not detected ug/L 1 SW8260B - SIM 03/04/14 16:06 WAT 123-91-1 TCL Volatile Organics 8260 Ug/L 1 SW8260C 03/05/14 18:14 WAT 76-13-1 Acetone 16 ug/L 10 SW8260C 03/05/14 18:14 WAT 76-13-1 Carbon disulfide Not detected ug/L 10 SW8260C 03/05/14 18:14 WAT 76-13-1 Acetone Not detected ug/L 10 SW8260C 03/05/14 18:14 WAT 76-13-1 Chron disulfide Not detected ug/L 10 SW8260C 03/05/14 18:14 WAT 75-15-0 Methyl Acetate Not detected ug/L 10 SW8260C 03/05/14 18:14 WAT 78-93-3 Dichlorodifluoromethane	Sele	enium		Not detected	mg/L	0.005	SW6020A	03/06/14 16:33	PER 7782-49-2
Zinc0.017mg/L0.005SW6020A0.3/06/14 16:33PER7440-66-6Organics - Volatiles 1,4-DioxaneNot detectedug/L1SW8260B - SIM0.3/04/14 16:06WAT123-91-1TCL Volatile Organics 8260ug/L1SW8260C0.3/05/14 18:14WAT76-13-1Acetone16ug/L10SW8260C0.3/05/14 18:14WAT76-13-1Carbon disulfideNot detectedug/L1SW8260C0.3/05/14 18:14WAT76-13-1Carbon disulfideNot detectedug/L1SW8260C0.3/05/14 18:14WAT76-13-1Carbon disulfideNot detectedug/L1SW8260C0.3/05/14 18:14WAT76-13-1Carbon disulfideNot detectedug/L1SW8260C0.3/05/14 18:14WAT76-93-3DichlorodifluoromethaneNot detectedug/L1SW8260C0.3/05/14 18:14WAT78-93-3DichlorodifluoromethaneNot detectedug/L1SW8260C0.3/05/14 18:14WAT75-01-4BrommethaneNot detectedug/L1SW8260C0.3/05/14 18:14WAT75-01-4ChloromethaneNot detectedug/L1SW8260C0.3/05/14 18:14WAT75-01-4ChloromethaneNot detectedug/L1SW8260C0.3/05/14 18:14WAT75-01-4ChloromethaneNot detectedug/L1SW8260C0.3/05/14 18:14WAT75-01-4C	Silve	er		Not detected	mg/L	0.0005	SW6020A	03/06/14 16:33	PER 7440-22-4
Organics - Volatiles 1,4-Dioxane Not detected ug/L 1 SW8260B - SIM 03/04/14 16:06 WAT 123-91-1 TCL Volatile Organics 8260	Van	adium		Not detected	mg/L	0.004	SW6020A	03/06/14 16:33	PER 7440-62-2
1,4-Dioxane Not detected ug/L 1 SW8260B - SIM 03/04/14 16:06 WAT 123-91-1 TCL Volatile Organics 8260	Zinc	;		0.017	mg/L	0.005	SW6020A	03/06/14 16:33	PER 7440-66-6
TCL Volatile Organics 8260 1,1,2-Trichloro-1,2,2-trifluoroethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 76-13-1 Acetone 16 ug/L 10 SW8260C 03/05/14 18:14 WAT 75-15-0 Carbon disulfide Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-15-0 Methyl Acetate Not detected ug/L 10 SW8260C 03/05/14 18:14 WAT 79-20-9 tert-Methyl butyl ether (MTBE) Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 78-93-3 Dichlorodifluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-71-8 Chloromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-87-3 Vinyl chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-87-3 Vinyl chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-87-3 Chloroethane Not detecte	Org	anics - Volatiles							
1,1,2-Trichloro-1,2,2-trifluoroethaneNot detectedug/L1SW8260C03/05/14 18:14WAT76-13-1Acetone16ug/L10SW8260C03/05/14 18:14WAT67-64-1Carbon disulfideNot detectedug/L1SW8260C03/05/14 18:14WAT75-15-0Methyl AcetateNot detectedug/L10SW8260C03/05/14 18:14WAT79-20-9tert-Methyl butyl ether (MTBE)Not detectedug/L1SW8260C03/05/14 18:14WAT78-93-32-Butanone (MEK)Not detectedug/L1SW8260C03/05/14 18:14WAT75-71-8DichlorodifluoromethaneNot detectedug/L1SW8260C03/05/14 18:14WAT75-71-8ChloromethaneNot detectedug/L1SW8260C03/05/14 18:14WAT75-01-4Vinyl chlorideNot detectedug/L1SW8260C03/05/14 18:14WAT75-01-4BromomethaneNot detectedug/L1SW8260C03/05/14 18:14WAT75-00-3ChloroethaneNot detectedug/L1SW8260C03/05/14 18:14WAT75-00-3TrichlorofluoromethaneNot detectedug/L1SW8260C03/05/14 18:14WAT75-00-3ChloroethaneNot detectedug/L1SW8260C03/05/14 18:14WAT75-09-41,1-DichloroetheneNot detectedug/L1SW8260C03/05/14 18:14WAT75-09-4 <td>1,4-</td> <td>Dioxane</td> <td></td> <td>Not detected</td> <td>ug/L</td> <td>1</td> <td>SW8260B - SIM</td> <td>03/04/14 16:06</td> <td>WAT 123-91-1</td>	1,4-	Dioxane		Not detected	ug/L	1	SW8260B - SIM	03/04/14 16:06	WAT 123-91-1
Acetone16ug/L10SW8260C03/05/14 18:14WAT67-64-1Carbon disulfideNot detectedug/L1SW8260C03/05/14 18:14WAT75-15-0Methyl AcetateNot detectedug/L10SW8260C03/05/14 18:14WAT79-20-9tert-Methyl butyl ether (MTBE)Not detectedug/L1SW8260C03/05/14 18:14WAT76-93-32-Butanone (MEK)Not detectedug/L10SW8260C03/05/14 18:14WAT78-93-3DichlorodifluoromethaneNot detectedug/L1SW8260C03/05/14 18:14WAT75-71-8ChloromethaneNot detectedug/L1SW8260C03/05/14 18:14WAT75-71-8ChloromethaneNot detectedug/L1SW8260C03/05/14 18:14WAT75-01-4Vinyl chlorideNot detectedug/L1SW8260C03/05/14 18:14WAT75-01-4BromomethaneNot detectedug/L1SW8260C03/05/14 18:14WAT75-01-4ChloroethaneNot detectedug/L1SW8260C03/05/14 18:14WAT75-00-3TrichlorofluoromethaneNot detectedug/L1SW8260C03/05/14 18:14WAT75-69-41,1-DichloroetheneNot detectedug/L1SW8260C03/05/14 18:14WAT75-35-4Methylene chlorideNot detectedug/L1SW8260C03/05/14 18:14WAT75-35-4Met	TCL	Volatile Organics 826	0						
Carbon disulfide Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-15-0 Methyl Acetate Not detected ug/L 10 SW8260C 03/05/14 18:14 WAT 79-20-9 tert-Methyl butyl ether (MTBE) Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 78-93-3 2-Butanone (MEK) Not detected ug/L 10 SW8260C 03/05/14 18:14 WAT 78-93-3 Dichlorodifluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-71-8 Chloromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-01-4 Vinyl chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-01-4 Bromomethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-01-4 If constance Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-00-3	1,1,	2-Trichloro-1,2,2-trifluoro	bethane	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 76-13-1
Methyl Acetate Not detected ug/L 10 SW8260C 03/05/14 18:14 WAT 79-20-9 tert-Methyl butyl ether (MTBE) Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 1634-04-4 2-Butanone (MEK) Not detected ug/L 10 SW8260C 03/05/14 18:14 WAT 78-93-3 Dichlorodifluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-71-8 Chloromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-87-3 Vinyl chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-01-4 Bromomethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-00-3 Chloroethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-09-3 Trichlorofluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-09-4<	Ace	tone		16	ug/L	10	SW8260C	03/05/14 18:14	WAT 67-64-1
tert-Methyl butyl ether (MTBE) Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 1634-04-4 2-Butanone (MEK) Not detected ug/L 10 SW8260C 03/05/14 18:14 WAT 78-93-3 Dichlorodifluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-71-8 Chloromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-87-3 Vinyl chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-01-4 Bromomethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-83-9 Chloroethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-00-3 Trichlorofluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-69-4 1,1-Dichloroethene Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-35-4 Methylene chloride Not detected ug/L 1 <t< td=""><td>Carl</td><td>bon disulfide</td><td></td><td>Not detected</td><td>ug/L</td><td>1</td><td>SW8260C</td><td>03/05/14 18:14</td><td>WAT 75-15-0</td></t<>	Carl	bon disulfide		Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 75-15-0
2-Butanone (MEK) Not detected ug/L 10 SW8260C 03/05/14 18:14 WAT 78-93-3 Dichlorodifluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-71-8 Chloromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-87-3 Vinyl chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-01-4 Bromomethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-83-9 Chloroethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-83-9 Chloroethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-00-3 Trichlorofluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-69-4 1,1-Dichloroethene Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-35-4	Met	hyl Acetate		Not detected	ug/L	10	SW8260C	03/05/14 18:14	WAT 79-20-9
Dichlorodifluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-71-8 Chloromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-87-3 Vinyl chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-01-4 Bromomethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-83-9 Chloroethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-00-3 Trichlorofluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-69-4 1,1-Dichloroethene Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-35-4 Methylene chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-09-2	tert-	Methyl butyl ether (MTB	E)	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 1634-04-4
Chloromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-87-3 Vinyl chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-01-4 Bromomethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-83-9 Chloroethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-00-3 Trichlorofluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-69-4 1,1-Dichloroethene Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-35-4 Methylene chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-09-2	2-Bi	utanone (MEK)		Not detected	ug/L	10	SW8260C	03/05/14 18:14	WAT 78-93-3
Vinyl chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-01-4 Bromomethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-83-9 Chloroethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-00-3 Trichlorofluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-69-4 1,1-Dichloroethene Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-35-4 Methylene chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-09-2	Dich	nlorodifluoromethane		Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 75-71-8
Bromomethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 74-83-9 Chloroethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-00-3 Trichlorofluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-69-4 1,1-Dichloroethene Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-35-4 Methylene chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-09-2	Chlo	promethane		Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 74-87-3
Chloroethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-00-3 Trichlorofluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-69-4 1,1-Dichloroethene Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-35-4 Methylene chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-09-2	Viny	/l chloride		Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 75-01-4
Trichlorofluoromethane Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-69-4 1,1-Dichloroethene Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-35-4 Methylene chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-09-2	Bror	nomethane		Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 74-83-9
1,1-Dichloroethene Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-35-4 Methylene chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-09-2	Chlo	proethane		Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 75-00-3
Methylene chloride Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 75-09-2	Tric	hlorofluoromethane		Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 75-69-4
	1,1-	Dichloroethene		Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 75-35-4
trans-1,2-Dichloroethene Not detected ug/L 1 SW8260C 03/05/14 18:14 WAT 156-60-5	Met	hylene chloride		Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 75-09-2
	tran	s-1,2-Dichloroethene		Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 156-60-5

Lab Sample ID: S60177.09 (continued) Sample Tag: P-3453-SP-17

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Organics - Volatiles (continued)						
TCL Volatile Organics 8260 (continued)						
1,1-Dichloroethane	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 75-34-3
cis-1,2-Dichloroethene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 156-59-2
Chloroform	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 67-66-3
1,1,1-Trichloroethane	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 71-55-6
Cyclohexane	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 110-82-7
4-Methyl-2-pentanone (MIBK)	Not detected	ug/L	10	SW8260C	03/05/14 18:14	WAT 108-10-1
2-Hexanone	Not detected	ug/L	10	SW8260C	03/05/14 18:14	WAT 591-78-6
Carbon tetrachloride	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 56-23-5
Benzene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 71-43-2
1,2-Dichloroethane	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 107-06-2
Trichloroethene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 79-01-6
1,2-Dichloropropane	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 78-87-5
Bromodichloromethane	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 75-27-4
Methyl cyclohexane	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 108-87-2
cis-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 10061-01-5
Toluene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 108-88-3
trans-1,3-Dichloropropene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 10061-02-6
1,1,2-Trichloroethane	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 79-00-5
Tetrachloroethene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 127-18-4
Dibromochloromethane	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 124-48-1
Chlorobenzene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 108-90-7
1,1,2,2-Tetrachloroethane	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 79-34-5
Ethylbenzene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 100-41-4
p,m-Xylene	Not detected	ug/L	2	SW8260C	03/05/14 18:14	WAT
o-Xylene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 95-47-6
Styrene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 100-42-5
Isopropylbenzene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 98-82-8
Bromoform	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 75-25-2
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 541-73-1
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 106-46-7
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 95-50-1
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 120-82-1
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 106-93-4
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	03/05/14 18:14	WAT 96-12-8

Lab Sample ID: S60177.10 Sample Tag: P-3453-SP-18 Collected Date/Time: 03/03/2014 12:40 Matrix: Liquid COC Reference: 76466

Sample Containers

#	Туре	Preservative(s)		Refrigerated?	Arrival Ten	np. (C) Thermon	neter #		
3	40ml Glass	HCL		Yes	1.2	IR			
-	lysis		Results	Units	RL	Method	Run Date/Time	Analyst CAS	S# Flags
	raction / Prep.		_						
pH o	check for VOCs		<2	STD Units		N/A	03/04/14 13:40	WAT	
0.00	aniaa Valatilaa								
-	anics - Volatiles Dioxane		Not detected	ug/L	1	SW8260B - SIM	03/04/14 16:24	WAT 123-9	1_1
1,4-1	Dioxane		NOI delected	ug/L	I	3002000 - 310	03/04/14 10.24	WAT 125-8	/ 1 - 1
TCL	Volatile Organics 8260								
1,1,2	2-Trichloro-1,2,2-trifluoroet	hane	Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 76-13	8-1
Ace	tone		15	ug/L	10	SW8260C	03/05/14 18:36	WAT 67-64	-1
Cart	bon disulfide		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 75-15	5-0
Meth	hyl Acetate		Not detected	ug/L	10	SW8260C	03/05/14 18:36	WAT 79-20)-9
tert-	Methyl butyl ether (MTBE)		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 1634-	-04-4
2-Bi	utanone (MEK)		Not detected	ug/L	10	SW8260C	03/05/14 18:36	WAT 78-93	3-3
Dich	nlorodifluoromethane		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 75-71	-8
Chlo	promethane		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 74-87	'-3
Viny	/l chloride		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 75-01	-4
Bror	momethane		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 74-83	8-9
Chlo	proethane		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 75-00)-3
Trick	hlorofluoromethane		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 75-69)-4
1,1-	Dichloroethene		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 75-35	5-4
Meth	hylene chloride		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 75-09)-2
trans	s-1,2-Dichloroethene		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 156-6	60-5
1,1-	Dichloroethane		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 75-34	-3
cis-1	1,2-Dichloroethene		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 156-5	
	proform		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 67-66	
	1-Trichloroethane		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 71-55	
	lohexane		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 110-8	
	ethyl-2-pentanone (MIBK)		Not detected	ug/L	10	SW8260C	03/05/14 18:36	WAT 108-1	
	exanone		Not detected	ug/L	10	SW8260C	03/05/14 18:36	WAT 591-7	
	bon tetrachloride		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 56-23	
	zene		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 71-43	
,	Dichloroethane		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 107-0	
	hloroethene		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 79-01	
	Dichloropropane		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 78-87	
	modichloromethane		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 75-27	
	hyl cyclohexane		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 108-8	
	1,3-Dichloropropene		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 1006	
	iene s 1 3 Dichloropropopo		Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 108-8 WAT 1006 ⁷	
	s-1,3-Dichloropropene		Not detected	ug/L	1	SW8260C	03/05/14 18:36		
	2-Trichloroethane achloroethene		Not detected	ug/L	1	SW8260C SW8260C	03/05/14 18:36	WAT 79-00 WAT 127-1	
	romochloromethane		Not detected	ug/L	1		03/05/14 18:36 03/05/14 18:36	WAT 127-1 WAT 124-4	
	probenzene		Not detected Not detected	ug/L	1 1	SW8260C SW8260C	03/05/14 18:36	WAT 124-4 WAT 108-9	
	2,2-Tetrachloroethane		Not detected	ug/L ug/L	1	SW8260C SW8260C	03/05/14 18:36	WAT 106-9 WAT 79-34	
1,1,4	2,2-101010000000000000000000000000000000			uy/L	I	3002000	00/00/14 10.00	VVAI 19-34	-0

Lab Sample ID: S60177.10 (continued) Sample Tag: P-3453-SP-18

Analysis	Results	Units	RL	Method	Run Date/Time	Analyst CAS # Flags
Organics - Volatiles (continued)						
TCL Volatile Organics 8260 (continued)					
Ethylbenzene	Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 100-41-4
p,m-Xylene	Not detected	ug/L	2	SW8260C	03/05/14 18:36	WAT
o-Xylene	Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 95-47-6
Styrene	Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 100-42-5
Isopropylbenzene	Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 98-82-8
Bromoform	Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 75-25-2
1,3-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 541-73-1
1,4-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 106-46-7
1,2-Dichlorobenzene	Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 95-50-1
1,2,4-Trichlorobenzene	Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 120-82-1
1,2-Dibromoethane	Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 106-93-4
1,2-Dibromo-3-chloropropane	Not detected	ug/L	1	SW8260C	03/05/14 18:36	WAT 96-12-8

2680 East Lansing Dr., East Lansing, MI 48823 Phone (517) 332-0167 Fax (517) 332-4034 www.meritlabs.com

C.O.C. PAGE # ___ / __ OF

76466

REPOR																			INVC	DICE	Е ТО
CONTACT NAME	$A_{\rm c} = C$	heres -	e 11 Se 12				CON		, G	109 1	4. 6	ç.c .,						□ S/	\ME		
COMPANY 1	6.1						COM	PANY	LILR	4											
ADDRESS	59	Cit.	tion Pour Sit	- 100			ADDRESS 2516 Verne Roberts Circle Suite 14102 CITY Antioch, CA PHONENO. 1 925-759-1191 E-MAIL ADDRESS dgustufson Q Ultura Water Com														
CITY BC	dh tor	<u></u>		STATE ZIP COL MI 48	DE 116		CITY	An	+,00	Ь,	C.	4						STATE	ZIP CO	DE 450	G
PHQNE NO.	. 5-194	0	FAX NO. 510 224-8837	P.O. NO. BCC64480,00	14,00	501	РНО	NE NO.	5-7	59.	- 110	91	E-I	لا ت AIL ADDF	ress tuf	son	6	JIte re	iwate	v . (pres
E-MAIL ADDRESS	-MAILADDRESS QUOTENO. QUOTENO.										AN	IALY	SIS (A	TACH I	IST IF	MORE	SPACE	IS REQU	JIRED)	eggenge - :	
PROJECT NO./NAM	$\frac{1}{10000000000000000000000000000000000$										*	S.M.	<u>i i i i i i i i i i i i i i i i i i i </u>					Certific	ations		
	$\frac{ \mathcal{B} _{\mathcal{C}} (\mathcal{C}_{\mathcal{C}} \mathcal{A} \mathcal{B}_{\mathcal{C}} \otimes \mathcal{O}_{\mathcal{C}} \mathcal{A}_{\mathcal{C}} \otimes \mathcal{O}_{\mathcal{C}} \mathcal{A}_{\mathcal{C}} \otimes \mathcal{O}_{\mathcal{C}} \mathcal{C}_{\mathcal{C}} \otimes \mathcal{O}_{\mathcal{C}} \mathcal{C} \otimes \mathcal{C} \otimes \mathcal{O}_{\mathcal{C}} \mathcal{C} \otimes \mathcal{O}_{\mathcal{C}} \mathcal{C} \otimes \mathcal{C} $						1											ОНЮ	VAP 🗆	Drinkin	g Water
											2	0.612						□ DoD		NPDES	3
	W=GROUN	DWATER	WW=WASTEWATER S=SOI	L L=LIQUID SD=	SOLID		# (Contaii	ners &		NOC	4 N.C	\$					Project	Locatior	าร	
CODE:	SL=SLUDGI		DRINKING WATER O=OIL W		E T		Pr	eserva			5260	8260 1,40	Fee /					Detro	_	New Ye	ork
MERIT LAB NO.	· YE		SAMPLE T		MATRIX	# OF BOTTLES	HC IC	HNO ₃ H ₂ SO ₄	NaOH MeOH	THER	2	8260	ME						r I Instructi		
FOR LAB USE ONLY	DATE		<u>- CP</u> D D 245	Э. С. Р	Σ			X		0			×								4.41
.02	2	9:15						X					~ X					0	detection detection	6 1	-1-
.07	11	9:13	SP-10 P3453 SP= F3453-5F			4	X	×			×		X					1.6 4	19 1191	pille	1009
.04		9:40				4		\times					^ X								
05		16:10	P-3453-5P			4	X	<u> </u>			× >		×		~~~						
.05		10:30	_			3	X	<u>~</u>		1-1-		\mathbf{X}									
.07	521	11:15	P-3453-SP			4	X	X					×								
.08	11	11:40				4		×				-	۔ بر					-			
.09		12:05				4	X	X					× ×								
.10		12:40				3	x			+		\mathbf{x}									
_	· (12:70	<u> </u>	- 10		Ŭ	\uparrow														
RELINQUISHED B	l Y:			Sampler DATE	TIN	ME.	REI		HED BY	/:	l	1		· · · · · · · · · · · · · · · · · · ·			<u>_</u>		2/26	tu i	NYS
	SIGNATURE/ORGANIZATION									NIZATI	ON			• /					``,44	19 ħ/	420
SIGNATURE/ORG	SIGNATURE/ORGANIZATION RELINQUISHED BY: DATE TIME							NATUR	E/ORGA	NIZATI			<u>M</u>		ALS	je .	IOTES:	TEME	2 ON ARRIVAL	14	420
SIGNATURE/ORG		1		· · · · ·							,	YES 🗆	NO				101123.	I LIVIP		1.6	
RECEIVED BY: DATE TIME SIGNATURE/ORGANIZATION							SE/	AL NO.				AL INT			IALS						

PLEASE NOTE: SIGNING ACKNOWLEDGES ADHERENCE TO MERIT'S SAMPLE ACCEPTANCE POLICY ON REVERSE SIDE

ARCADIS

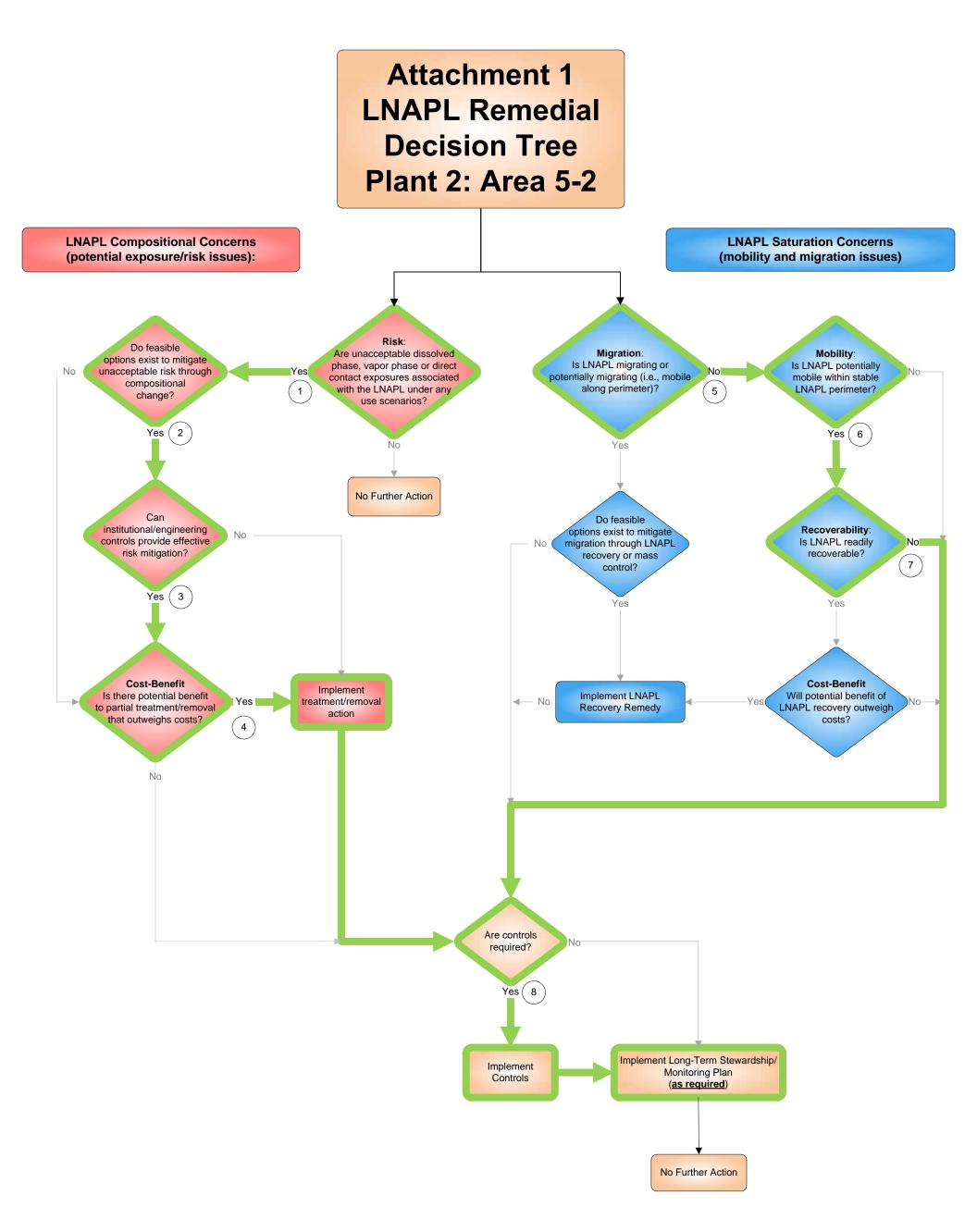
Appendix C

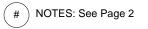
LNAPL Conceptual Site Model Decision Tree

MEMO

To: Grant Trigger (RACER Trust) Dave Favero (RACER Trust) ^{Copies:} Brad Koons (ARCADIS) Joe Quinnan (ARCADIS) File ARCADIS G&M of Michigan, LLC 28550 Cabot Drive Suite 500 Novi Michigan 48377 Tel 248 994 2240 Fax 248 994 2241

From: Jonathon Smith (ARCADIS)


Date: June 26, 2013 ARCADIS Project No.: B0064479.2013


Subject: LNAPL Remedial Decision Tree Analysis: LNAPL Areas 5-2 and 17, RACER Trust, Plants 2 and 3, Lansing, Michigan

Introduction

Corrective measures for addressing light non-aqueous phase liquid (LNAPL) areas (Plant 2, Area 5-2 and Plant 3, Area 17) have been evaluated following the LNAPL Remedial Decision Tree, provided in this Appendix. The LNAPL Remedial Decision Tree was developed to provide a consistent framework for identifying LNAPL remedial drivers and determining an appropriate remedial strategy based on a sound LNAPL conceptual site model (LCSM). The decision tree identifies risks driven by the chemical composition of the LNAPL (referred to as composition concerns) and/or issues associated with the presence of LNAPL that could move to a location where it could cause an unacceptable discharge (referred to as saturation concerns). If either composition or saturation concerns (or both) are identified, the decision tree provides a systematic approach for contemplation of applicable LNAPL management alternatives that can be employed to mitigate LNAPL concerns and meet remedial objectives in the context of site-specific LNAPL conditions.

The Resource Conservation and Recovery Act Facility Investigation (RFI) findings were used to navigate through the LNAPL Remedial Decision Tree, remedial drivers were identified and a tenable LNAPL management strategy for each LNAPL Area was reached. A detailed summary of the analysis and path through the Decision Tree for each LNAPL Area is provided in Attachment 1.

Attachment 1 Notes Plant 2: Area 5-2

Background:

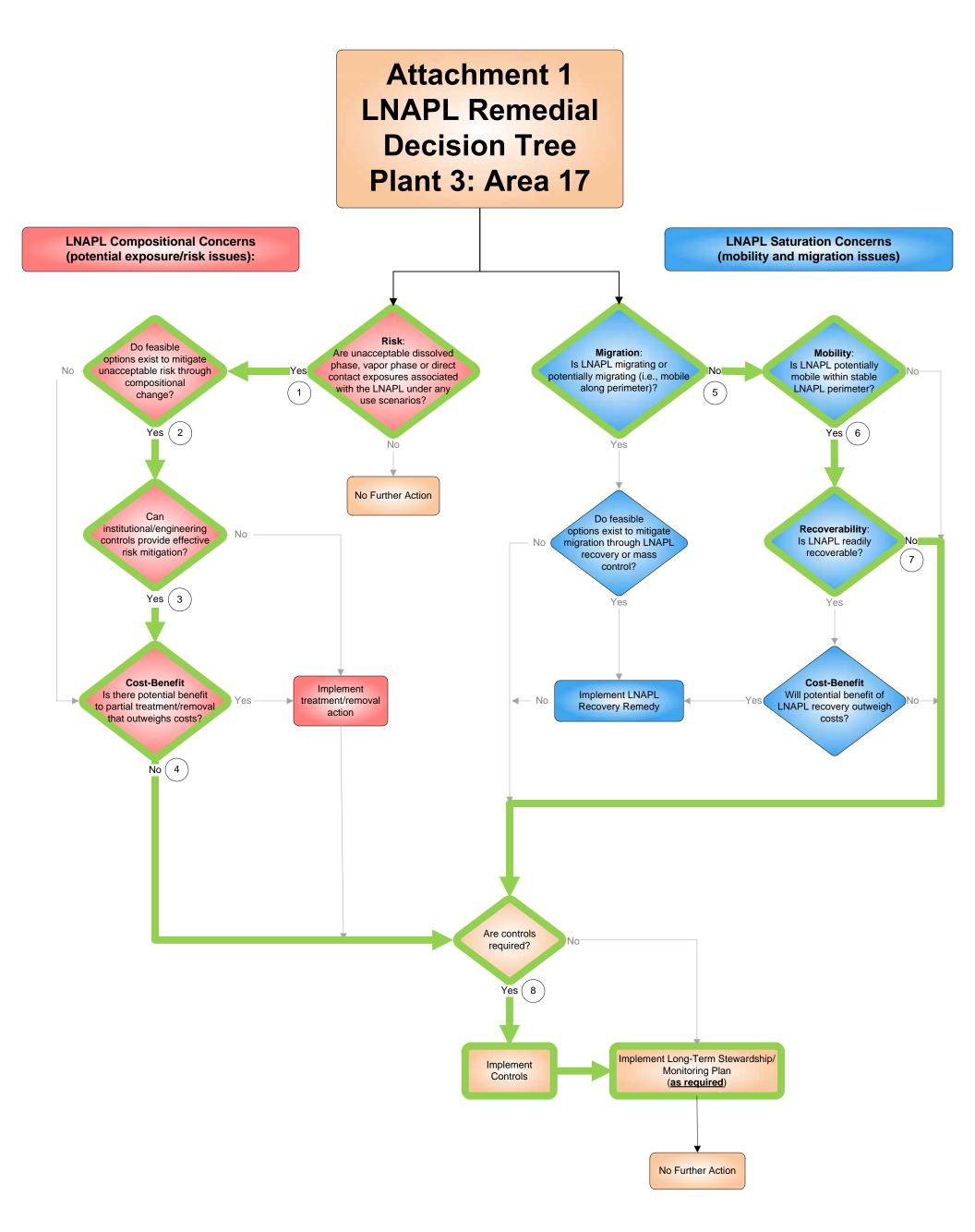
LNAPL in Area 5-2 is present within the shallow fill and interbedded zone, and is thought to consist primarily of cutting oil. Elevated concentrations of polychlorinated biphenyls (PCBs) and chlorinated volatile organic compounds (1,1,1-trichloroethane [TCA];1,1-dichloroethane [DCA]; chloroethane; tetrachloroethene [PCE]; and 1,1-dichloroethene [DCE]) have been detected in LNAPL likely acts as a long-term source of volatile organic compounds (VOCs) to groundwater, and may also be associated with 1,4-dioxane in groundwater in the perched zone extending across Plant 2 onto Plant 6. 1,4-dioxane was used as a stabilizer and corrosion inhibitor in chlorinated solvents (USEPA 2006), particularly 1,1-TCA. 1,4-dioxane is miscible in water and has an octanol-water partition coefficient of approximately 0.27 (USEPA 2006), indicating that a significant fraction of the LNAPL and into to the aqueous phase. Once dissolved, it is relatively unaffected by sorptive mechanisms, however, it can diffuse into static pore water (water that resides in the fraction of pore space that does not contribute to advective transport) where it can act as a long-term source of impacts through back-diffusion into migratory pore water. Thus, while the majority of 1,4-dioxane mass may be present in the aqueous phase in Area 5-2, there may still be significant concentrations in the LNAPL and in static pore water, and the LNAPL source area may act as an ongoing source of 1,4-dioxane impacts to groundwater in downgradient areas. A more comprehensive overview of the LNAPL conceptual site model for Area 5-2, including information on the significance of the VOCs detected in the LNAPL and the relationship between VOCs in LNAPL and groundwater quality at Plant 2 can be found in the RFI Phase 1 Activities Summary Report (ARCADIS 2012) and the RFI Phase 2 Activities Summary Report (ARCADIS 2013).

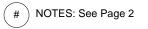
- 1) YES the following potential risk/exposure concerns are acknowledged for LNAPL in Area 5-2:
 - Groundwater Concerns: Constituents associated with LNAPL have been detected in groundwater at concentrations exceeding relevant generic groundwater cleanup criteria (VOCs exceed residential drinking water and vapor intrusion criteria; 1,4dioxane exceeds residential drinking water criteria; SVOCs and PCBs exceed residential drinking water and groundwater contact criteria). Additionally, there are aesthetic concerns associated with groundwater use from any areas of the Site where LNAPL is present. Groundwater guality results to date indicate that constituents associated with the LNAPL in Area 5-2 have not migrated off site, and an initial evaluation of groundwater sampling data collected over the past 2 to 3 years indicate that VOCs and 1,4-dioxane plumes are stable in the perched groundwater at the site (ARCADIS 2014a). Long term groundwater monitoring will be completed to continue evaluating the stability of the perched 1,4-dioxane and spatially limited VOC impacts (ARCADIS 2014b). A contingency remedy will be considered if groundwater use restrictions cannot be executed or the plume stability evaluation shows that the groundwater plume(s) is not stable and is migrating off site above applicable MDEQ cleanup criteria.
 - Volatilization Concerns: VOCs have been detected in soil at concentrations exceeding volatilization to indoor air inhalation criteria. Additionally, it is recognized that anaerobic biodegradation of hydrocarbons will generate methane. While there are currently no structures in the area, it is likely that the Site will be redeveloped in the future, and presence of VOCs and the potential for methane generation could result in indoor air quality concerns for future structures.
 - Direct Contact Concerns: LNAPL impacts in Area 5-2 have been identified at shallow depths in several locations (within the upper 4 ft of soil), and concentrations of PCBs in LNAPL and soil in some areas of Area 5-2 exceed TSCA limits. Under current site conditions, much of the ground surface where direct contact concerns are present is covered with concrete and/or asphalt. However, workers could be exposed to surface soils in areas not currently covered, or in covered areas in future use scenarios if cover were to be removed and left uncovered. Additionally, short-term exposures are possible for future construction or utility workers.
- 2) YES a general discussion regarding feasibility of various compositional change remediation approaches considered for Area 5-2 is provided below:
 - Multi-phase extraction was considered as a potential corrective measure for Area 5-2. MPE was not proposed as a corrective measure for Area 5-2 on the basis that there is limited potential for LNAPL recoverability in Area 5-2 (see note 6, below), and anticipated implementation challenges associated with limited soil permeability and geologic heterogeneity.
 - A highly variable suite of constituents of concern (COCs) are present in LNAPL in Area 5-2, including chlorinated VOCs, 1,4-dioxane, SVOCs, and PCBs. Not all COCs in the LNAPL are volatile or biodegradable, rendering remedial technologies which rely primarily on vapor-phase partitioning or enhanced biodegradation, such as soil vapor extraction (SVE), ineffective for addressing all primary target COCs.
 - In situ chemical oxidation (ISCO) was not evaluated for area 5-2 on the basis that the desired chemical reactions occur within the aqueous phase only, and thus would be rate-limited by dissolution of contaminants from the non-aqueous to aqueous phase. ISCO is also infeasible from a cost perspective, given the relatively large quantities of reagent that would be required to address the mass of LNAPL in the subsurface.
- 3) YES based on the current understanding of site conditions, institutional controls can provide effective risk mitigation on-site. The COCs in the LNAPL at Area 5-2 likely act as a long-term source of LNAPL constituents to groundwater in areas downgradient of Area 5-2. However, the data collected to date suggest that these constituents have not migrated off-site at concentrations exceeding applicable RBSLs, and thus can be controlled onsite. Additional groundwater monitoring and statistical trend analysis is currently underway to assess the long-term stability of the dissolved-phase plume(s) and to determine the potential for future off-site migration of COCs at concentrations exceeding applicable RBSLs. A contingency remedy will be considered if groundwater use restrictions cannot be executed or the plume stability evaluation shows that the groundwater plume(s) is not stable and is migrating off site above RBSLs.
- 4) YES a targeted excavation within Area 5-2 is being completed as an interim corrective measure to remove a former concrete vault where concentrations of PCBs in LNAPL and soil exceed TSCA limits. There is some uncertainty regarding the potential benefit of additional partial treatment or excavation in the LNAPL source area beyond the planned removal of PCBs, particularly with respect to the 1,4-dioxane plume in perched groundwater. While the chlorinated solvent TCA, which is found in Area 5-2, was likely the historical source of the 1,4-dioxane in groundwater, the overall mass of 1,4-dioxane remaining in the source area is not known. 1,4-dioxane was not detected in soil or LNAPL from Area 5-2 due to elevated laboratory detection limits, and based on its chemical properties, it is likely that a significant fraction of the 1,4-dioxane mass may have partitioned out of the aqueous phase (see notes in background section, above). Based on this information, it is possible that the bulk of the 1,4-dioxane mass no longer resides in the source area, and additional partial treatment or mass removal in the source area may have little impact on the longevity of the 1,4-dioxane concentrations in groundwater located downgradient of Area 5-2. Given that all impacts associated with the LNAPL (including 1,4-dioxane) appear to be contained on-site and stable (not migrating), risks associated with these impacts can be effectively mitigated through institutional controls. Based on the present understanding of site conditions, additional remediation or excavation is not necessary and does not constitute an appropriate use of financial and natural resources. However, long term groundwater monitoring will be completed to continue evaluating the long-term stability of the perched 1,4-dioxane and spatially limited VOC impacts (ARCADIS 2014b). A contingency remedy will be considered if groundwater use restrictions cannot be executed or the plume stability evaluation shows that the groundwater plume(s) is not stable and is migrating off site above applicable MDEQ cleanup criteria.
- 5) NO a comprehensive LNAPL mobility evaluation was completed in Area 5-2 in 2013 (ARCADIS 2013). The evaluation indicated that LNAPL is stable and not migrating, based on the following lines of evidence:
 - Pore velocity potentials were calculated based on API methodology at four soil core locations where field saturation exceeded residual saturation. All calculated LNAPL velocity potentials were less than 1.0 x 10⁻⁶ cm/s (the velocity criterion suggested by ASTM [2006]), indicating that LNAPL is functionally immobile in Area 5-2.
 - LNAPL pore-entry pressure analysis indicated that LNAPL thicknesses observed at the perimeter of the LNAPL body in Area 5-2 are below the threshold values required for LNAPL to migrate into soils not previously affected by LNAPL.
 - Operations at the Site were halted in 2006 and thus all LNAPL releases to the subsurface occurred at a minimum, seven years ago. LNAPL bodies typically stabilize 2 to 5 years after the release has stopped (ITRC 2012).

Fluid level gauging data collected through February 2014 indicate LNAPL accumulation in some of the monitoring wells in Area 5-2 (PMW-01, LMW-12-03D). The observed LNAPL accumulation likely reflects gradual equilibration between LNAPL in the formation and the wells, rather than evidence of LNAPL migration. Long term fluid level gauging will be completed to continue evaluating LNAPL stability (ARCADIS 2014b).

- YES a comprehensive LNAPL mobility evaluation was completed in Area 5-2. The evaluation demonstrated that mobile LNAPL is present, based on the following lines of evidence: 6)
 - LNAPL accumulates in monitoring wells.
 - Laboratory petrophysical testing of undisturbed soil cores indicated that field LNAPL saturations exceeded residual. ٠
- 7) NO LNAPL recoverability was evaluated in Area 5-2 through field LNAPL transmissivity testing (ARCADIS 2013). The Michigan Department of Environmental Quality (MDEQ) has indicated that an LNAPL transmissivity of 0.5 ft²/day may be established as a standard threshold value for recovery to the maximum extent practicable (Swiger 2013), permitting the use of LNAPL transmissivity as a quantitative recoverability metric in the State of Michigan in the absence of risk-based LNAPL concerns. The LNAPL transmissivity values measured at Area 5-2 ranged from 0.005 to 0.01 ft²/day, and are well below this criterion. These data indicate that LNAPL is minimally recoverable at Area 5-2, and LNAPL recovery efforts (through hydraulically-based remediation methods) will not result in a beneficial reduction in overall LNAPL mass. Transmissivity testing could not be completed in 11 of the 13 wells in Area 5-2 due to insufficient LNAPL accumulation (<0.2 foot) during the LNAPL transmissivity testing event in 2013 (ARCADIS 2013). Fluid level gauging data collected since the LNAPL transmissivity testing activities completed in 2013 indicate LNAPL accumulation sufficient to facilitate LNAPL transmissivity testing in a few additional wells in Area 5-2. From a qualitative perspective, the slow rate of LNAPL accumulation observed in these wells suggests that LNAPL transmissivity is very low. However, long term fluid level gauging will be completed to evaluate equilibrium conditions in these wells and additional LNAPL transmissivity testing may be completed to re-evaluate LNAPL recoverability.

Given that LNAPL body at Area 5-2 appears stable, the risks associated with the LNAPL will not change appreciably as a result of active recovery efforts. While no formal assessment of NSZD rates has been completed for Area 5-2, based on recent literature publications (Lundegard and Johnson [2006], Sihota et al [2011]) and ARCADIS' experience, magnitudes of petroleum hydrocarbon-based LNAPL losses through NSZD typically fall within the range of hundreds to thousands of gallons per acre per year. Based on the limited LNAPL transmissivity values measured to date in Area 5-2, active LNAPL recovery is unlikely to yield significant additional mass by comparison to ongoing mass reduction through NSZD.


- 8) YES the following controls are proposed for all LNAPL Area 5-2 to limit potential for future exposure:
 - Land Use Restrictions:
 - Land use at the entire Site would be limited to industrial and/or commercial uses.
 - All site soils media and/or debris will be managed in accordance with applicable requirements of RCRA and all other relevant state and federal laws. 0
 - Construction of new structures will not be permitted unless construction incorporates engineering controls designed to eliminate the potential for subsurface vapor phase hazardous substances to migrate into the new structure at concentrations 0 greater than applicable criteria, or unless prior to construction of any structure, an evaluation of the potential for any hazardous substances to volatilize into indoor air assures the protection of persons who may be present in the buildings and is in compliance with all relevant federal, state, and local laws.
 - Intrusive excavation activities will be conducted following a site-specific health and safety plan prepared by qualified professionals and intrusive activities are conducted by appropriately trained personnel.
 - Groundwater Use Restrictions: Groundwater use restrictions will be recorded on the deeds prohibiting the construction and use of wells or other devices on the Site to extract groundwater for consumption, irrigation, or any other purpose, except as • provided below:
 - Wells and other devices constructed as part of a response activity for the purpose of evaluating groundwater quality or to remediate subsurface contamination associated with a release of hazardous substances into the environment are permitted provided the construction of the wells or devices complies with all applicable local, state, and federal laws and regulations and does not cause or result in a new release, exacerbation of existing contamination, or any other violation of local, state, or federal laws or regulations.
 - 0 Short-term dewatering for construction purposes is permitted provided the dewatering, including management and disposal of the groundwater, is conducted in accordance with all applicable local, state, and federal laws and regulations and does not cause or result in a new release, exacerbation of existing contamination, or any other violation of local, state, and federal environmental laws and regulations.
 - Monitored Plume Stability: A groundwater monitoring program that provides data to verify dissolved phase plume stability and preserves the current conditions of the existing surface cover to minimize infiltration and maximize the potential for the groundwater plume to remain stable will be implemented.
 - Caps: Capping was incorporated into the proposed corrective measures for Area 5-2 to reduce the potential for direct contact risks associated with the LNAPL. •


References:

ARCADIS. 2012. Resource Conservation and Recovery Act Facility Investigation (RFI) Phase 1 Activities Summary Report. RACER Trust, Lansing, Michigan Plants 2, 3 & 6 Industrial Land. January 30. ARCADIS. 2013a. Resource Conservation and Recovery Act Facility Investigation (RFI) Phase 2 Activities Summary Report. Michigan Plants 2, 3 & 6 Industrial Land. April. ARCADIS, 2014a. Preliminary Geochemistry and Plume Stability Assessment. April.

ARCADIS, 2014b. Revised Interim Monitoring Work Plan. May

ASTM International. 2006. Standard Guide for Development of Conceptual Site Models and Remediation Strategies for Light Nonagueous-Phase Liguids Released to the Subsurface. Document: E 2531-06. ITRC. 2012. LNAPL Training Part 1: An Improved Understanding of LNAPL Behavior in the Subsurface. Washington, D.C.: Interstate Technology & Regulatory Council, LNAPLs Team. www.itrcweb.org. Lundegard, P.D., and P.C. Johnson. 2006. Source zone natural attenuation at petroleum hydrocarbon spill sites-II: application to a former oil field. Ground Water Monitoring and Remediation 26, no. 4: 93–106. Sihota, N.J., O. Singurindy, and K.U. Mayer, 2011. CO2-Efflux Measurements for Evaluating Source Zone Natural Attenuation Rates in a Petroleum Hydrocarbon Contaminated Aquifer, Environ. Sci. Technol., 45:482-488. Swiger, N., 2013. Nonaqueous Phase Liquids (NAPL) Management. Presentation at the American Institute of Professional Geologists (AIPG), Michigan Section. March 2013 Meeting. United States Environmental Protection Agency (USEPA). 2006. Treatment Technologies for 1,4-Dioxane: Fundamentals and Field Applications. Office of Solid Waste and Emergency Response. December 2006. Document number: EPA 542-R-06-009.

Attachment 1 Notes Plant 3: Area 17

Background:

LNAPL associated with a former underground storage tank is present within the shallow fill material in the north central portion of Plant 3 (Area 17). The LNAPL consists of gasoline with associated soil and groundwater impacts consisting primarily of benzene. toluene, ethylbenzene, and xylenes. A more comprehensive overview of the LNAPL conceptual site model for Area 17 can be found in the RFI Phase 1 Activities Summary Report (ARCADIS 2012) and the RFI Phase 2 Activities Summary Report (ARCADIS 2013).

- 1) YES the following potential risk/exposure concerns are acknowledged for LNAPL in Area 17:
 - Groundwater Concerns: Constituents associated with LNAPL have been detected in groundwater at concentrations exceeding relevant generic groundwater cleanup criteria (VOCs exceed residential drinking water and vapor intrusion criteria; SVOCs • exceed residential drinking water criteria). Additionally, there are aesthetic concerns associated with groundwater use from any areas of the Site where LNAPL is present. Groundwater quality results to date indicate that VOCs and SVOCs associated with the LNAPL in Area 17 have not migrated off site, and an initial evaluation of groundwater sampling data collected over the past 2 to 3 years indicate that VOC and SVOC plumes are stable in the perched groundwater at the site (ARCADIS 2014a). Long term groundwater monitoring will be completed to continue evaluating the stability of the dissolved phase impacts (ARCADIS 2014b). A contingency remedy will be considered if groundwater use restrictions cannot be executed or the plume stability evaluation shows that the groundwater plume(s) is not stable and is migrating off site above applicable MDEQ cleanup criteria.
 - Volatilization Concerns: VOCs have been detected in soil at concentrations exceeding volatilization to indoor air inhalation criteria. Additionally, it is recognized that anaerobic biodegradation of hydrocarbons will generate methane. While there are currently no structures in the area, it is likely that the Site will be redeveloped in the future, and presence of VOCs and the potential for methane generation could result in indoor air guality concerns for future structures.
 - Direct Contact Concerns: LNAPL impacts in Area 17 have been identified at shallow depths in several locations (within the upper 4 ft of soil), presenting a direct contact concern for Site workers and/or construction or utility workers.
- 2) YES a general discussion regarding feasibility of various compositional change remediation strategies for Area 17 is provided below:
 - The bulk of the COCs in LNAPL in Area 17 are volatile and/or biodegradable, and thus remedial technologies which rely on vapor-phase partitioning or enhanced biodegradation were evaluated. Soil vapor extraction (SVE) and Multi-phase extraction (MPE) were both considered as potential corrective measures for Area 17. Neither SVE nor MPE was selected as a corrective measure for Area 17 on the basis that there is limited potential for LNAPL recoverability in Area 17 (see note 6, below), and anticipated implementation challenges associated with limited soil permeability and geologic heterogeneity.
 - In situ chemical oxidation (ISCO) was not evaluated for area 17 on the basis that the desired chemical reactions occur within the aqueous phase only, and thus would be rate-limited by dissolution of contaminants from the non-aqueous to aqueous phase. ISCO is also infeasible from a cost perspective, given the relatively large quantities of reagent that would be required to address the mass of LNAPL in the subsurface.
- 3) YES based on the current understanding of site conditions, institutional controls can provide effective risk mitigation on-site. Based on data collected to date, constituents associated with LNAPL at Area 17 are defined onsite, and do not pose a risk to groundwater in areas downgradient of Area 17, or to the underlying deep overburden and bedrock aguifers. Long term groundwater monitoring will be completed to continue evaluating the stability of the dissolved phase impacts (ARCADIS 2014b). A contingency remedy will be considered if groundwater use restrictions cannot be executed or the plume stability evaluation shows that the groundwater plume(s) is not stable and is migrating off site above applicable MDEQ cleanup criteria.
- 4) NO Data collected to date indicate that impacts in Area 17 are contained on-site and do not pose a risk to areas located hydraulically downgradient of Area 17, or to the underlying deep overburden and bedrock aguifers. Based on the present understanding of site conditions, risk can be effectively mitigated through institutional controls. However, long term groundwater monitoring will be completed to continue evaluating the stability of the dissolved phase impacts (ARCADIS 2014b). As a result, a contingency remedy will be considered if groundwater use restrictions cannot be executed or the plume stability evaluation shows that the groundwater plume(s) is not stable and is migrating off site above applicable MDEQ cleanup criteria.
- 5) NO a comprehensive LNAPL mobility evaluation was completed for Area 17 (ARCADIS 2013). The evaluation demonstrated that LNAPL is stable and not migrating. This finding is supported by the following lines of evidence:
 - Pore velocity potentials were calculated based on API methodology at four soil core locations where field saturation exceeded residual saturation. All calculated LNAPL velocity potentials were less than 1.0 x 10⁻⁶ cm/s (the velocity criterion suggested by ASTM [2006]), indicating that LNAPL is functionally immobile in Area 17.
 - LNAPL pore-entry pressure analysis indicated that LNAPL thicknesses observed at the perimeter of the LNAPL body in Area 17 are below the threshold values required for LNAPL to migrate into soils not previously affected by LNAPL.
 - Operations at the Site were halted in 2006 and thus all LNAPL releases to the subsurface occurred at a minimum, seven years ago. LNAPL bodies typically stabilize 2 to 5 years after the release has stopped (ITRC 2012).

Fluid level gauging data collected through February 2014 indicate LNAPL accumulation in one of the monitoring wells in Area 17 (LMW-12-10). The observed LNAPL accumulation likely reflects gradual equilibration between LNAPL in the formation and the wells, rather than evidence of LNAPL migration. Long term fluid level gauging will be completed to continue evaluating LNAPL stability (ARCADIS 2014b).

- 6) YES a comprehensive LNAPL mobility evaluation was completed in Area 17. The evaluation demonstrated that mobile LNAPL is present, based on the following lines of evidence:
 - LNAPL accumulates in monitoring wells.
 - Laboratory petrophysical testing of undisturbed soil cores indicated that field LNAPL saturations exceeded residual saturation. •
- 7) NO LNAPL recoverability was evaluated in Area 17 through field LNAPL transmissivity testing. The Michigan Department of Environmental Quality (MDEQ) has indicated that an LNAPL transmissivity of 0.5 ft²/day may be established as a standard threshold value for recovery to the maximum extent practicable (Swiger 2013), permitting the use of LNAPL transmissivity as a quantitative recoverability metric in the State of Michigan in the absence of risk-based LNAPL concerns. The LNAPL transmissivity measured at Area 17 (0.01 ft²/d at UNK-14) is well below this criterion, indicating that LNAPL is minimally recoverable at Area 17, and LNAPL recovery efforts (through hydraulically-based remediation methods) will not result in a beneficial reduction in overall LNAPL mass. Transmissivity testing could not be completed in wells other than UNK-14 in Area 17 due to insufficient LNAPL accumulation (<0.2 foot) during the LNAPL transmissivity testing event in 2013 (ARCADIS 2013). Fluid level gauging data collected since the LNAPL transmissivity testing activities completed in 2013 indicate LNAPL accumulation sufficient to facilitate LNAPL transmissivity testing in one additional well in Area 17 (LMW-12-10). From a qualitative perspective, the slow rate of LNAPL accumulation observed in this well suggests that LNAPL transmissivity is very low. However, long term fluid level gauging will be completed to evaluate equilibrium conditions in these wells and additional LNAPL transmissivity testing may be completed to reevaluate LNAPL recoverability.

Given that LNAPL body at Area 17 appears stable, the risks associated with the LNAPL will not change appreciably as a result of active recovery efforts. While no formal assessment of NSZD rates has been completed for Area 17, based on recent literature publications (Lundegard and Johnson [2006], Sihota et al [2011]) and ARCADIS' experience, magnitudes of petroleum hydrocarbon-based LNAPL losses through NSZD typically fall within the range of hundreds to thousands of gallons per acre per year. Based on the limited LNAPL transmissivity values measured in Area 17 to date, active LNAPL recovery is unlikely to yield significant additional mass by comparison to ongoing mass reduction through NSZD.

- 8) YES the following controls are proposed for all LNAPL Area 17 to limit potential for future exposure:
 - Land Use Restrictions:
 - Land use at the entire Site would be limited to industrial and/or commercial uses.
 - All site soils media and/or debris will be managed in accordance with applicable requirements of RCRA and all other relevant state and federal laws.
 - Construction of new structures will not be permitted unless construction incorporates engineering controls designed to eliminate the potential for subsurface vapor phase hazardous substances to migrate into the new structure at concentrations greater than applicable 0 criteria, or unless prior to construction of any structure, an evaluation of the potential for any hazardous substances to volatilize into indoor air assures the protection of persons who may be present in the buildings and is in compliance with all relevant federal, state, and local laws.
 - Intrusive excavation activities will be conducted following a site-specific health and safety plan prepared by qualified professionals and intrusive activities are conducted by appropriately trained personnel. 0
 - Groundwater Use Restrictions: Groundwater use restrictions will be recorded on the deeds prohibiting the construction and use of wells or other devices on the Site to extract groundwater for consumption, irrigation, or any other purpose, except as provided below:
 - Wells and other devices constructed as part of a response activity for the purpose of evaluating groundwater quality or to remediate subsurface contamination associated with a release of hazardous substances into the environment are permitted provided the construction of the wells or devices complies with all applicable local, state, and federal laws and regulations and does not cause or result in a new release, exacerbation of existing contamination, or any other violation of local, state, or federal laws or regulations.
 - Short-term dewatering for construction purposes is permitted provided the dewatering, including management and disposal of the groundwater, is conducted in accordance with all applicable local, state, and federal laws and regulations and does not cause or result in a new release, exacerbation of existing contamination, or any other violation of local, state, and federal environmental laws and regulations.
 - Monitored Plume Stability: A groundwater monitoring program that provides data to verify dissolved phase plume stability and preserves the current conditions of the existing surface cover to minimize infiltration and maximize the potential for the groundwater plume to remain stable will be implemented.
 - Caps: Capping was incorporated into the proposed corrective measures for Area 17 to reduce the potential for direct contact risks associated with the LNAPL.

References:

ARCADIS. 2012. Resource Conservation and Recovery Act Facility Investigation (RFI) Phase 1 Activities Summary Report. RACER Trust, Lansing, Michigan Plants 2, 3 & 6 Industrial Land. January 30. ARCADIS. 2013. Resource Conservation and Recovery Act Facility Investigation (RFI) Phase 2 Activities Summary Report. Michigan Plants 2, 3 & 6 Industrial Land. April.

ARCADIS, 2014a. Preliminary Geochemistry and Plume Stability Assessment. April.

ARCADIS, 2014b. Revised Interim Monitoring Work Plan. May

ASTM International. 2006. Standard Guide for Development of Conceptual Site Models and Remediation Strategies for Light Nonaqueous-Phase Liquids Released to the Subsurface. Document: E 2531-06. ITRC. 2012. LNAPL Training Part 1: An Improved Understanding of LNAPL Behavior in the Subsurface. Washington, D.C.: Interstate Technology & Regulatory Council, LNAPLs Team. www.itrcweb.org. Lundegard, P.D., and P.C. Johnson. 2006. Source zone natural attenuation at petroleum hydrocarbon spill sites-II: application to a former oil field. Ground Water Monitoring and Remediation 26, no. 4: 93–106. Sihota, N.J., O. Singurindy, and K.U. Mayer, 2011. CO2-Efflux Measurements for Evaluating Source Zone Natural Attenuation Rates in a Petroleum Hydrocarbon Contaminated Aguifer, Environ. Sci. Technol., 45:482-488. Swiger, N., 2013. Nonaqueous Phase Liquids (NAPL) Management. Presentation at the American Institute of Professional Geologists (AIPG), Michigan Section, March 2013 Meeting.

United States Environmental Protection Agency (USEPA). 2006. Treatment Technologies for 1,4-Dioxane: Fundamentals and Field Applications. Office of Solid Waste and Emergency Response. December 2006. Document number: EPA 542-R-06-009.

ARCADIS

Appendix D

Interim Corrective Measures Work Plan

Environmental & Engineering Services

INTERIM RESPONSE WORK PLAN

Michigan

Alabama

Florida

Tennessee

North Carolina

Mississippi

Illinois

2801 West Saginaw Street | Lansing, Michigan PM Project Number 01-4172-3

Prepared for:

The RACER Trust 2930 Ecorse Road Ypsilanti, Michigan 48198

Prepared by:

PM Environmental, Inc. 3340 Ranger Road Lansing, Michigan 48906

Detroit 4080 W. 11 Mile Rd Berkley, MI 48072 f: 877-884-6775 t: 248-336-9988 Grand Rapids 77 Monroe Center, NW Suite 602 Grand Rapids, MI 49503 f: 877-884-6775 t: 616-285-8857 Lansing 3340 Ranger Road Lansing, MI 48906 f: 877-884-6775 t: 517-321-3331

May 2012

Mr. Dave Favero Deputy Cleanup Manager - Michigan The RACER Trust 2930 Ecorse Road Ypsilanti, Michigan 48198

Re: DRAFT Interim Response Work Plan for Concrete Vault Removal and Test Pit Investigation for the Former General Motors Lansing Plant 2 Located at 2801 West Saginaw Street, Lansing, Michigan MID No. 980 700 827 PM Environmental, Inc. Project No. 01-4172-3

Dear Mr. Favero:

Enclosed is one (1) CD of the above-referenced document. This Interim Response Work Plan is specific to address the subsurface concrete structures and potential PCB impacted media regulated under the federal Toxic Substance Control Act (TSCA) in Area 5-2 at the RACER Trust Lansing Plant 2 property.

If you have any questions regarding the information in this report, please contact us at (517) 321-3331.

Sincerely, **PM ENVIRONMENTAL, INC.**

Casey Armstrong Manager – Remediation Services

J. Adam Patton, CHMM Manager of Site Investigation Services

Detroit 4080 W. 11 Mile Rd Berkley, MI 48072 f: 877-884-6775 t: 248-336-9988 Grand Rapids 77 Monroe Center, NW Suite 602 Grand Rapids, MI 49503 f: 877-884-6775 t: 616-285-8857 Lansing 3340 Ranger Road Lansing, MI 48906 f: 877-884-6775 t: 517-321-3331

May 2013

Mr. Peter Quackenbush Department of Environmental Quality Constitution Hall, Atrium North 525 West Allegan Street P.O. Box 30241 Lansing, Michigan 48909

Re: DRAFT Interim Response Work Plan for Concrete Vault Removal and Test Pit Investigation for the Former General Motors Lansing Plant 2 Located at 2801 West Saginaw Street, Lansing, Michigan MID No. 980 700 827 PM Environmental, Inc. Project No. 01-4172-3

Dear Mr. Quackenbush:

Enclosed is one (1) CD of the above-referenced document. This Interim Response Work Plan is specific to address the subsurface concrete structures and potential PCB impacted media regulated under the federal Toxic Substance Control Act (TSCA) in Area 5-2 at the RACER Trust Lansing Plant 2 property.

If you have any questions regarding the information in this report, please contact us at (517) 321-3331.

Sincerely, **PM ENVIRONMENTAL, INC.**

Casey Armstrong Manager – Remediation Services

J. Adam Patton, CHMM Manager of Site Investigation Services

Cc: Peter Ramanauskas, USEPA Region 5 Jean Greensley, USEPA Region 5

TABLE OF CONTENTS

SECTION 1.0	INTRODUCTION	1
Section 1.1	Previous Reports	1
Section 1.2	Site Background and Investigations	1
Section 1.3	Soil Analytical Results	3
Section 1.4	Groundwater Analytical Results	4
Section 1.5	Geology and Hydrogeology	4
SECTION 2.0	INTERIM RESPONSE WORK PLAN ACTIVITIES	5
Section 2	2.1 Concrete Vault Excavation/Test Pit Investigation	5
Section 2	2.2 Project Staff	6
Section 2	2.3 Schedule	6
Section 2	2.4 Health and Safety Plan	6
SECTION 3.0	CERTIFICATION	6

TABLES

- 1A. Summary of Soil Analytical Results PCBs (April/May 2012)
- 1B. Summary of Soil Analytical Results PCBs and VOCs (October 2012)
- 2. Summary of Groundwater Analytical Results PCBs

FIGURES

- 1. Site Vicinity Map
- 2. Generalized Diagram of the Subject Property and Adjoining Properties
- 3A. Soil Boring/Monitoring Well Locations with Soil PCB Analytical Results (April/May 2012)
- 3B. Soil Boring/Monitoring Well Locations with Soil PCB Analytical Results (October 2012)
- 4. Soil Boring/Monitoring Well Locations with Groundwater PCB Analytical Results
- 5. Proposed Concrete Vault Excavation

APPENDICES

A. Previous Site Investigations

SECTION 1.0 INTRODUCTION

This Interim Response Work Plan (Work Plan) was prepared on behalf of The RACER Trust (RACER), 2930 Ecorse Road, Ypsilanti, Michigan for the Lansing Plant 2 property located at 2801 West Saginaw Street, Lansing, Ingham County, Michigan (Figure 1), in general accordance with Title 40 Code of Federal Regulations, Chapter I, Subchapter R-Toxic Substance Control Act, Part 761 (40 CFR 761). Polychlorinated biphenyls (PCBs) were detected at the subject property in light non-aqueous phase liquid (LNAPL) at levels above relevant federal Toxic Substance Control Act (TSCA) Subpart-D concentrations during site investigations conducted by ARCADIS and PM Environmental, Inc. (PM) in 2011 and 2012. The date of the release and the concentration of the original spill are unknown.

This Interim Response Work Plan addresses Area 5-2 on the Lansing Plant 2 property and presents an excavation plan to remove an underground concrete structure and to restore and maintain the paved surface cover as an exposure barrier to existing impacted soil and groundwater. This Work Plan was prepared specifically to address impact at the subject property in Area 5-2 (Figure 2).

Section 1.1 Previous Reports

PM reviewed the following reports pertaining to previous environmental investigations during the preparation of this Work Plan:

- Current Conditions Report for GM Lansing Plants 2,3, and 6, August 1 2008, ARCADIS;
- Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Phase I Activities Summary Report, January 30, 2012 ARCADIS;
- Concrete Vault Wastewater Analytical Results, February 6, 2012, ARCADIS;
- RFI Phase 2 Activities Summary Report, April 2013.

Copies of the previous reports are included within Appendix A.

Section 1.2 Site Background and Investigations

On June, 1 2009, General Motors Corporation (GMC) filed for Chapter 11 Protection under U.S bankruptcy code. On July 10, 2009, GMC was renamed Motors Liquidation Company (MLC) and on the same day, some of the operating assets of GMC were sold to a newly formed company "General Motors Company". General Motors Company subsequently changed its name to General Motors LLC (GM LLC) on October 16, 2009. Assets not sold to GM LLC remained the property of MLC, in its capacity as debtor-in-possession in the bankruptcy case. On March 31, 2011, the environmental remediation of the subject property was transferred from MLC to the RACER. Ownership of this property was transferred to RACER Properties LLC, a wholly owned subsidiary of RACER.

Former General Motors Lansing Plant 2 (Plant 2) is located at 2801 West Saginaw Street in Lansing, Michigan and occupies approximately 63 acres of land. The subject property is located in the Township Four North (T. 4N), Range Two West (R. 2W), Sections 7, 17 and 18, Lansing, Ingham County, Michigan. Review of municipal records documents that the subject property is currently zoned 302 - Industrial. Refer to Figure 1 for a Property Vicinity Map and Figure 2 for a Generalized Diagram of the Subject Property and Surrounding Area.

DRAFT Interim Response Work Plan for Concrete Vault Removal and Test Pit Investigation for the Former General Motors Lansing Plant 2 Located at 2801 West Saginaw Street, Lansing, Michigan PM Environmental Inc. Project No. 01-4172-3; May 24, 2013

Plant 2 was constructed in the early 1900's and operations included various automobile manufacturing processes. Decommissioning of the plant begin in 2007. For additional detail regarding previous site operations, refer to the Current Conditions Report (CCR, ARCADIS 2008, Appendix A).

The subject property buildings have been demolished; the subject property is unoccupied and secured with fencing and locked gates. Concrete slabs and asphalt parking lots remain in place. Further demolition activities are planned at the subject property to fill in the remaining pits and basements and remove miscellaneous concrete and scrap steel from the ground surface.

The RFI Phase I site investigation activities were complete between July 19, 2011 and December 1, 2011 to investigate a total of 25 Areas of Interest (AOI's) at Plant 2, which included the advancement of 39 soil borings by ARCADIS. A total of 87 soil samples and three perched groundwater samples were collected for laboratory analysis for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), PCBs, and metals (antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, manganese, lead, mercury, nickel, selenium, silver, thallium, vanadium, and zinc), or a combination thereof. Site-wide analytical results from samples collected during the RFI Phase I activities are summarized in the RFI Phase I Activities Summary Report within Appendix A.

Light Non-aqueous Phase Liquid (LNAPL) was observed in a perched saturation unit at a depth of approximately 6.5 feet below ground surface (bgs) at soil boring P2-SB-37 (Figure 4) during site investigations completed in 2011. A sample of the LNAPL was collected on October 18, 2011. Various concentrations of VOCs and PCBs (52,000 µg/L) were detected in the LNAPL sample. Therefore, the LNAPL associated with P2-SB-37 was handled as a TSCA regulated substance when removed. ARCADIS' review of the chromatogram completed on the LNAPL suggests that the LNAPL is a mixture of light lubrication oil with a small amount of diesel fuel. A permanent monitoring well (MW-37) was installed at this location and a baildown recovery test was completed to assess potential recoverability of the LNAPL.

The baildown test indicated that the LNAPL exhibited a transmissivity of approximately 0.0003 feet squared per day (ft²/day). Published transmissivity values representing lower limits for practicable LNAPL recoverability range from 0.015 ft²/day (Beckett and Lundegard) to a range of 0.1 to 0.8 ft²/day (ITRC 2009). The LNAPL transmissivity value calculated at well P2-SB-37/MW-37 was lower than the lower end of this recoverability threshold, suggesting that recovery of the LNAPL with in-situ techniques is not practical.

Subsequent to the completion of the RFI Phase I site investigation activities, the RFI Phase II work plan was developed and completed for further investigation of site wide AOIs. A total of 24 additional soil borings and vertical aquifer profile borings (VAP) were advanced within a 200-foot perimeter of P2-SB-37/MW-37 (Figures 3A, 3B, and 4). Additionally, the extent of LNAPL within soils at Area 5-2 was determined using laser-induced fluorescence (LIF) and installation of permanent monitoring wells. LIF allows for high-resolution assessment of LNAPL impacts based upon fluorescent properties of PNA compounds. Approximately 58 LIF soil borings were advanced in the suspected LNAPL plume at Plant 2. The horizontal extent of LNAPL based upon the LIF response is depicted on Figures 3A, 3B, and 4.

PM completed a site investigation in Area 5-2 in October 2012 which consisted of advancing 16 soil borings (P2-GP-1 through P2-GP-16) to characterize soil in Area 5-2 surrounding the subsurface

concrete structures (Figure 3B). Additionally, three permanent monitoring wells (P2-GP-1/PMW-1, P2-GP-2/PMW-2, and P2-GP-11/PMW-3) were installed on the perimeter of the concrete structures (Figure 4).

In November 2012, ARCADIS installed nine wells Plant 2 (LMW-12-01 through LMW-12-08, and LMW-12-03D) to facilitate LNAPL transmissivity testing. The new wells were installed in areas where previous LIF screening results indicated the highest relative fluorescence responses, where fluorescence intensity is roughly proportionate to LNAPL saturation. In February 2013, only 2 of the 13 wells contained sufficient LNAPL thickness accumulations (>0.2 foot) to facilitate LNAPL transmissivity testing (LMW-12-03D with 8.10 feet, and PMW-01 with 0.64 foot).

Manual LNAPL skimming tests were initiated in wells LMW-12-03D and PMW-01 on February 6, 2013. The manual LNAPL skimming test completed at well LMW-12-03D was analyzed in accordance with ASTM guidance, yielding a transmissivity value of approximately 0.005 square feet per day (ft²/day). The test completed at PMW-1 could not be analyzed using conventional manual skimming test analysis. Instead, fluid level data collected during the initial recharge monitoring step of the test was analyzed using the Cooper and Jacob (1946)/Jacob and Lohman (1952) baildown test analysis method provided in the API LNAPL Transmissivity Workbook (API 2012), which yielded an estimated LNAPL transmissivity of 0.01 ft²/day.

The ITRC suggests LNAPL transmissivity range of 0.1 to 0.8 ft²/day as a lower-bound threshold for practicable LNAPL recovery using hydraulic methods (ITRC 2009). Measured LNAPL transmissivity at wells LMW-12-03D and PMW-1 are at least an order of magnitude lower than this range, indicating that LNAPL is minimally recoverable at these wells. While LNAPL transmissivity could not be directly measured at 11 of the 13 wells located in Plant 2, the lack of LNAPL accumulation suggests that LNAPL transmissivity is very low and likely less than LNAPL transmissivity in wells that contained sufficient LNAPL to permit transmissivity testing.

During completion of previous site investigations at Area 5-2, a concrete vault was discovered approximately 20-feet south of P2-SB-37/MW-37 (Figures 3A, 3B and 4). The concrete vault measures approximately 25-feet long (east to west), 4-feet wide, and 4-feet deep. Additionally, two concrete trenches are located directly north of the vault and are partially filled with soil and stone. A 10-inch diameter hole was cored through the top of the vault to inspect the contents. The concrete slab and associated concrete lid covering the vault area were determined to be 10.0 inches thick. As of August 1, 2012, 1.27 feet of liquid was measured in the concrete vault which exhibits a visual petroleum sheen. Analytical results of the samples collected from the concrete vault (Appendix A), indicate this liquid will be disposed of as characteristically non-hazardous, non-TSCA regulated waste water.

Section 1.3 Soil Analytical Results

The soil PCB analytical results from the 40 sample locations in the area of P2-SB-37/MW-37 are summarized in Tables 1A and 1B and Figures 3A and 3B. The concentrations of PCBs (1,100-10,000 μ g/Kg) at P2-SB-24, SB-A5.2-NR128, SB-A5.2-NZ128, VAP-A5.2-NV119, P2-GP-2, P2-GP-3, P2-GP-4, and P2-GP-15 are above the TSCA, 40 CFR 761(d)(4), direct contact criterion for high occupancy use without a cap (1,000 μ g/Kg), but at or below the high occupancy use with a cap and deed restriction criterion (10,000 μ g/Kg). The concentrations of PCBs (22,000-39,000 μ g/Kg) at SB-A5.2-NW124 and VAP-A5.2-NV119 are above the TSCA, 40 CFR 761(d)(4), direct contact criterion criterion for high occupancy use with a cap and deed restriction criterion (10,000 μ g/Kg).

With respect to PCB soil impact the horizontal extent of impact is delineated to below the laboratory method detection levels (MDLs) and/or TSCA direct contact criterion for high occupancy use without a cap to the west (SB-A5.2-NL114, SB-A5.2-NO106, SB-A5.2-NT111, SB-A5.2-NU107 and SB-A5.2-OC107), south (SB-A5.2-OB120 and VAP-A5.2-OE129), east (SB-A5.2-NZ138, SB-A5.2-NZ144, and SB-A5.2-OA138), and north (SB-A5.2-NG127 and SB-A5.2-NJ145). The vertical extents of PCB impact is delineated to below MDLs at each sample location surrounding P2-SB-37/MW-37 (Tables 1A and 1B and Figures 3A and 3B).

Section 1.4 Groundwater Analytical Results

The groundwater analytical results from four sample locations (VAP-A5.2-NV119, VAP-A5.2-OE129, VAP-A5.2-NK132, and VAP-A5.2-NU137) that were collected on the perimeter of P2-SB/MW-37 are summarized in Table 2 and Figure 4. Concentrations of PCBs (30-800 µg/L) in groundwater at VAP-A5.2-NV119 exceed the MDEQ Part 201 Nonresidential Drinking Water (DW), Groundwater Surface Water Interface (GSI), Groundwater Volatilization to Indoor Air Inhalation (GVII), and/or Groundwater Contact (GC) Generic Cleanup Criteria.

With respect to PCB groundwater impact, the horizontal extent of impact is delineated to below the laboratory MDLs and/or the most restrictive MDEQ Part 201 Tier 1 cleanup criteria to the south (VAP-A5.2-OE129), east (VAP-A5.2-NK137), and north (VAP-A5.2-NK132). The vertical extents of PCB impact is delineated to below MDLs at each sample location surrounding P2-SB-37/MW-37 (Table 2 and Figure 4). On a site-wide basis, PCB groundwater impact is defined to the west beyond Area 5-2 (Appendix A).

Section 1.5 Geology and Hydrogeology

A review of the 7.5 Minute, Lansing South Quadrangle, Map (Figure 1) prepared by the United States Geological Survey (USGS), dated 1965, photorevised 1973, indicates that the subject property is approximately 860 feet relative to the National Geodetic Vertical Datum (NGVD). The immediate subject property area appears to be relatively flat.

The Quaternary Geologic Map of Michigan (Farrand and Bell 1982a, 1982b) indicates the unconsolidated glacial geology at the subject property consists of "fine-textured glacial till". Bedrock beneath the subject property is composed of the Pennsylvanian Grand River and Saginaw geologic formations. Together, the Grand River and Saginaw Formations form a major and productive drinking water aquifer. Locally, the bedrock surface is encountered at the depth of approximately 60 feet below ground surface (bgs) beneath the east adjoining property and a depth of 110 feet bgs beneath the north adjoining property, suggesting the bedrock surface in the area has significant topography.

In general, the shallow lithology at the subject property consists of 5 to 10 feet of sandy fill imported to the site during original construction activities, underlain by clay and clay/sand/silt mixtures that are heavily interbedded with thin silt, sand and occasional gravel seams to depth of 30.0 feet bgs.

Groundwater beneath Plant 2 is encountered within multiple hydrostratigraphic units at varying depths across the subject property. The groundwater at the subject property has been divided in four aquifers: deep bedrock, deep overburden, middle overburden (approximately 30.0 to 40.0 feet bgs), and perched (approximately 5.0 to 15.0 feet bgs) groundwater units. The perched groundwater units are generally located where fill material overlies low permeability clays. Often the perched groundwater is located immediately below the ground surface. The perched unit

appears to be local, discontinuous, and potentially seasonal in nature. As such, the perched groundwater does not appear representative of an aquifer.

The primary water supply in the Lansing area is the Grand River-Saginaw aquifer, which is the principle source of municipal, industrial, and domestic drinking water in the Lansing area. The Grand River-Saginaw aquifer consists chiefly of sandstone as well as interbedded shale and siltstone. Because the sandstone of the Grand River Formation was formed within erosional valleys of the Saginaw Formation, the two formations are hydraulically connected and comprise one aquifer.

SECTION 2.0 INTERIM RESPONSE WORK PLAN ACTIVITIES

This Work Plan outlines activities intended excavate and dispose of the subsurface concrete structures located in Area 5-2. Subsequent to the completion of the interim work plan, a TSCA-compliant PCB remediation work plan will be prepared which will include land-use restrictions and requirements for maintaining surface pavement as a cap to prevent direct contact with residual impacted soils. Sections 2.1 through 2.4 below detail the interim response activities proposed.

Section 2.1 Concrete Vault Excavation/Test Pit Investigation

An excavation/test pit of the subsurface concrete structures is proposed in the area of P2-SB-37/MW-37 and P2-GP-2/PMW-2. Prior to excavating the concrete vault, waste characterization sampling of the liquid within the vault will be completed to determine appropriate disposal methods. Approximately 1,200-gallons of liquid will be removed from the vault, transported and properly disposed at a licensed disposal facility. Any PCB impacted material in excess of 50 ppm will be containerized separately (i.e., in sealed roll-off boxes, drums, or other suitable containers) and transported for proper disposal at The Environmental Quality Company's (EQ's) Wayne Disposal facility in Belleville, Michigan.

The concrete vault/test pit excavation area has potential to encounter soils/liquids containing concentrations of PCBs greater than 50 ppm, based upon its proximity to the LNAPL monitoring wells P2-SB-37/MW-37 and P2-GP-2/PMW-2. The concrete vault measures approximately 25-feet long (east to west), 4-feet wide, and 4-feet deep. Addiitonally, two concrete trenches are located directly north of the vault and are partially filled with soil and stone. The proposed excavation to remove the vault and trenches is estimated to be 50 feet long (east to west) by 90 feet wide (north to south) and up to 10 feet deep (Figure 5). An estimated total of 200 cubic yards of concrete (slab, vault, and trenches) and up to 1,700 cubic yards of soil will be generated for proper offsite disposal.

Concrete and soil sampling will be performed for waste characterization purposes to determine appropriate disposal methods. In accordance with 40 CFR 761, Subpart-O, up to 50 verification samples will be collected from the concrete vault/test pit for laboratory analysis of PCBs. The exact number of samples will be determined based upon the final dimensions of the test pit excavation.

The excavation area will be backfilled with Class III fill sand compacted in place with onsite equipment, and topped to within 6.0 inches of final grade with course sub-base material (i.e., crushed stone, gravel, crushed limestone, or equivalent material) in preparation of final cap. The final cap will consist of 6.0 inches of reinforced concrete in accordance with 40 CFR 761(a)(3).

Following the completion of the subsurface investigation, which documents the extent of the PCB

impact at levels above the TSCA direct contact criterion for low occupancy use with a cap, a Summary Report will be completed. The Summary Report will detail the investigation and include analytical tables, soil boring logs/well construction diagrams, excavation profiles, disposal documentation, and soil boring and groundwater sampling location maps.

Subsequent to the completion of the above tasks, a Risk-Based PCB Remediation Work Plan will be completed which will include restricting land use for purposes consistent with a Nonresidential Land- Use as defined in the December 2010 amendments to Michigan Part 201 and in a manner consistent with a low occupancy area as defined under TSCA.

Section 2.2 Project Staff

The following is a list of staff that will be involved with this project. This list can also be found in the site-specific Health and Safety Plan (HASP).

- Project Managers: Casey Armstrong, J. Adam Patton, CHMM, and Peter S. Bosanic, P.E.
- Site Safety Officer: Steve Stelter
- Project Staff: Alex Villhauer, Bruce Lemmon, Clifford Walls and Kelly Lennon

Section 2.3 Schedule

The project activities will be scheduled following the approval of this Work Plan and will generally adhere to the following schedule:

- Vault excavation activities will be complete in up to 15 business days.
- Laboratory analysis will be complete in up to 10 business days.
- The final investigation report will be complete within 45 business days following receipt of the laboratory report.

Section 2.4 Health and Safety Plan

A site-specific HASP was developed for this project by PM. All field personnel will be required to review, sign and date the HASP before beginning any site activities within each project phase. A copy of the HASP is available upon request.

SECTION 3.0 CERTIFICATION

In accordance with 40 CFR 761.61(a)(3)(i)(E), PM on behalf of RACER conducting this work plan, certify that all sampling plans, sample collection procedures, sample preparation procedures, extraction procedures, and instrument/chemical analysis procedures used by PM to assess or characterize the PCB contamination at the subject property will be maintained on file at the PM office located at 3340 Ranger Road, Lansing, Ingham County, Michigan, and will be made available for inspection by the MDEQ and/or the USEPA.

DRAFT Interim Response Work Plan for Concrete Vault Removal and Test Pit Investigation for the Former General Motors Lansing Plant 2 Located at 2801 West Saginaw Street, Lansing, Michigan PM Environmental Inc. Project No. 01-4172-3; May 24, 2013

Work Plan Prepared By:

Casey Armstrong Manager – Remediation Services

Work Plan Reviewed By:

J. Adam Patton, CHMM Manager of Site Investigation Services

Tables

TABLE 1A SUMMARY OF SOIL ANALYTICAL RESULTS - PCBS FORMER GENERAL MOTORS LANSING PLANT 2: AREA OF INTEREST OF 5.2 PM ENVIRONMENTAL PROJECT NUMBER 01-4172-3

Image: bordImage: b	Poly	rchlorinated Biphenyls (PCBs)	Arodor-1016 (PCB- 1016)	Arodol-1221 (PCB- 1221)	Aroclor-1232 (PCB- 1232)	Arodor-1242 (PCB- 1242)	Arodor-1248 (PCB- 1248)	Arodor-1254 (PCB- 1254)	Aroclor-1260 (PCB- 1260)	Total PCBs
				Arocle	Arocle	Arocle	Arocle	Arocle	Arocle	Arocle	μ.
10000 1000										NA	NA
Partner Partner Partner Partn			9 - 10	<3	<3	<3	<3	<3	<3	<3	<3
		00/01/11	2 - 3	<3	<3	<3	<3	<3	<3	<15	ND
1 1	SB-A5.2-NG127	05/02/12	13 - 14	<3	<3	<3	<3	<3	<3	<3	ND
			1 - 2	<3	<3	<3	<3	<3	<3	8	8
	SB-A5.2-NJ129	05/23/12	12.5 - 13	<3	<3	<3	<3	<3	60	<3	60
matrix generation matrix matrix matrix matrix matrix matrix			1 - 2	<3	<3	<3	<3	<3	<3	<3	ND
	SB-A5.2-NJ145	05/08/12	15 - 16	<3	<3	<3	<3	<3	<3	<3	ND
ODE ODE </td <td></td> <td></td> <td>1 - 2</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td>ND</td>			1 - 2	<3	<3	<3	<3	<3	<3	<3	ND
	SB-A5.2-NL114	05/23/12	14.5 - 15.5	<3	<3	<3	<3	<3	<3	<3	ND
<table-row><table-row><table-container><table-container><table-container><table-container><table-container><table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-row></table-row>			1 - 2	<3	<3	<3	<3	<3	<10	<3	ND
	SB-A5.2-NL121	05/02/12	10 - 11	<3	<3	<3	<3	<3	<3	<3	ND
			20 - 21	<3	<3	<3	<3	<3	<3	<3	ND
			4 - 5	<3	<3	<3	40 Q	<3	<3	<3	40
Image: state	SB-A5.2-NV133	04/30/12	9 - 10	<3	<3	<3	<3	<3	<3	<3	ND
Part interm			18 - 19	<5 X	<5 X	<5 X	<5 X	<5 X	<5 X	<5 X	ND
Part in the sector of the sector o			28 - 29	<3	<3	<3	<3	<3	<3	<3	ND
BAD MUM <			4 - 5	<3,000 Y	<3,000 Y	<3,000 Y	22,000 Y	<3,000 Y	<3,000 Y	<3,000 Y	22,000
BA53 MP (1) B <t< td=""><td>SB-A5.2-NW124</td><td>05/01/12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	SB-A5.2-NW124	05/01/12									
Back matrix			22 - 23		<3	<3					
above the sector of			3 - 4	<130 Y <50 Y	<130 Y <50 Y	<130 Y <50 Y	2,400 500	<130 Y <50 Y	<130 Y <50 Y	<130 Y <50 Y	500
Processor <td>SB-A5.2-NR128</td> <td>05/01/12</td> <td>13 - 14</td> <td><8 Y</td> <td><8 Y</td> <td><8 Y</td> <td></td> <td><8 Y</td> <td></td> <td></td> <td>100</td>	SB-A5.2-NR128	05/01/12	13 - 14	<8 Y	<8 Y	<8 Y		<8 Y			100
Partial1 			17 - 18 1 - 2	<3 <3	<3 <3	<3 <3	<3 <3	୍ ଏ ୧୨	<3 <3	<3 <3	ND ND
matrix 30 42 M21 0001 0.001			4 - 5	<300 Y	<300 Y	<300 Y	2,800 Q	<300 Y	<300 Y	<300 Y	2,800
Image: state	SB-A5.2-NZ128	05/01/12	11 - 12	<3	<3	<3	<3	<3	<3	<3	ND ND
matrix			20 - 21	<3	<3	<3	<3	<3	<3	<3	ND
bit bit <td>SB-A5.2-NZ138</td> <td>05/01/12</td> <td>1 - 2</td> <td><5 X</td> <td><5 X</td> <td><5 X</td> <td><5 X</td> <td><5 X</td> <td>10 X</td> <td><5 X</td> <td>10</td>	SB-A5.2-NZ138	05/01/12	1 - 2	<5 X	<5 X	<5 X	<5 X	<5 X	10 X	<5 X	10
Image: state			6 - 7	<3	<3	<3	<3	<3	<3	<3	ND
Ba.b.2 cm Image: cm of the section of th	SB-A5.2-NZ144	05/04/12	18 - 19	<3	<3	<3	<3	<3	<3	<3	ND
ab 2.0 MB00101211.00000000011110000000001110000000000011100			1 - 2	<8 Y	<8 Y	<8 Y	<8 Y	<8 Y	100 Y	<8 Y	100
Spiration <td>SB-A5.2-OA138</td> <td>05/10/12</td> <td>11 - 12</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td>ND</td>	SB-A5.2-OA138	05/10/12	11 - 12	<3	<3	<3	<3	<3	<3	<3	ND
an and bodyand bodyan			23 - 24	<3		<3					ND
model model <th< td=""><td>SB-45 2-OB120</td><td>05/22/12</td><td>7.5 - 8.5</td><td><3</td><td><3</td><td><3</td><td><3</td><td><3</td><td><3</td><td><3</td><td>ND</td></th<>	SB-45 2-OB120	05/22/12	7.5 - 8.5	<3	<3	<3	<3	<3	<3	<3	ND
300 0 00.01 2.3 0.00 <	00,002,00120	00/22/12	26 - 27		<20 Y				160 Y		160
Map-4.5 kmm 	SB-A5.2-NU132	04/30/12	2 - 3	<30 Y	<30 Y	<30 Y	300 YQ	<30 Y	<30 Y	<30 Y	300
MAPA 52 NUT19MSUN19<			6 - 7	<3,000 Y	<3,000 Y	<3,000 Y	39,000	<3,000 Y	<3,000 Y	<3,000 Y	39,000
Image: biol in the state in the st	VAP-A5 2-NV119	05/03/12	14 - 15	<3	<3	<3	<5	<3	<3	<3	ND
NP-A3-20E12000 <th< td=""><td></td></th<>											
MAAB-CETAB COULD TOTAL COULD COULD <td></td> <td></td> <td>33 - 34</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td>ND</td>			33 - 34	<3	<3	<3	<3	<3	<3	<3	ND
NP-A5_N(1)7 04/0012 0.5 0.5 0.5 0.5 0.5 VP-A5_N(1)7 04/0012 0.6 0.5 </td <td>VAP-A5.2-OE129</td> <td>05/01/12</td> <td>12 - 13</td> <td><8 Y</td> <td><8 Y</td> <td><8 Y</td> <td><8 Y</td> <td><8 Y</td> <td>100</td> <td><8 Y</td> <td>100</td>	VAP-A5.2-OE129	05/01/12	12 - 13	<8 Y	<8 Y	<8 Y	<8 Y	<8 Y	100	<8 Y	100
VipPids 2-N117 Outpot Set of the set of t			22 - 23	<3	<3	<3	<3	<3	<3	<3	ND
VAPA52-NK1205/01215.16-3-3-3-3-3-3-3-3-3-3-308B-52-NT1105/01211-3-		0.4/00/4.0	5 - 6	<5 X	<5 X	<5 X	<5 X	<5 X	<5 X	<5 X	ND
NAP.AG.2.NK132 B.1.2 C <thc< th=""> C C</thc<>	VAP-A5.2-NU137	04/30/12	15 - 16	<3	<3	<3	<3	<3	<3	<3	ND
Monode with a basis Monode with basis Monode with babasis			1 - 2	<3	<3	<3	<3	<3	<3	<3	ND
BB-A52-N1111 000012 1.2 0	VAP-A5.2-NK132	05/15/12	14 - 15	<3	<3	<3	<3	<3	<3	<3	ND
Set A52.N111 060012 7.8 C C C C C C C C NO B 17.5 C <			1 - 2	<3	<3	<3	<3	<3	<3	<3	ND
Image: state intermediate intermed	SB-A5.2-NT111	05/03/12	7 - 8	<3	<3	<3	<3	<3	<3	<3	ND
SB-52.N016 0503/12 1-2 -3 -3 -3 -3 -3 -3 -3 ND SB-52.N016 0503/12 10 14 -3 -3 -3 -3 -3 ND SB-52.N016 0503/12 10 14 -3 -3 -3 -3 -3 -3 ND ND SB-52.N016 0502/12 12 -3			17 - 18	<3	<3	<3	<3	<3	<3	<3	ND
SB-A52-N016 050312 10-11 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 ND 20-21 -3 -3 -3 -3 -3 -3 ND -2 -3 -3 -3 -3 ND ND <td></td> <td></td> <td>1 - 2</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td>ND</td>			1 - 2	<3	<3	<3	<3	<3	<3	<3	ND
1 2 2 3 2 3 2 3 2 3 1 1 20 2 3 2 3 2 3 2 3 2 3 3 3 3 4 3	SB-A5.2-NO106	05/03/12	10 - 11	<3	<3	<3	<3	<3	<3	<3	ND
BB-A5.2-N0116 1-2 -3			20 - 21	<3	<3	<3	<3	<3	<3	<3	ND
SB-A5.2N016 0502/12 7.8 4.3			1 - 2	<3	<3	<3	<3	<3	<3	<3	ND
Image: state in the s	SB-A5.2-NO116	05/02/12	7 - 8	<3	<3	<3	<3	<3	<3	<3	ND
SB-A5_2-NU107 06/22/12 15 - 2.5 -3			17 - 18	<3	<3	<3	<3	<3	<3	<3	ND
SB-M2_PMU107 US/21/2 12:13 C6 X C1 X C1 X C1 X			1.5 - 2.5	<3	<3	<3	<3	<3	<3	<3	ND
BB-A5_2OC107 05/22/12 19-2.9 -3<	SB-A5.2-NU107	05/22/12	12 - 13	<6 X	<6 X	<6 X	<6 X	<6 X	<6 X	<6 X	ND
Bit A5.2-OC107A OS22/12 B · 9 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	SB 45 0 00/07	05/00/40	1.9 - 2.9	<3	<3	<3	<3	<3	10	<3	10
SBS.2-COUNA 03/21/2 16 - 17 -33	з ь- Аз.2-UU107	05/22/12	8 - 9	<3	<3	<3	<3	<3	<3	<3	ND
SB-A5.2-NK111 Part of the second	SB-A5.2-OC107A	05/22/12	16 - 17	<3	<3	<3	<3	<3	<3	<3	ND
SB-A5.2-NK111 05/03/12 15-16 -43 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3			7.5 - 8.5	<3	<3	<3	<3	<3	<30	<3	ND
23.24 3 <td>SB-A5.2-NK111</td> <td>05/03/12</td> <td>15 - 16</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td>ND</td>	SB-A5.2-NK111	05/03/12	15 - 16	<3	<3	<3	<3	<3	<3	<3	ND
Operational Memorandum No. 1: Part 201 Cleanup Criteria and Part 213 Risk-based Screening Levels; (RBSLs), Attachment 1: Soil Tables 2 and 3 Residential and Nonresidential Part 201 Generic Cleanup Criteria and Screening Levels; Part 213 Tier 1 RBSLs, March 25, 2011 Residential (µg/Kg) Residential (µg/Kg) NA			23 - 24	<3	<3	<3	<3	<3	<3	<3	ND
Attachment 1: Soil Tables 2 and 3 Residential and Nonresidential Part 201 Generic Clearup Criteria and Screening Levels; Part 213 Tier 1 RBSLs, March 25, 2014 Residential Background Levels N		۱								<3	UN
Statewide Default Background LevelsNANANANANANANANANADrinking Water Protection (Res DWP)NLL <t< td=""><td>Attachment 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ls, March 25,</td><td>2011</td></t<>	Attachment 1									Ls, March 25,	2011
Statewide Default Background LevelsNANANANANANANANANADrinking Water Protection (Res DWP)NLL <t< td=""><td></td><td></td><td></td><td>Resid</td><td>dential (µg/Kg)</td><td>)</td><td></td><td></td><td></td><td></td><td></td></t<>				Resid	dential (µg/Kg))					
Stroundwater Surface Water Interface Protection (GSIP) NLL NLL <t< td=""><td>Statewide Default Back</td><td>ground Levels</td><td></td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></t<>	Statewide Default Back	ground Levels		NA	NA	NA	NA	NA	NA	NA	NA
SSIP Human Drinking Water NA			n (CSIP)								
Strondwater Contact Protection (GCP) NLL NL NLL			(Golf)								
Ambient Air Infinite Source Volatile Soil Inhalation (Res VSI) 240,000	Groundwater Contact P	Protection (GCP)									
Ambient Air Finite VSI for 5 Meter Source Thickness 7.9E+06 7.9E											
Ambient Air Finite VSI for 2 Meter Source Thickness 7.9E+06 5.2E+06 5.2E+07 1.000 (T) 1.000 (T) <th1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></th1<>									-		
Direct Contact (Res DC) 1.000 (T) 1.6E+07 1.6E+07 1.6E+07 1.6E+07											
Nonresidential (ug/Kg) Drinking Water Protection (Nonres DWP) NLL NLL <td></td> <td></td> <td>1)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1)								
NLL NLL <td> 20201 (1103 00</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td>1,000 [1]</td> <td>.,000 [1]</td> <td>.,000 [1]</td> <td>1,000 (1)</td> <td>1,000 [1]</td>	20201 (1103 00	,					1,000 [1]	.,000 [1]	.,000 [1]	1,000 (1)	1,000 [1]
Ambient Air Infinite Source Volatile Soil Inhalation (Nonres VSI) 810,000	Drinking Water Protect	ion (Nonres DWP)					NLL	NLL	NLL	NLL	NLL
Ambient Air Finite VSI for 5 Meter Source Thickness 2.8E+07 2.8E											
Ambient Air Finite VSI for 2 Meter Source Thickness 2.8E+07 2.8E			. ,								
Ambient Air Particulate Soil Inhalation (Nonres PSI) 6.5E+06 6.5					-						
Direct Contact (Nonres DC) 10,000 (T)	Ambient Air Particulate	Soil Inhalation (Nonres									
	Direct Contact (Nonres	DC)		10,000 {T}	10,000 {T}	10,000 {T}	10,000 {T}	10,000 {T}	10,000 {T}	10,000 {T}	10,000 {T}

(T) Refer to the Toxic Substance Control Act (TSCA), 40 CFR 761, Subparts D and G, as amended, to determine the applicability of TSCA cleanup standards. Alternatives to compliance with the standards listed below are possible under Subpart D. New Releases may be subject to the standards identified in Subpart G. Use Part 201 soil direct contact criteria in the table below where TSCA standards are not applicable.

LAND USE CATEGORY	TSCA, Subpart D	Part 201
Residential	1,000 µg/Kg, or	4,000 µg/Kg
Nonresidential	10,000 µg/Kg if capped	16,000 µg/Kg

Criteria Exceeded
BOLD Value Exceeds Applicable Criteria
bgs Below Grade Surface (feet)
1 Maximum of analyzed or calculated total lead value.

X Elevated reporting limit due to matrix interference Y Elevated reporting limit due to high target concentraion

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - PCBS FORMER GENERAL MOTORS LANSING PLANT 2; AREA OF INTEREST 5-2 PM ENVIRONMENTAL PROJECT NUMBER 01-4172-3

	(ug/L)		Aroclor-1016 (PCB- 1016)	Aroclor-1221 (PCB- 1221)	Aroclor-1232 (PCB- 1232)	Aroclor-1242 (PCB- 1242)	Aroclor-1248 (PCB- 1248)	Aroclor-1254 (PCB- 1254)	Aroclor-1260 (PCB- 1260)	Total PCBs
Location ID:	Date Collected:	Depth (ft):								
P2-SB-37/MW-37 (LNAPL)	10/18/11	5.0-10.0	ND Y	52,000	ND Y	52,000				
P2-PMW-2 (LNAPL)	10/19/12	2.6-7.6	ND Y	ND Y	ND Y	133,000	ND Y	ND Y	ND Y	133,000
		10.0-11.0	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
VAP-A5.2-NK132	05/15/12	21.0-22.0	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	ND
		30.0-32.0	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	ND
VAP-A5.2-NU137	05/01/12	16.0-18.0	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	ND
VAF-A3.2-NU137	05/01/12	24.0-26.0	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	ND
VAP-A5.2-NV119	05/02/12	8.0-9.0	<100 Y	<100 Y	<100 Y	800 Y	<100 Y	<100 Y	<100 Y	800
VAF-A0.2-INV 119	00/02/12	20.0-22.0	<5 Y	<5 Y	<5 Y	30 Y	<5 Y	<5 Y	<5 Y	30
VAP-A5.2-OE129	05/02/12	18.5-19.5	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	<0.05	0.05

aa

Operational Memorandum No. 1: Part 201 Cleanup Criteria and Part 213 Risk-based Screening Levels (RBSLs), Attachment 1: Soil Tables 2 and 3 Residential and Nonresidential Part 201 Generic Cleanup Criteria and Screening Levels; Part 213 Tier 1 RBSLs, March 25, 2011

.ъ,	wa	CII	25,	201	·	

Residential & Nonresidential (µg/L)								
Residential Drinking Water (Res DW)	0.5 {A}	0.5 {A}	0.5 {A}	0.5 {A}	0.5 {A}	0.5 {A}	0.5 {A}	0.5 {A}
Residential Health Based Drinking Water Values	NL	NL	NL	NL	NL	NL	NL	NL
Nonresidential Drinking Water (Nonres DW)	0.5 {A}	0.5 {A}	0.5 {A}	0.5 {A}	0.5 {A}	0.5 {A}	0.5 {A}	0.5 {A}
Nonresidential Health Based Drinking Water Values	NL	NL	NL	NL	NL	NL	NL	NL
Groundwater Surface Water Interface (GSI)	0.2 {M}; 2.6E- 5	0.2 {M}; 2.6E-5						
GSI Final Acute Values (FAV) ¹	ID	ID	ID	ID	ID	ID	ID	ID
GSI Human Drinking Water	NA	NA	NA	NA	NA	NA	NA	NA
Residential Groundwater Volatilization to Indoor Air Inhalation (Res GVII) ²	45 {S}	45 {S}	45 {S}	45 {S}	45 {S}	45 {S}	45 {S}	45 {S}
Nonresidential Groundwater Volatilization to Indoor Air Inhalation (Nonres GVII) ²	45 {S}	45 {S}	45 {S}	45 {S}	45 {S}	45 {S}	45 {S}	45 {S}
Groundwater Contact (GC)	3.3 {AA}	3.3 {AA}	3.3 {AA}	3.3 {AA}	3.3 {AA}	3.3 {AA}	3.3 {AA}	3.3 {AA}

Criteria/RBSL Exceeded

BOLD Value Exceeds Applicable Criteria

bgs Below Grade Surface (feet)

ND Not detected at levels above the laboratory Method Detection Limit (MDL) or Minimum Quantitative Level (MQL)

¹ Rule 323.1057 of Part 4 Water Quality Standards

² Tier 1 GVII Criteria based on 3 meter (or greater) groundwater depth

³ (Program Redesign 2009 Draft) Screening Levels based on depth to groundwater less than 3 meters and not in contact with building foundation

Y Elevated reporting limit due to high target concentration

NL Not Listed

TABLE 1B SUMMARY OF SOIL ANALYTICAL RESULTS POLYCHLORINATED BIPHENYLS (PCBs) VOLATILE ORGANIC COMPOUNDS (VOCs) FORMER LANSING PLANT 2, 2801 WEST SAGINAW STREET, LANSING, MICHIGAN PME PROJECT # 01-4172-3

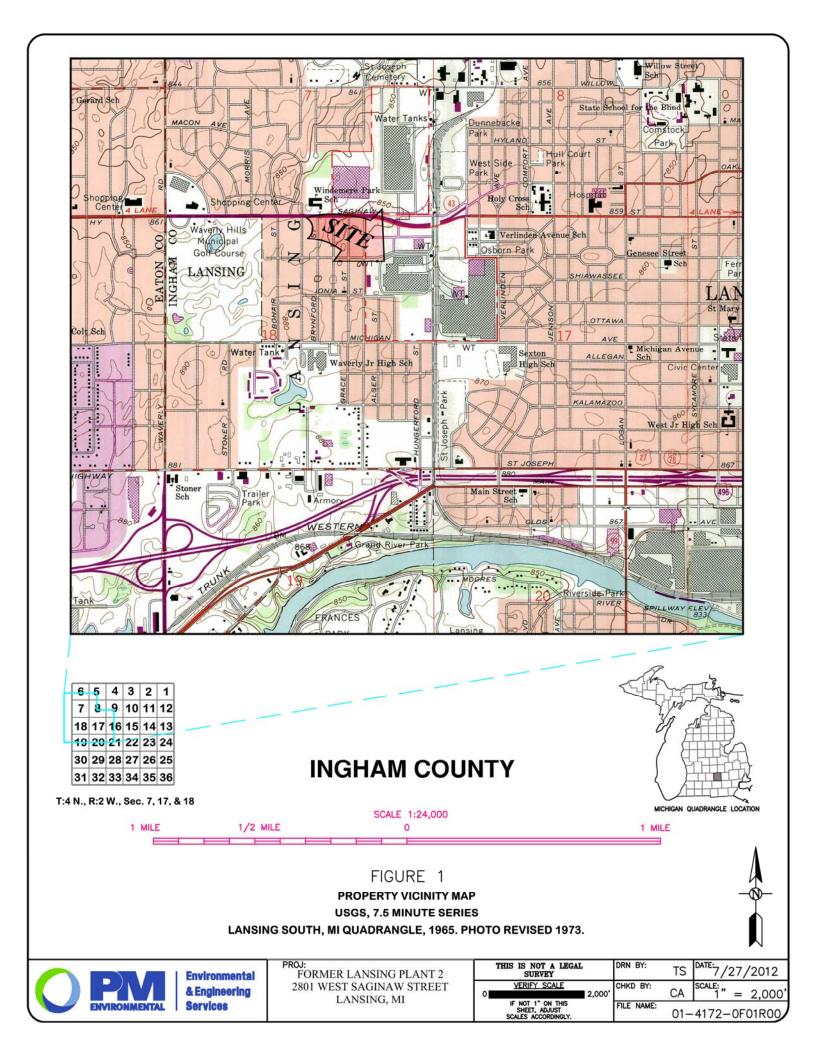
Polychlorinated Biphenyls (PCBs) & Volatile Organic Compounds (VOCs)			Polychlorinated Biphenyls	Chloroethane	1,1- Dichloroethane	Ethylbenzene	Toluene	1,1,1- Trichloroethane	Trichloroethylene	Xylenes	1,2,4- Trichlorobenzene	Other VOCs
Chemical Abstract Service Number (CAS#)			1336363	75003	75343	100414	108883	71556	79016	1330207	120821	Various
Sample ID	Sample Date	Sample Depth (bgs)	PCBs					VOCs				
P2-GP-1	10/11/2012	7.0-7.5	140	780	90	<70	80	<70	<70	<170	<70	ND
P2-GP-2	10/11/2012	1.0-2.0	5,300	NA	NA	NA	NA	NA	NA	NA	NA	ND
P2-GP-2	10/11/2012	7.0-7.5	550	NA	NA	NA	NA	NA	NA	NA	NA	ND
P2-GP-3	10/11/2012	4.0-5.0	1,100	NA	NA	NA	NA	NA	NA	NA	NA	ND
P2-GP-4			2,600	260	90	<60	490	<60	80	200	90	ND
A-1 (Duplicate)	10/11/2012	4.0-5.0	3,200	330	250	<60	570	100	90	200	110	ND
P2-GP-4	10/11/2012	8.0-9.0	180	NA	NA	NA	NA	NA	NA	NA	NA	ND
P2-GP-5	10/11/2012	4.0-5.0	17	NA	NA	NA	NA	NA	NA	NA	NA	ND
P2-GP-5	10/11/2012	8.0-9.0	<6	NA	NA	NA	NA	NA	NA	NA	NA	ND
P2-GP-6	10/11/2012	4.0-5.0	160	NA	NA	NA	NA	NA	NA	NA	NA	ND
P2-GP-7	10/11/2012	5.0-6.0	240	1,170	<60	<60	<60	<60	<60	<160	<60	ND
P2-GP-8	10/11/2012	5.0-6.0	51	<600	4,100	12,200	<600	<600	<600	65,500	<600	ND
P2-GP-9	10/11/2012	4.0-5.0	37	NA	NA	NA	NA	NA	NA	NA	NA	ND
A-3 (Duplicate)			27	NA	NA	NA	NA	NA	NA	NA	NA	ND
P2-GP-10	10/12/2012	2.0-3.0	<3	<60	<60	<60	<60	<60	<60	<160	<60	ND
P2-GP-11	10/12/2012	3.0-4.0	170	<60	170	<60	<60	60	<60	<160	<60	ND
P2-GP-12	10/19/2012	2.0-3.0	3	NA	NA	NA	NA	NA	NA	NA	NA	ND
P2-GP-12	10/19/2012	5.0-6.0	<3	NA	NA	NA	NA	NA	NA	NA	NA	ND
P2-GP-13	10/19/2012	2.0-3.0	6	NA	NA	NA	NA	NA	NA	NA	NA	ND
P2-GP-13	10/19/2012	6.0-7.0	200	NA	NA	NA	NA	NA	NA	NA	NA	ND
P2-GP-14 P2-GP-14	10/19/2012	1.0-2.0	<3	NA	NA	NA	NA	NA	NA	NA	NA	ND
	10/19/2012	6.0-7.0	16	NA	NA	NA	NA	NA	NA	NA	NA	ND
P2-GP-15 P2-GP-15	10/19/2012 10/19/2012	1.0-2.0 4.0-5.0	800 4,700	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND
P2-GP-15	10/19/2012	10.0-11.0	200	NA	NA	NA	NA	NA	NA	NA	NA	ND
P2-GP-16	10/19/2012	1.0-2.0	<3	NA	NA	NA	NA	NA	NA	NA	NA	ND
										10/1	1473	ND
Ope Attachment 1: Soil Tables 2 a		No. 1: Part 201 Clean Nonresidential Part 20								s. March 25	. 2011	
							,			-,	,	
Residential (µg/Kg) Statewide Default Background Levels NA NA							NA					
Drinking Water Protection (Res DWP)		NLL	8,600	18,000	1,500	16,000	4,000	100	5,600	4,200	Various	
Groundwater Surface Water Interface Protection (GSIP)		NLL	22,000 {X}	15,000	360	5,400	1,800	4,000 {X}	820	5,900 {X}	Various	
GSIP Human Drinking Water		NA	NA NA	NA	NA	NA	NA	580	NA	NA	Various	
Groundwater Contact Protection (GCP)			NLL	9.5E+5 {C}	8.9E+5 {C}	1.4E+5 {C}	2.5E+5 {C}	4.6E+5 {C}	4.4E+5	1.5E+5 {C}	1.10E+06	Various
Soil Volatilization to Indoor Air Inhalation (Res SVII)			3.0E+06	9.5E+5 {C}	230,000	87,000	2.5E+5 {C}	250,000	7,100	1.5E+5 {C}	1.1E+6 {C}	Various
Ambient Air Infinite Source Volatile Soil Inhalation (Res VSI)			240,000	3.00E+07	2.10E+06	720,000	2.80E+06	3.80E+06	78,000	4.60E+07	2.80E+07	Various
Ambient Air Finite VSI for 5 Meter Source Thickness			7.9E+06	1.20E+08	5.90E+06	1.00E+06	5.10E+06	1.20E+07	1.70E+05	6.10E+07	2.80E+07	Various
Ambient Air Finite VSI for 2 Meter Source Thickness			7.9E+06	2.80E+08	1.40E+07	2.20E+06	1.20E+07	2.80E+07	3.90E+05	1.30E+08	2.80E+07	Various
Ambient Air Particulate Soil Inhalation (Res PSI)		5.2E+06	6.70E+11	3.30E+10	1.00E+10	2.70E+10	6.70E+10	1.80E+09	2.90E+11	2.50E+10	Various	
Direct Contact (Res DC)			1,000 {T}	9.5E+5 {C}	8.9E+5 {C}	1.4E+5 {C}	2.5E+5 {C}	4.6E+5 {C}	5.0E+5 {C,DD}	1.5E+5 {C}	9.9E+5 {DD}	Various
		Nor	residential (µg/Kg)					(0,00)		(00)	
Drinking Water Protection (Nonres DWP)			NLL	34,000	50,000	1,500	16,000	4,000	100	5,600	4,200	Various
Soil Volatilization to Indoor Air Inhalation (Nonres SVII)			1.6E+07	9.5E+5 {C}	430,000	1.4E+5 {C}	2.5E+5 {C}	460,000	37,000	1.5E+5 {C}	1.1E+6 {C}	Various
Ambient Air Infinite Source Volatile Soil Inhalation (Nonres VSI)			810,000	3.60E+07	2.50E+06	2.40E+06	3.30E+06	4.50E+06	260,000	5.40E+07	3.40E+07	Various
Ambient Air Finite VSI for 5 Meter Source Thickness			2.8E+07	1.20E+08	6.00E+06	3.10E+06	3.60E+07	1.50E+07	440,000	6.50E+07	3.40E+07	Various
Ambient Air Finite VSI for 2 Meter Source Thickness		2.8E+07	2.80E+08	1.40E+07	6.50E+06	3.60E+07	3.10E+07	1.10E+06	1.30E+08	3.40E+07	Various	
Ambient Air Particulate Soil Inhalation (Nonres PSI)			6.5E+06	2.90E+11	1.50E+10	1.30E+10	1.20E+10	2.90E+10	2.30E+09	1.30E+11	1.10E+10	Various
Direct Contact (Nonres DC)			10,000 {T}	9.5E+5 {C}	8.9E+5 {C}	1.4E+5 {C}	2.5E+5 {C}	4.6E+5 {C}	5.0E+5 {C,DD}	1.5E+5 {C}	1.1E+6 {C,DD}	Various
		Scree	ening Levels	(µg/Kg)	•	•	•	•	(0,00)		[0,00]	
Soil Saturation Concentration Screening Lo	evels (Csat)		NA	950,000	890,000	140,000	250,000	460,000	500,000	150,000	1.10E+06	Various

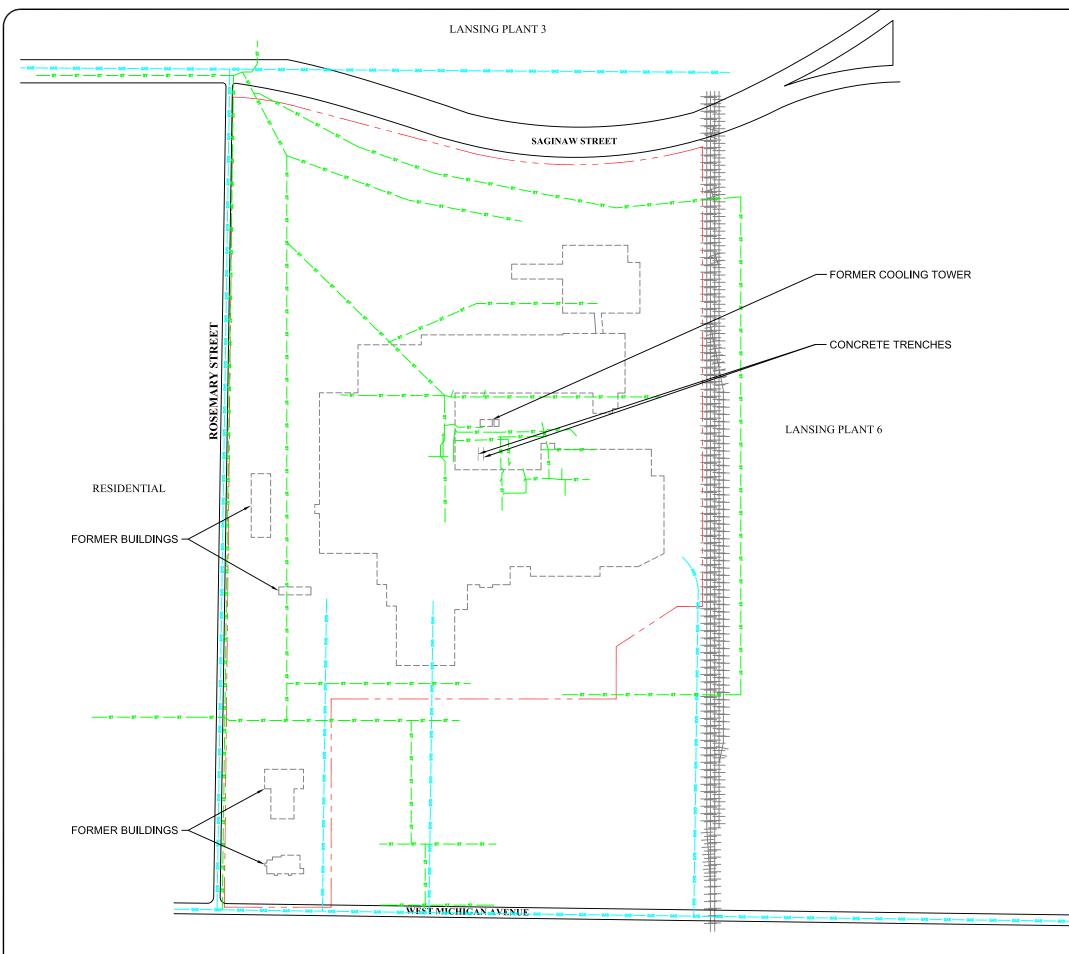
{T}

Refer to the Toxic Substance Control Act (TSCA), 40 CFR 761, Subparts D and G, as amended, to determine the applicability

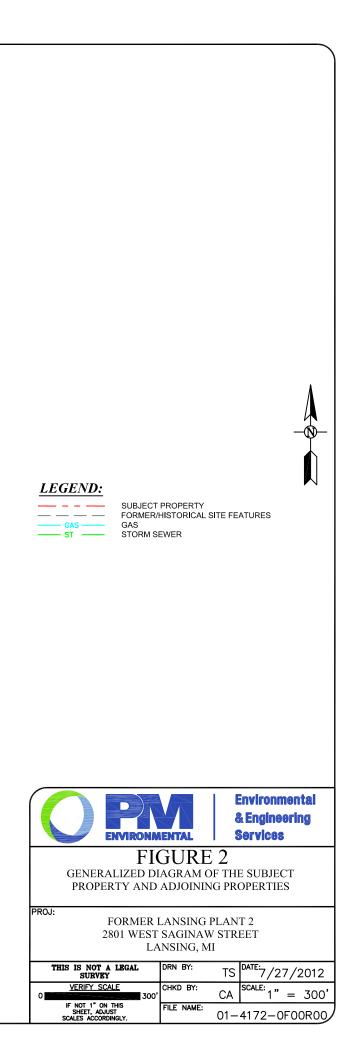
of TSCA cleanup standards. Alternatives to compliance with the standards listed below are possible under Subpart D. New Releases may be subject to the standards identified in Subpart G. Use Part 201 soil direct contact criteria in the table below

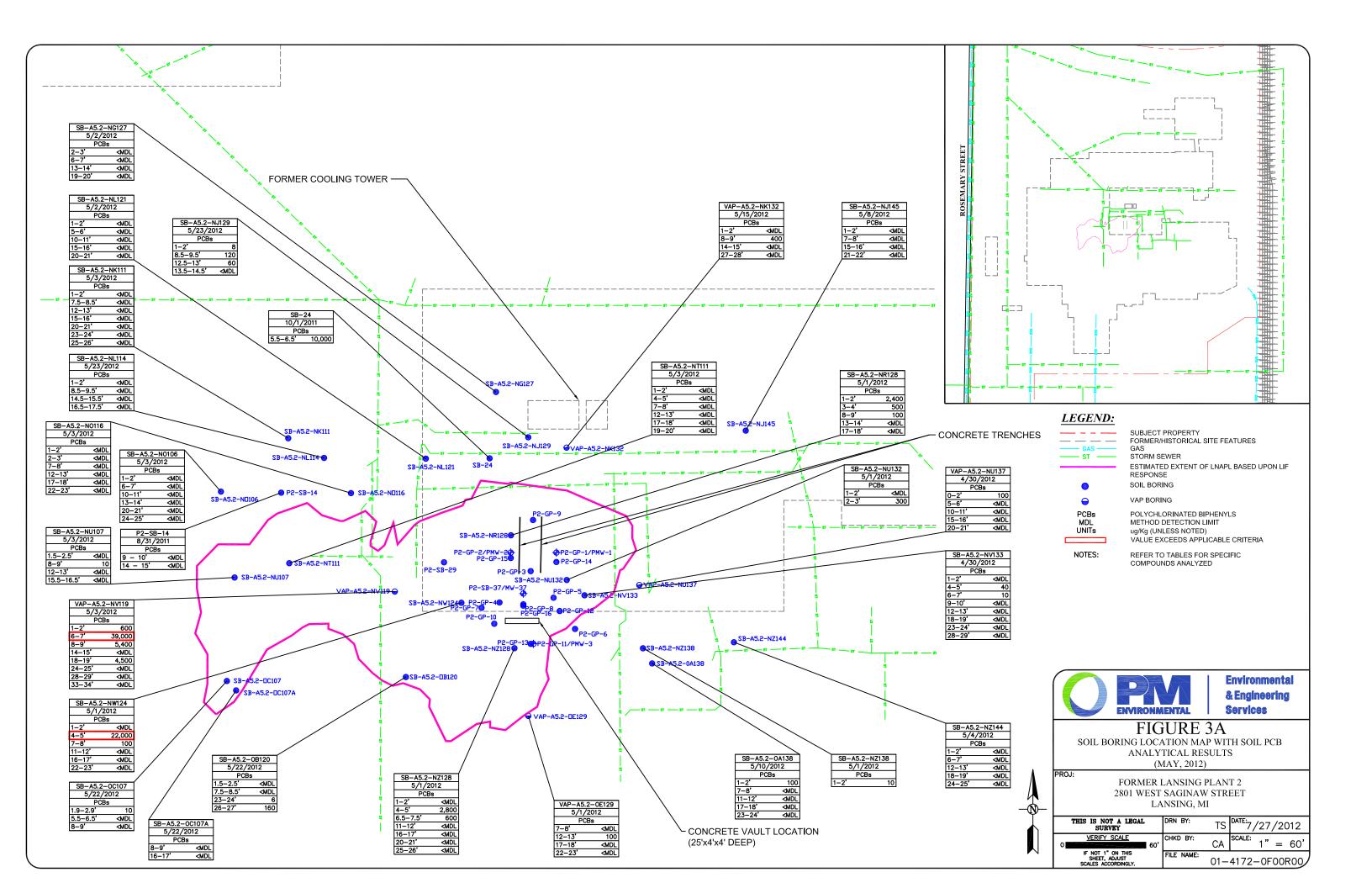
where TSCA standards are not applicable.

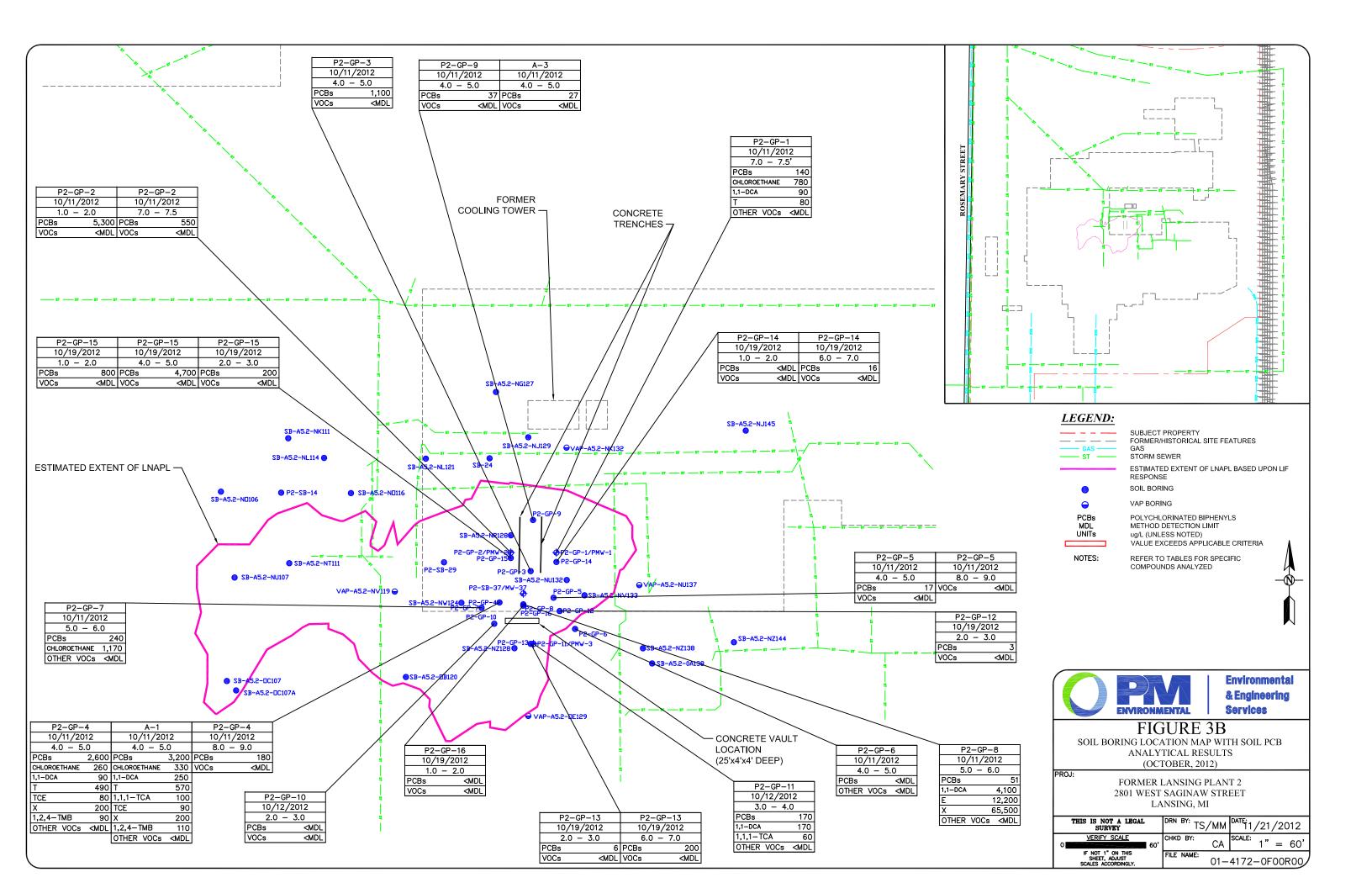

LAND USE CATEGORY	TSCA, Subpart D	Part 201
Residential	1,000 µg/Kg, or	4,000 µg/Kg
Nonresidential	10,000 µg/Kg if capped	16,000 µg/Kg

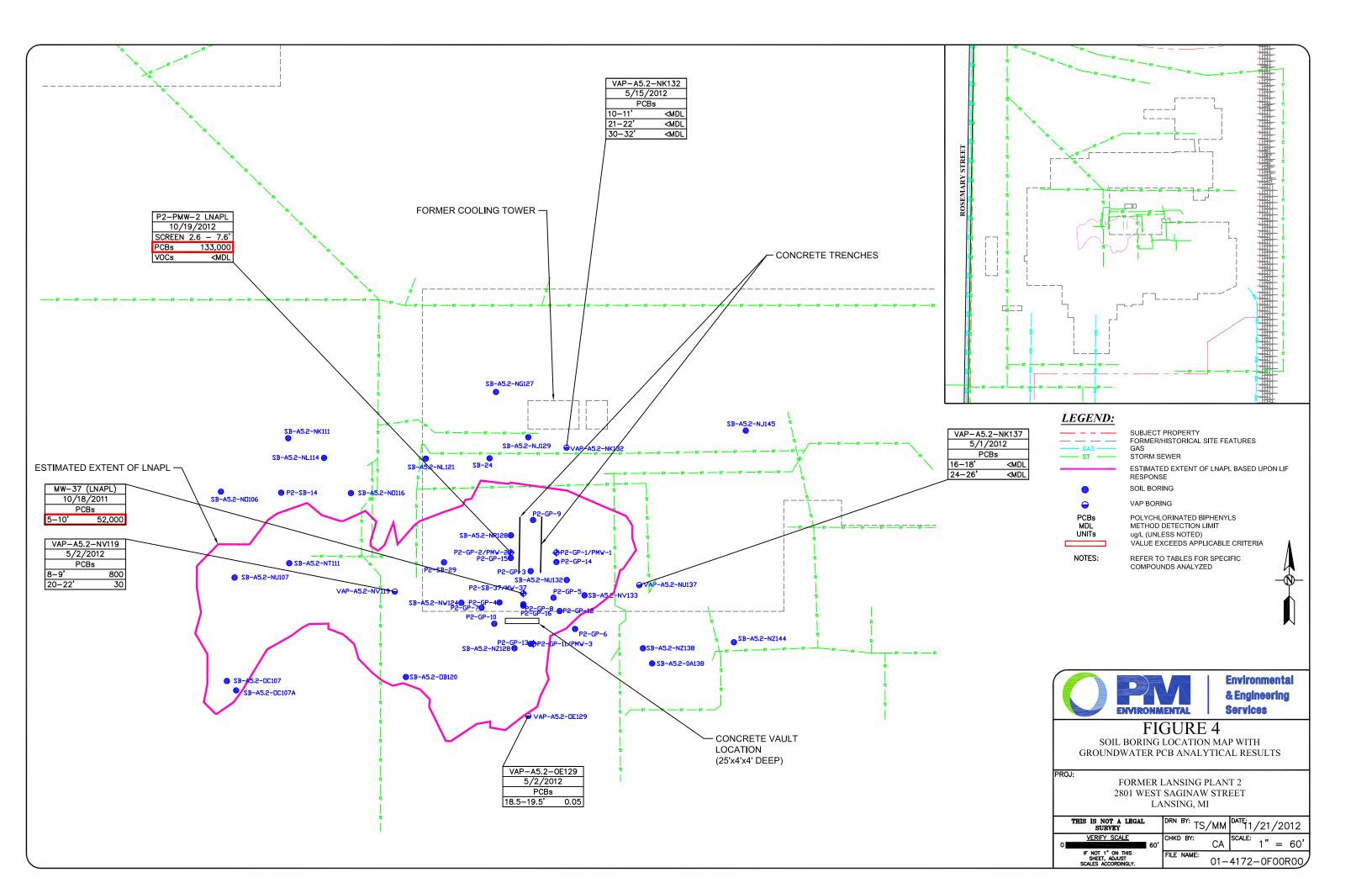

Criteria Exceeded

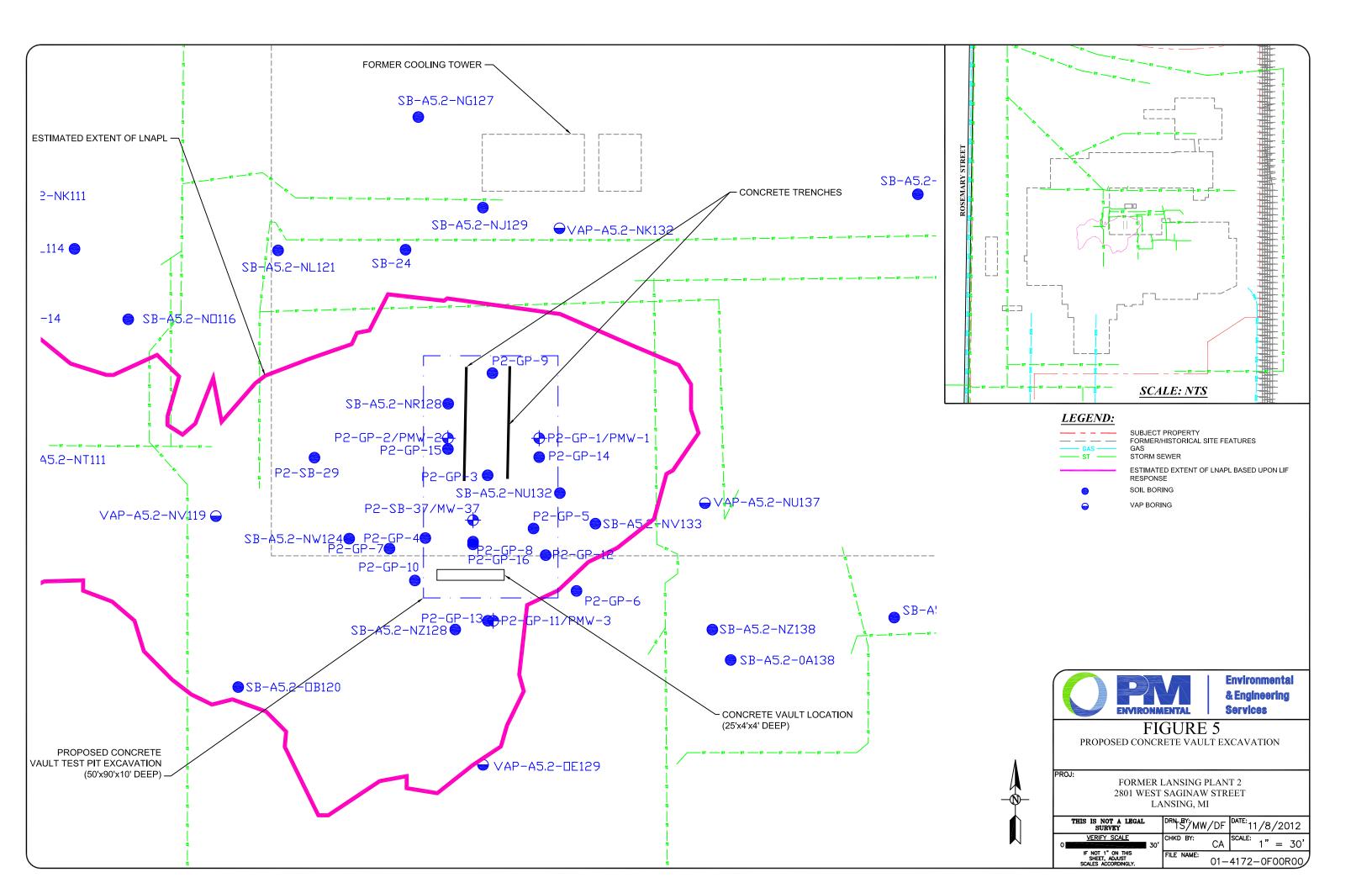
BOLD Value Exceeds Applicable Criteria bgs Below Grade Surface (feet) 1 Maximum of analyzed or calculated total lead value.


Figures








RESIDENTIAL/COMMERCIAL

Appendix A

ARCADIS

Appendix E

Corrective Measures Alternative Cost Estimate Backup

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Table 1 Summary of Costs (+/- 30%) for Two Pump and Treat Systems

Cost Item	Scenario #1	Scenario #2	Scenario #3
	Toe of Plume	Recovery Along Spine	Recovery and Injection Along Spine
Pump and Treat System Capital Cost	\$1,009,000	\$2,304,000	\$2,600,000
Pump and Treat System Startup Cost	\$83,000	\$107,000	\$106,000
Annual O&M Annual Costs	\$322,000	\$574,000	\$500,000
Annual Groundwater Monitoring	\$72,000	\$72,000	\$72,000

Notes:

O&M = operation and maintenance

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

 Table 2

 Cost Estimate (+/- 30%) - Groundwater Recovery and Treatment System - Scenario 2 - Recovery at Toe of Plume

Items	Unit Price	No. of Units	Cost
Cost Overview See attached document			
undwater Pump and Treat System Capital Cost	Unit Price	Units	Co
Design			
Treatability studies (AOP bench test) Site surveying	10,000 LS 3,000 LS	1 1	10,00 3,00
Utility location services	3,000 LS	1	3,00
Design and Bid Packages (Recovery System)	3,000 LS	1	3,00
Design and Bid Packages (Treatment System)	25,000 LS	1	25,00
Permitting/Access Agreements Remedial Action Plan	20,000 LS	1	20,00
Permitting - sanitary sewer discharge permitting	4,000 LS	1	4,00
Access agreements - jack-and-bore across Oakland Rd	8,000 LS	0	
Recovery/Injection System			
Recovery wells Well installation 4" - 85 feet deep	6,000 each	2	12.0
Cuttings disposal	500 /well	2	1,00
Well vaults	1,500 LS	2	3,00
Geologist oversight	1,200 LS	2	2,40
Recovery pumps - electrical submersible	2,000 each	2	4,00
In-well pressure transducers	600 each	2	1,20
Recovery wellhead piping, valving, and flow meter Recovery piping from wells to treatment system	1,000 each	2	2,00
2-inch recovery pipe (pipe only)	10 /LF	300	3,00
pipe trenching	30 /LF	300	9,00
trench cover replacement	2 /SF	600	1,20
Access vaults and hydraulic control valves (air release, isolation)	2,000 LS	1	2,00
Treated water discharge piping to sewer			
3-inch recovery pipe (pipe and trench)	10 /LF	300	3,00
pipe trenching	30 /LF	300	9,00
Jack-and-bore (road crossing) Electrical wiring and conduit	145 each 20 /LF	300	6,00
Power drops	8,000 LS	1	8,00
Electrical pump j-boxes and terminations	600 each	2	1,20
	Re	ecovery System Subtotal	68,00
	taxe	es (7%) (on select items) (10%) (on select items)	6
	Shipping	mark-up (5%)	3,40
		Recovery System Total	72,93
Water Process Equipment			
Equalization tank (1,500 gallon)	3,000 LS	1	3,00
pH adjust system (NaOH 50 g tank and metering pump)	4,000 LS	1	4,0
Air compressor (with refrigerated air dryer)	6,000 LS	1	6,00
Aeration diffusers mounted in EQ tank	2,000 LS	1	2,00
Transfer pump Multi-media Filters (3 vessels, 1.5 foot diameter)	2,500 LS 12,000 LS	2	5,00 12,00
Layne-Ox Filters (3 vessels, 2.0 foot diameter)	22,000 LS	1	22,00
Advanced oxidation system (HiPOx, with EQ tank)	140,000 LS	1	140,0
Pump tank (1,200 gallon)	3,500 LS	1	3,50
Transfer pump	2,500 LS	2	5,00
Clean backwash tank (2,000 gallon)	3,000 LS	1	3,00
Solids settling tank (6,000 gallon)	12,000 LS	1	12,00
Backwash pump	3,000 LS	1	3,00
Decant pump Instrumentation	1,500 LS 10,000 LS	1 1	1,50 10,00
Control panel	20,000 LS	1	20,00
Motor control center/ VFD Panel	10,000 LS	1	10,00
Distribution panel	8,000 LS	1	8,00
PLC and data communications	5,000 LS	1	5,00
Data collection software and hardware	4,000 LS	1	4,00
Controls integrator	12,000 LS	1	12,00
Dial-out/internet communications package	4,000 LS	1	4,00
	Proc	ess Equipment Subtotal taxes (7%)	295,00 20,65
		shipping (10%)	20,65
		mark-up (5%)	17,25
		Equipment Total	362,40
Plant Subcontractors (Building)			
Design	13,000 LS	1	13,0
Permitting - local building/plumbing/electrical/mechanical	8,000 LS	1	8,00
Building and foundation (20 x 50) Parking area and fencing	90 square fe 8,000 LS	et 1,000 1	90,00 8,00
Landscaping and finishing	5,000 LS	1	5,00
		Subcontractor Subtotal	124,00
		ject management (10%) Subcontractor Subtotal	12,40 136,40
Plant Subcontractors (Mechanical)			
Permitting - local plumbing/mechanical	4,000 LS	1	4,00
Mobilization	4,000 LS	1	4,00
General plant assembly	10,000 LS	1	10,0
Equipment receiving and laydown	10,000 LS	1	10,0
Plant piping assembly - labor Plant piping assembly - parts (includes tax and mark up)	30,000 LS	1	30,0 30,0
Plant piping assembly - parts (includes tax and mark-up) Miscellaneous support	30,000 LS 3,000 LS	1 1	30,00 3,00
		Subcontractor Subtotal	91,00 4,55
	Subcontractor or	Olect management (3%)	4.55
	Subcontractor pr	oject management (5%) mark-up (5%)	4,55

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Plant Subcontractors (Electrical) Permitting - local electrical	4,000 LS	1		4,0
Panel receiving and installation	5,000 LS	1		5,0
Conduit and wiring - materials Conduit and wiring - installation	30,000 LS 30,000 LS	1		30,0 30,0
Panel terminations	8,000 LS	1		8,0
Conduit racks Lightning/surge protection	8,000 LS 8,000 LS	1		8,0 8,0
		Subcontrac	tor Subtotal	93,0
	Subcontractor pro	ject manag	ement (5%)	4,6
	Mechanical		ark-up (5%) tor Subtotal	4,8 102,5
PLC Programming	25,000 each	1		25,0
Office and lab set-up	4,000 each	1		4,0
Health & Safety equipment Misc construction costs (expenses)	4,000 each 3,000 each	1 1		4,0 3,0
	Subtotal for Groundwate	er System (Capital Cost	878,5
Reporting - As-built drawings				12,0
On-Site Construction Management, Engineering, and Startup (5%)				43,9
Project Management (3%)			Subtotal	26,4 960,8
		Contir	ngency (5%)	48,0
Total Groundwater Pump and Treat Capital Cost				1,009,0
undwater Pump and Treat System Startup Cost (assume 2 weeks)				
Senior principal engineer oversight	180 \$/hour	8		1,4
Senior engineer oversight	127 \$/hour	30		3,8
Engineer management Lead operator	98 \$/hour 79 \$/hour	80 90		7,8 7,1
Junior operator	68 \$/hour	90		6,1
Subcontractor support (mechanical) Subcontractor support (electrical)	5,000 LS 4,000 LS	1		5,0 4,0
Subcontractor support (controls)	5,000 LS	1		4,0
ARCADIS general expenses	3,000 LS	1	Subtotal	3,0
			Subiotal	
O&M Manual with operating procedures Updated H&S Plan				28,0 8,0
Project Management (10%)				4,0
Total Groundwater Pump and Treat Startup Costs				83,0
undwater Pump and Treat Operations Cost				
Annual O&M Costs Operations Labor				
Senior principal engineer oversight (2 hours per month)	180 \$/hour	24		4,3
Senior engineer oversight (6 hours per month) Engineer management (6 hours per week)	127 \$/hour 98 \$/hour	72 312		9,1 30,5
Operator (20 hours per week)	79 \$/hour	1,040		82,1
Junior operator (0 hours per week) Subcontractor support	79 \$/hour 500 month	0 12		6,0
General expenses	400 month	12		4,8
Utilities - plant electric (25 HP, \$0.12/kw-hr) excludes AOP	800 \$/HP/year	25		20,0
AOP operations cost (electric, hydrogen peroxide) Sodium hydroxide	8,000 LS 3.50 gallon	1 3,120		8,0 10,9
Granular activated carbon (500 pound changeout every four months)	1,500 \$/lb	0		
Discharge to City POTW (20 gpm, 95% uptime) POTW discharge monitoring	3.50 /1,000 gal 500 / samples	10,000 12		35,0 6,0
Utilities - water	6 /1,000 gal	40		2
Well cleaning rehabilitation (2 wells/year)	5,000 LS	1		2,5
Internet and communication fees Plant process monitoring	150 month 300 / samples	12 75		1,8 22,5
Misc site maintenance	2,000 LS	1		2,0
Equipment repairs/replacement (2% of equipment capital cost) Sludge disposal (3% solids, semi-annual clean-out of solids holding tank)	5,900 LS 2 \$/gallon	1 6.000		5,9 12,0
Lab and field instrumentation maintenance	300 month	12		3,6
Health and safety equipment	200 month	12		2,4
			Subtotal	269,8
Reporting				25,0
Contingency (5%) Project Management (10%)				13,4 13,5
Total Groundwater Pump and Treat O&M Annual Costs				322,0
· · · · · · · · · · · · · · · · · · ·				522,6
ual Groundwater Monitoring During Operations Groundwater Monitoring				
Off-Site Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 QA/QC per event)	275 well	60		16,5
Sampling expenses (30 wells, 2 events)	85 well	60		5,1
Hydraulic monitoring (50 wells, 2 events)	20 well	100		2,0
Travel expenses Labor (2 men, 32 hours each man, per event)	3,000 LS 70 \$/hour	2 128		6,0 9,0
		-	Subtotal	38,6
Reporting and Data Management				20,0
Contingency (5%)				1,9
Technical Support (20%) Project Management (10%)				7,7 3,8
Total Annual Groundwater Monitoring During Operations				72,0
				_,-
Groundwater Pump and Treat System Capital Cost				\$1,009,0
				\$83,0
Groundwater Pump and Treat System Startup Cost (assume 2 weeks)				+=0,0
Groundwater Pump and Treat System Startup Cost (assume 2 weeks) Total Groundwater Pump and Treat O&M Annual Costs				\$322.0
Groundwater Pump and Treat System Startup Cost (assume 2 weeks) Total Groundwater Pump and Treat O&M Annual Costs Annual Groundwater Monitoring During Operations				\$322,0 \$72,0

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

 Table 3

 Cost Estimate (+/- 30%) - Groundwater Recovery and Treatment System - Scenario 2 - Recovery Along Plume Spine

Items Cost Overview	Unit Price	No. of Units	Cost
See attached document			
undwater Pump and Treat System Capital Cost	Unit Price	Units	C
Design			
Treatability studies (AOP bench test)	10,000 LS	1	10,
Site surveying Utility location services	12,000 LS 5,000 LS	1	12, 5,
Design and Bid Packages (Recovery System)	70,000 LS	1	70,
Design and Bid Packages (Treatment System)	70,000 LS	1	70,
Permitting/Access Agreements			
Remedial Action Plan Permitting - sanitary sewer discharge permitting	25,000 LS 3,000 LS	1	25, 3,
Access agreements - jack-and-bore across Oakland Rd	8,000 LS	1	8,
Recovery/Injection System			
Recovery wells Well installation 4" - 85 feet deep	6,000 each	6	36.
Cuttings disposal	500 /well	6	3,
Well vaults	1,300 LS	6	7,
Geologist oversight	1,200 LS	6	7,
Recovery pumps - electrical submersible	2,000 each	6	12,
In-well pressure transducers	600 each	6	3,
Recovery wellhead piping, valving, and flow meter	1,000 each	6	6,
Recovery piping from wells to treatment system			
2 or 3-inch recovery pipe (pipe only)	14 /LF	3,100	43,
pipe trenching	30 /LF	3,100	93,
trench cover replacement Access vaults and hydraulic control valves (air release, isolation)	2 /SF 2,000 LS	6,200 8	12, 16,
Treated water discharge piping to sewer	2,000 LO	0	16,
6-inch recovery pipe (pipe and trench)	20 /LF	300	6,
pipe trenching	30 /LF	300	9,
Jack-and-bore (road crossing)	145 each	200	29,
Electrical wiring and conduit	35 /LF	3,100	108,
Power drops	8,000 LS	3	24,
Electrical pump j-boxes and terminations	600 each	6	3,
	R	ecovery System Subtotal	420,
		es (7%) (on select items)	1,
		g (10%) (on select items)	2,
	- FF-13	mark-up (5%)	21,
		Recovery System Total	445,
Water Process Equipment			
Equalization tank (5,000 gallon)	18,000 LS	1	18,
pH adjust system (NaOH 100 g tank and metering pump)	6,000 LS	1	6,
Air compressor (with refrigerated air dryer)	8,000 LS	1	8,
Aeration diffusers mounted in EQ tank	4,000 LS	1	4,
Transfer pump	3,500 LS	2	7,
Multi-media Filters (3 vessels, 2.5 foot diameter)	20,000 LS	1	20,
Layne-Ox Filters (3 vessels, 3.0 foot diameter)	37,000 LS	1	37,
Advanced oxidation system (HiPOx, with EQ tank) Pump tank (1,200 gallon)	375,000 LS 4,000 LS	1	375, 4,
Transfer pump	3,500 LS	2	4, 7,
Clean backwash tank (4,000 gallon)	8,000 LS	1	8.
Solids settling tank (10,000 gallon)	30,000 LS	1	30,
Backwash pump	3,500 LS	1	3,
Decant pump	1,500 LS	1	1,
Instrumentation	15,000 LS	1	15,
Control panel	25,000 LS	1	25,
Motor control center/ VFD Panel	20,000 LS	1	20,
Distribution panel	10,000 LS	1	10,
PLC and data communications	5,000 LS	1	5,
Data collection software and hardware Controls integrator	4,000 LS 30,000 LS	1 1	4, 30,
Dial-out/internet communications package	4,000 LS	1	30, 4,
	Pro	cess Equipment Subtotal	642.
	FIO	taxes (7%)	44,
		shipping (10%)	64,
		mark-up (5%)	37,
		Equipment Total	788,
Plant Subcontractors (Building)			
Design	18,000 LS	1	18,
Permitting - local building/plumbing/electrical/mechanical	8,000 LS	1	8,
Building and foundation (30 x 60)	90 square fe		162,
Parking area and fencing Landscaping and finishing	8,000 LS 5,000 LS	1	8, 5,
Landscaping and initshing	5,000 LS	I	5,
		g Subcontractor Subtotal	201,
		pject management (10%) g Subcontractor Subtotal	20, 221,
Diant Subsentrators (Mechanical)	_ 31011		,
Plant Subcontractors (Mechanical) Permitting - local plumbing/mechanical	4,000 LS	1	4.
Mobilization	4,000 LS 4,000 LS	1	4,
General plant assembly	30,000 LS	1	30,
Equipment receiving and laydown	15,000 LS	1	15,
Plant piping assembly - labor	45,000 LS	1	45,
Plant piping assembly - parts (includes tax and mark-up)	45,000 LS	1	45,
Miscellaneous support	5,000 LS	1	5,
	Mechanica	I Subcontractor Subtotal	148,
	Subcontractor p	roject management (5%)	7.
	Subcontractor p	roject management (5%) mark-up (5%)	7, 7,

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Plant Subcontractors (Electrical) Permitting - local electrical	3,000 LS	1	3,000
Panel receiving and installation Conduit and wiring - materials	5,000 LS 45,000 LS	1 1	5,000 45,000
Conduit and wiring - installation	45,000 LS	1	45,000
Panel terminations Conduit racks	8,000 LS 12,000 LS	1 1	8,000 12,000
Lightning/surge protection	10,000 LS	1	12,000
	Electrical	Subcontractor Subtotal	128,000
	Subcontractor pro	ject management (5%) mark-up (5%)	6,400 6,720
	Mechanical	Subcontractor Subtotal	141,120
PLC Programming	25,000 each	1	25,000
Office and lab set-up	8,000 each	1	8,000
Health & Safety equipment Misc construction costs (expenses)	8,000 each 5,000 each	1 1	8,000 5,000
	Subtotal for Groundwate	er System Capital Cost	2,008,998
		er oystern oapital oost	
Reporting - As-built drawings On-Site Construction Management, Engineering, and Start-up (5%)			25,000 100,400
Project Management (3%)			60,300
		Subtotal Contingency (5%)	2,194,698 109,735
Total Groundwater Pump and Treat Capital Cost			2,304,000
ndwater Pump and Treat System Startup Cost (assume 3 weeks)			
Senior principal engineer oversight Senior engineer oversight	180 \$/hour 127 \$/hour	10 50	1,800 6,350
Engineer management	98 \$/hour	150	14,700
Lead operator Junior operator	79 \$/hour 68 \$/hour	150 150	11,850 10,200
Subcontractor support (mechanical)	7,000 LS	1	7,000
Subcontractor support (electrical) Subcontractor support (controls)	4,000 LS 7,000 LS	1	4,000 7,000
ARCADIS general expenses	5,000 LS	1	5,000
		Subtotal	67,900
O&M Manual with operating procedures Updated H&S Plan			25,000 9,000
Project Management (10%)			5,100
Total Groundwater Pump and Treat Startup Costs			107,000
ndwater Pump and Treat Operations Cost			
Annual O&M Costs Operations Labor			
Senior principal engineer oversight (2 hours per month)	180 \$/hour	20	3,600
Senior engineer oversight (6 hours per month) Engineer management (6 hours per week)	127 \$/hour 98 \$/hour	72 312	9,140 30,580
Operator (40 hours per week)	79 \$/hour	2,080	164,320
Junior operator (8 hours per week) Subcontractor support	79 \$/hour 400 month	416 12	32,860 4,800
General expenses	400 month	12	4,800
Utilities - plant electric (40 HP, \$0.12/kw-hr) excludes AOP AOP operations cost (electric, hydrogen peroxide)	800 \$/HP/year 20,000 LS	40 1	32,000 20,000
Sodium hydroxide	3.50 gallon	3,120	10,920
Granular activated carbon (500 pound changeout every four months)	1,500 \$/lb 3.50 /1,000 gal	0 30,000	0 105,000
Discharge to City POTW (60 gpm, 95% uptime) POTW discharge monitoring	500 / samples	12	6,000
Utilities - water	6 /1,000 gal	40	240
Well cleaning rehabilitation (2 wells/year) Internet and communication fees	4,000 LS 150 month	2 12	8,000 1,800
Plant process monitoring	300 / samples	75	22,500
Misc site maintenance Equipment repairs/replacement (2% of equipment capital cost)	3,000 LS 12,840 LS	1	3,000 12,840
Sludge disposal (3% solids, quarterly clean-out of solids holding tank)	1.75 \$/gallon	12,000	21,000
Lab and field instrumentation maintenance Health and safety equipment	300 month 200 month	12 12	3,600 2,400
		Subtotal	499,400
		Sublota	
Reporting Contingency (5%)			25,000 24,970
Project Management (10%)			25,000
Total Groundwater Pump and Treat O&M Annual Costs			574,000
al Groundwater Monitoring During Operations			
Groundwater Monitoring Off-Site Groundwater Monitoring (semi-annual)			
Analytical (30 wells, 2 events, 2 QA/QC per event)	275 well	60	16,500
Sampling expenses (30 wells, 2 events) Hydraulic monitoring (50 wells, 2 events)	85 well 20 well	60 100	5,100 2,000
Travel expenses	3,000 LS	2	6,000
Labor (2 men, 32 hours each man, per event)	70 \$/hour	128 Subtotal	9,000 38,600
		Subiotai	
Reporting and Data Management			20,000
Contingency (5%) Technical Support (20%)			1,930 7,720
Project Management (10%)			3,860
Total Annual Groundwater Monitoring During Operations			72,000
Total Annual Groundwater Monitoring Burning Operations			
Total Annual Groundwater monitoring puring operations			
Groundwater Pump and Treat System Capital Cost			\$2,304,000
			\$2,304,000 \$107,000
Groundwater Pump and Treat System Capital Cost			

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Table 4 Cost Estimate (+/- 30%) - Groundwater Recovery and Treatment System - Scenario 3 - Recovery and Injection Along Plume Spine

Items Cost Overview	Unit Price	No. of Units	Cost
Cost Overview See attached document			
oundwater Pump and Treat System Capital Cost	Unit Price	Units	Co
Design			
Treatability studies (AOP bench test) Site surveying	12,000 LS 12,000 LS	1 1	12,0 12,0
Utility location services	4,000 LS	1	4,0
Design and Bid Packages (Recovery/Injection System)	75,000 LS	1	75,0
Design and Bid Packages (Treatment System)	70,000 LS	1	70,0
Permitting/Access Agreements	00.000 / 0		
Remedial Action Plan Permitting - sanitary sewer discharge permitting	30,000 LS 4,000 LS	1 0	30,0
Access agreements - jack-and-bore across Oakland Rd	8,000 LS	1	8,0
Recovery/Injection System			
Recovery wells Well installation 4" - 85 feet deep	5 000h	ĉ	20.0
Cuttings disposal	5,000 each 500 /well	6 6	30,0 3,0
Well vaults	1,300 LS	6	7,8
Geologist oversight Injection wells	1,200 LS	6	7,2
Injection wells Well installation 4" - 85 feet deep	5,000 each	9	45,0
Cuttings disposal	500 /well	9	4,5
Well vaults	1,300 LS	9	11,7
Geologist oversight	1,200 LS 2,000 each	9 6	10,8 12.0
Recovery pumps - electrical submersible In-well pressure transducers	2,000 each	15	9,0
Recovery/Injection wellhead piping, valving, and flow meter	850 each	15	12,8
Recovery/Injection piping from wells to treatment system			
2 or 3-inch recovery pipe (pipe only) 2 or 3-inch injection pipe (pipe only)	14 /LF 13 /LF	3,100 3,700	43,4 48,1
2 of 3-inch injection pipe (pipe only) pipe trenching	30 /LF	4,600	46,1
trench cover replacement	2 /SF	8,750	17,5
Access vaults and hydraulic control valves (air release, isolation) Treated water discharge piping to sewer	1,750 LS	10	17,5
1.5-inch recovery pipe (pipe and trench)	10 /LF	0	
pipe trenching	30 /LF	0	
Jack-and-bore (road crossing)	130 each 35 /LF	200	26,0
Electrical wiring and conduit Power drops	7,000 LS	4,600 3	161,0 21,0
Electrical pump j-boxes and terminations	600 each	15	9,0
		Receivery System Subtetal	635,3
		Recovery System Subtotal taxes (7%) (on select items)	2.2
		ping (10%) (on select items)	3,2
		mark-up (5%)	31,7
		Recovery System Total	672,6
Water Process Equipment			
Equalization tank (5,000 gallon)	18,000 LS	1	18,0
pH adjust system (NaOH 100 g tank and metering pump) Air compressor (with refrigerated air dryer)	6,000 LS 8,000 LS	1	6,0 8,0
Aeration diffusers mounted in EQ tank	4,000 LS	1	4,0
Transfer pump	3,500 LS	2	7,0
Multi-media Filters (3 vessels, 2.5 foot diameter)	20,000 LS	1	20,0
Layne-Ox Filters (3 vessels, 3.0 foot diameter) Advanced oxidation system (HiPOx, with EQ tank)	37,000 LS 375,000 LS	1	37,0 375,0
Pump tank (1,200 gallon)	4,000 LS	1	4,0
Transfer pump (injection pump)	8,000 LS	2	16,0
Bag filters (6-bag housing)	15,000 LS	2	30,0
Clean backwash tank (4,000 gallon) Solids settling tank (10,000 gallon)	8,000 LS 30,000 LS	1	8,0 30,0
Backwash pump	3,500 LS	1	3,5
Decant pump	1,500 LS	1	1,5
Instrumentation	15,000 LS	1	15,0
Control panel Motor control center/ VFD Panel	24,000 LS 20,000 LS	1 1	24,0 20,0
Distribution panel	8,000 LS	1	8,0
PLC and data communications	5,000 LS	1	5,0
Data collection software and hardware	4,000 LS	1	4,0
Controls integrator Dial-out/internet communications package	30,000 LS 4,000 LS	1 1	30,0 4,0
		Process Equipment Subtotal	678,0
		taxes (7%) shipping (10%)	47,4 67,8
		mark-up (5%)	39,6
		Equipment Total	832,9
Plant Subcontractors (Building)			
Design Permitting - local building/plumbing/electrical/mechanical	18,000 LS 8,000 LS	1	18,0 8,0
Building and foundation (30 x 60)	90 square fee		162,0
Parking area and fencing	8,000 LS	1	8,0
Landscaping and finishing	5,000 LS	1	5,0
	Bu	ilding Subcontractor Subtotal	201,0
		Project management (10%)	20,1
	Bu	ilding Subcontractor Subtotal	221,1
Plant Subcontractors (Mechanical)			
Permitting - local plumbing/mechanical	3,000 LS	1	3,0
Mobilization	4,000 LS	1	4,0
	25,000 LS 10,000 LS	1	25,0 10,0
General plant assembly Equipment receiving and lavdown		1	45,0
Equipment receiving and laydown	45,000 LS		
Equipment receiving and laydown Plant piping assembly - labor Plant piping assembly - parts (includes tax and mark-up)	45,000 LS	1	
Equipment receiving and laydown Plant piping assembly - labor		1 1	45,0 4,0
Equipment receiving and laydown Plant piping assembly - labor Plant piping assembly - parts (includes tax and mark-up)	45,000 LS 4,000 LS	1	4,0
Equipment receiving and laydown Plant piping assembly - labor Plant piping assembly - parts (includes tax and mark-up)	45,000 LS 4,000 LS Mecha		

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Plant Subcontractors (Electrical) Permitting - local electrical				
	3,000 LS	1		3,000
Panel receiving and installation	5,000 LS	1		5,000
Conduit and wiring - materials	45,000 LS	1		45,000
Conduit and wiring - installation	45,000 LS	1		45,000
Panel terminations Conduit racks	8,000 LS 9,000 LS	1		8,00 9,00
Lightning/surge protection	8,000 LS	1		8,00
-3	-,			-,
		al Subcontra		123,000
	Subcontractor			6,15
	Mashaai	m al Subcontra	ark-up (5%)	6,45
	Wechanie	ai Subcontra	CIOF SUDIOIAI	135,60
PLC Programming	25,000 each	1		25,00
Office and lab set-up	8,000 each	1		8,00
Health & Safety equipment	8,000 each	1		8,00
Misc construction costs (expenses)	5,000 each	1		5.00
	Subtotal for Ground	vator Svetom	Capital Cost	2,269,17
	Subiotal for Ground	water bystern	Capital Cost	2,203,17
Reporting - As-built drawings				25,00
On-Site Construction Management, Engineering, and Start-up (5%)				113,50
Project Management (3%)				68,10
		Contir	Subtotal igency (5%)	2,475,77 123,78
		oona	igonoj (o /o)	120,70
Total Groundwater Pump and Treat Capital Cost				2,600,00
oundwater Pump and Treat System Start-up Cost (assume 3 weeks)				
Senior principal engineer oversigh	180 \$/hour	10		1,80
Senior engineer oversight	127 \$/hour	50		6,35
Engineer management	98 \$/hour	135		13,23
Lead operator	79 \$/hour	135		10,67
Junior operator	68 \$/hour	135		9,18
Subcontractor support (mechanical)	8,000 LS	1		8,00
Subcontractor support (electrical)	5,000 LS	1		5,00
Subcontractor support (controls)	8,000 LS	1		8,00
ARCADIS general expenses	5,000 LS	1	Subtotal	5,00 67,23
			oubtotal	01,20
O&M Manual with operating procedures				25,00
Updated H&S Plan				9,00
Project Management (10%)				5,10
Total Groundwater Pump and Treat Startup Costs				106,00
oundwater Pump and Treat Operations Cost				
Annual O&M Costs Operations Labor				
Senior principal engineer oversight (2 hours per month	180 \$/hour	24		4,32
Senior engineer oversight (6 hours per month)	127 \$/hour	72		9,14
Engineer management (6 hours per week)	98 \$/hour	312		30,58
Operator (40 hours per week)	79 \$/hour	2,080		164,32
Junior operator (8 hours per week)	79 \$/hour	416		32,86
Subcontractor support General expenses	400 month 400 month	12 12		4,80 4,80
Utilities - plant electric (80 HP, \$0.12/kw-hr) excludes AOP	775 \$/HP/year	80		62,00
AOP operations cost (electric, hydrogen peroxide)	20,000 LS	1		20,00
Sodium hydroxide	3.50 gallon	3,120		10,92
Bag filters (12/week)	7.50 \$/filter bag	624		4,68
Granular activated carbon (500 pound changeout every four months)	1,500 \$/lb	0		
Discharge to City POTW (14 gpm, 90% uptime) POTW discharge monitoring	4.00 /1,000 gal 500 / samples	0		
Well cleaning rehabilitation (4 wells/year)	4,000 LS	4		16,00
Utilities - water	6 /1,000 gal	40		24
Internet and communication fees	150 month	12		1,80
Plant process monitoring	300 / samples	75		22,50
Misc site maintenance	3,000 LS	1		3,00
Equipment repairs/replacement (2% of equipment capital cost)	13,560 LS	1		13,56
Sludge disposal (3% solids, quarterly clean-out of solids holding tank)	1.75 \$/gallon	12,000 12		21,00
Lab and field instrumentation maintenance Health and safety equipment	275 month 175 month	12		3,30 <u>2,10</u>
Hour and barby oquipmont	i o nonar			2,10
			Subtotal	431,92
Properties				
Reporting				
Contingency (5%)				21,59
				21,59
Contingency (5%)				21,59 21,60
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs				21,59 21,60
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs mual Groundwater Monitoring During Operations				21,59 21,60
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat 0&M Annual Costs mula Groundwater Monitoring During Operations Groundwater Monitoring				21,59 21,60
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs mual Groundwater Monitoring During Operations	275 well	60		21,56 21,60 500,00
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs annual Groundwater Monitoring During Operations Groundwater Monitoring Off-Site Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 OA/OAC per event) Sampling expenses (30 wells, 2 events)	85 well	60		21,55 21,60 500,00 16,50 5,10
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs mual Groundwater Monitoring During Operations Groundwater Monitoring Off-Site Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 QA/QC per event) Sampling expenses (30 wells, 2 events) Hydraulic monitoring (50 wells, 2 events)	85 well 20 well	60 100		21,59 21,60 500,00 16,50 5,11 2,00
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs mual Groundwater Monitoring Off-Site Groundwater Monitoring (semi-annual) Off-Site Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 QA/QC per event) Sampling expenses (30 wells, 2 events) Hydraulic monitoring (50 wells, 2 events) Travel expenses	85 well 20 well 3,000 LS	60 100 2		21,59 21,60 500,00 16,50 5,10 2,00 6,00
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs mual Groundwater Monitoring During Operations Groundwater Monitoring Off-Site Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 QA/QC per event) Sampling expenses (30 wells, 2 events) Hydraulic monitoring (50 wells, 2 events)	85 well 20 well	60 100	Subitital	21,59 21,60 500,00 16,50 5,10 2,00 6,00 9,00
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs mual Groundwater Monitoring Off-Site Groundwater Monitoring (semi-annual) Off-Site Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 QA/QC per event) Sampling expenses (30 wells, 2 events) Hydraulic monitoring (50 wells, 2 events) Travel expenses	85 well 20 well 3,000 LS	60 100 2	Subtotal	21,59 21,60 500,00 16,50 5,10 2,00 6,00 9,00
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat 0&M Annual Costs mula Groundwater Monitoring During Operations Groundwater Monitoring (semi-annual) Off-Site Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 cA/ACC per event) Sampling expenses (30 wells, 2 events, 1 Hydraulic monoticning (50 wells, 2 events, 1 Travel expenses Labor (2 men, 32 hours each man, per event) Reporting and Data Management	85 well 20 well 3,000 LS	60 100 2	Subtotal	21,59 21,60 500,00 16,50 5,10 2,00 6,00 9,00 38,60 20,00
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs mula Groundwater Monitoring During Operations Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 QA/QC per event) Sampling expenses (30 wells, 2 events) Hydraulic monitoring (50 wells, 2 events) Hydraulic monitoring (50 wells, 2 events) Labor (2 men, 32 hours each man, per event) Reporting and Data Management Contingency (5%)	85 well 20 well 3,000 LS	60 100 2	Subtotal	21,53 21,60 500,00 16,50 5,10 2,00 6,00 9,00 38,60 20,00 1,93
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs Insual Groundwater Monitoring During Operations Groundwater Monitoring Off-Site Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 A/AC per event) Sampling exponses (30 wells, 2 events) Hydraulic monitoring (50 wells, 2 events) Travel expenses Labor (2 men, 32 hours each man, per event) Reporting and Data Management Contingency (5%)	85 well 20 well 3,000 LS	60 100 2	Subtotal	21,59 21,60 500,00 16,50 5,10 2,00 6,00 9,00 38,60 20,00 1,93 7,72
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs mula Groundwater Monitoring During Operations Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 QA/QC per event) Sampling expenses (30 wells, 2 events) Hydraulic monitoring (50 wells, 2 events) Hydraulic monitoring (50 wells, 2 events) Labor (2 men, 32 hours each man, per event) Reporting and Data Management Contingency (5%)	85 well 20 well 3,000 LS	60 100 2	Subtotal	21,59 21,60 500,00 16,50 5,10 2,00 6,00 9,00 38,60 20,00 1,93 7,72
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs Insual Groundwater Monitoring Operations Groundwater Monitoring Off-Site Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 OA/OC per event) Sampling expenses (30 wells, 2 events) Hydraulic monitoring (50 wells, 2 events) Travel expenses Labor (2 men, 32 hours each man, per event) Reporting and Data Management Contingency (5%) Technical Support (20%) Project Management (10%)	85 well 20 well 3,000 LS	60 100 2	Subtotal	21,55 21,60 500,00 (5,10 2,00 6,00 9,00 38,60 20,00 1,93 7,72 3,86
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs Insual Groundwater Monitoring During Operations Groundwater Monitoring Off-Site Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 A/AC per event) Sampling exponses (30 wells, 2 events) Hydraulic monitoring (50 wells, 2 events) Travel expenses Labor (2 men, 32 hours each man, per event) Reporting and Data Management Contingency (5%)	85 well 20 well 3,000 LS	60 100 2	Subtotal	21,55 21,60 500,00 (5,10 2,00 6,00 9,00 38,60 20,00 1,93 7,72 3,86
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat 0&M Annual Costs mula Groundwater Monitoring During Operations Groundwater Monitoring (semi-annual) Off-Site Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 cAVCC per event) Sampling expenses (30 wells, 2 events, 1 Hydraulic monoticning (50 wells, 2 events, 2 Travel expenses Labor (2 men, 32 hours each man, per event) Reporting and Data Management Contingency (5%) Technical Support (20%) Project Management (10%) Total Annual Groundwater Monitoring During Operations	85 well 20 well 3,000 LS	60 100 2	Subtotal	21,58 21,60 500,00 16,55 5,11 2,00 6,00 9,00 0,9,000 0,9,000 0,9,000 0,9,00000000
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs Insual Groundwater Monitoring Operations Groundwater Monitoring Off-Site Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 OA/OC per event) Sampling expenses (30 wells, 2 events) Hydraulic monitoring (50 wells, 2 events) Travel expenses Labor (2 men, 32 hours each man, per event) Reporting and Data Management Contingency (5%) Technical Support (20%) Project Management (10%)	85 well 20 well 3,000 LS	60 100 2	Subtotal	21,58 21,60 500,00 16,55 5,11 2,00 6,00 9,00 0,9,000 0,9,000 0,9,000 0,9,00000000
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat 0&M Annual Costs mula Groundwater Monitoring During Operations Groundwater Monitoring (semi-annual) Off-Site Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 cAVCC per event) Sampling expenses (30 wells, 2 events, 9 Hydraulic monotiroing (50 wells, 2 events, 9 Travel expenses Labor (2 men, 32 hours each man, per event) Reporting and Data Management Contingency (5%) Technical Support (20%) Project Management (10%) Total Annual Groundwater Monitoring During Operations	85 well 20 well 3,000 LS	60 100 2	Subtotal	21,55 21,60 500,00 16,55 5,11 2,00 6,00 6,00 0,38,60 20,00 1,93 7,77 3,86 72,00 52,600,00
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs mul Groundwater Monitoring Off-Site Groundwater Monitoring (semi-annual) Analytical (30 wells, 2 events, 2 QAOC per event) Sampling expenses (30 wells, 2 events, 9 Hydraulie mountoring (50 wells, 2 events, 9 Travel expenses Labor (2 men, 32 hours each man, per event) Reporting and Data Management Contingency (5%) Technical Support (20%) Project Management (10%) Total Annual Groundwater Monitoring During Operations Groundwater Pump and Treat System Capital Cost	85 well 20 well 3,000 LS	60 100 2	Subtotal	21,59 21,60 500,00 16,50 5,10 2,00 6,00 9,00 3,8,60 20,00 1,93 7,72 3,86 72,00 \$2,600,00 \$106,00
Contingency (5%) Project Management (10%) Total Groundwater Pump and Treat O&M Annual Costs mul Groundwater Monitoring During Operations Groundwater Monitoring (semi-annual) Off-Site Groundwater Monitoring (semi-annual) Analytica (30 wells, 2 events, 2 cA/OC per event) Sampling expenses (30 wells, 2 events, 5) Hydraulic monitoring (50 wells, 2 events, 2 events) Travel expenses Labor (2 men, 32 hours each man, per event) Reporting and Data Management Contingency (5%) Technical Support (20%) Project Management (10%) Total Annual Groundwater Monitoring During Operations Groundwater Pump and Treat System Capital Cost Groundwater Pump and Treat System Start-up Cost (assume 3 weeks)	85 well 20 well 3,000 LS	60 100 2	Subtotal	25,00 21,59 21,60 500,00 16,50 5,10 2,000 9,000 38,60 20,000 1,93 7,72 3,860 72,00 \$2,600,00 \$106,00 \$500,00 \$72,00

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Table 1 Summary of Costs (+/- 30% - 50%) for Pump-and-Treat System

Cost Item	10 gpm
Pump and Treat System Capital Cost Pump and Treat System Startup Cost Annual O&M Annual Costs	\$3,324,000 \$50,000 \$517,000
Annual Groundwater Monitoring	\$96,000

Pump and Treat System Cost Assumptions:

1. Cost estimates based on 10-gallong per minute (gpm) total flow rate.

2. For the purposes of this cost estimate, it assumed that there will be one treatment system to treat water/fluids from all areas, and the treatment system will be located within the Plant 2 area.

3. NOTE: this is a complex groundwater system with multiple types of contaminants, and treatability testing will be required to finalize the process design.

4. The expected influent concentrations and required final water quality is summarized in Table 1.

5. The number of recovery well, flow rates, and well depths are summarized in Table 2.

6. Assume flow contribution – Plant 2 = 25%, Plant 6 = 80%.

7. No treatment of air emissions is required if total discharge is less than 1,000 pounds per month and less than 20 pounds per month of carcinogens. At 10 gpm -25.5 pounds per month total volatile organic compound (VOC); if xylene is not considered a carcinogen, then no air treatment is required.

8. Discharge of treated water will be to local sanitary sewer at \$5 per 1,000 gallons.

9. Treatment process:

a. Equalization, aeration, and pH adjustment (Iron oxidation)

b. Filtration (multi-media filters with backwashing capability) (iron removal and first stage suspended solids and polychlorinated biphenyl [PCB] removal)

c. Filtration (bag or cartridge filters) (PCB removal)

d. Airstripping (VOC removal)

e. Advanced oxidation (HiPOX system) (1,4-dioxane removal)

f. Ion exchange (with on-site regeneration) (chromium and other metals removal)

g. Granular-activated carbon (final polishing)

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Table 2 Cost Estimate (+/- 30%) - Groundwater Recovery and Treatment System - 10 gpm

Items	Unit Price	No. of Units	Cost
Cost Overview See attached document			
oundwater Pump and Treat System Capital Cost	Unit Price	Units	Co
Design	40,000 0		40.00
Treatability studies Site surveying	40,000 LS 30,000 LS	1 1	40,00 30,00
Design and Bid Packages (Recovery System)	100,000 LS	1	100,00
Design and Bid Packages (Treatment System)	100,000 LS	1	100,00
<u>Permitting/Access Agreements</u> Permitting - sanitary sewer discharge permitting	8,000 LS	1	8,00
Access agreements	20,000 LS	1	20,00
Recovery System			
Recovery wells Well installation 4" - 30 feet deep	2,100 each	8	16,80
Cuttings disposal	250 /well	8	2,00
Well vaults Recovery pumps - electrical submersible	1,500 LS 2,500 each	8 0	12,00
Recovery pumps - pneumatic	3,800 each	8	30,40
Recovery pump controllers Recovery wellhead piping and valving	1,000 each 1,000 each	8 8	8,00 8,00
Recovery piping from wells to treatment system (2)	1,000 each	0	0,00
1-inch recovery pipe (pipe and trench)	40 /LF	10,200	408,00
2-inch recovery pipe (pipe and trench) Compressed air piping for peumatic recovery wells	40 /LF	1,500	60,00
1-inch recovery pipe (pipe only)	7 /LF	11,500	80,50
1.5-inch recovery pipe (pipe only) Recovery trenches (3 trenches, 610 feet,160 feet, and 140 feet)	9 /LF 120 /LF	0 0	
Electrical substations	8,000 LS	3	24,00
Electrical wiring and conduit	30 /LF	8,000	240,00
		ecovery System Subtotal es (7%) (on select items)	889,70 4,08
		g (10%) (on select items) up (5%) (on select items)	5,84 44,48
		Recovery System Total	944,11
Water Process Equipment Influent equalization tanks	5,000 LS	1	5,00
Aeration blower	1,500 LS	2	3,00
pH adjust system Transfer pump	5,000 LS 2,500 LS	1 2	5,00 5,00
Multi-media filters	18,000 LS	1	18,00
Cartridge filter system	3,000 LS	1	3,00
Clean backwash tank Backwash pump	3,000 LS 2,500 LS	1	3,00 2,50
Polymer metering pump	2,000 LS	1	2,00
Static mixer Flocculator tank	1,000 LS 6,000 LS	1	1,00 6,00
Flocculator mixer	1,500 LS	1	1,50
Solids transfer pump	1,200 LS	1	1,20
Filter press Filter press stand	20,000 LS 10,000 LS	0 0	
Filter press feed pump	2,000 LS	0	
Pre-coat tank	1,000 LS	0	
Pre-coat pump Air stripper	1,500 LS 20,000 LS	0 1	20,00
Transfer pump	2,500 LS	2	5,00
Vapor-phase granular activated carbon Advanced oxidation system (HiPOx)	3,000 LS 200,000 LS	3 1	9,00 200,00
Transfer pump	2,500 LS	2	5,00
lon exchange system	250,000 LS	1	250,00
Granular activated carbon Air compressor	3,000 LS 5,000 LS	3 1	9,00 5,00
Refrigerated air dryer	1,000 LS	1	1,00
Containment area pump	1,500 LS 30,000 LS	2 1	3,00 30,00
Instrumentation Control panel	30,000 LS	1	30,00
Distribution panel	20,000 LS	2	40,00
VFD panel PLC and data communications	15,000 LS 5,000 LS	1	15,00 5,00
Data collection software and hardware	5,000 LS	1	5,00
Dial-out/internet communications package	5,000 LS	1	5,00
	Pro	cess Equipment Subtotal	693,20
		taxes (7%) shipping (10%)	48,52 69,32
		mark-up (5%) Equipment Total	40,55 851,59
		Equipment 10tal	001,08
Plant Subcontractors (Building) Design	30,000 LS	1	30,00
Permitting - local building/plumbing Building and foundation	10,000 LS	1 200	10,00
Building and foundation Parking area and fencing	80 square fe 15,000 LS	eet 3,200 1	256,00 15,00
Landscaping and finishing	15,000 LS	1	15,00
	Puildia	g Subcontractor Subtotal	326,00
	Pr	oject management (10%)	32,60
	Buildin	g Subcontractor Subtotal	358,60
Plant Subcontractors (Mechanical) Permitting - local building/plumbing	5,000 LS	1	5,00
Mobilization	5,000 LS	1	5,0
Utilities clearing	2,000 LS	1	2,0
General plant assembly Equipment receiving and laydown	10,000 LS 10,000 LS	1	10,0 10,0
Plant piping assembly - labor	60,000 LS	1	80,0
Plant piping assembly - parts (includes tax and mark-up)	60,000 LS	1	80,00
Miscellaneous support	20,000 LS	1	20,00
		al Subcontractor Subtotal project management (5%)	212,00 10,60
		mark-up (5%)	11,13
	Mechanica	al Subcontractor Subtotal	233,73

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Plant Subcontractors (Electrical)				
Permitting - local electrical Panel receiving and installation	5,000 LS 5,000 LS	1 1		5,000 5,000
Conduit and wiring - materials	40,000 LS	1		40,000
Conduit and wiring - installation	40,000 LS	1		40,000
Panel terminations	9,000 LS	1		9,000
Conduit racks Lightning/surge protection	10,000 LS 20,000 LS	1 1		10,000 20,000
Lighting/surge protection	20,000 L3	1		20,000
		Subcontracto		129,000
	Subcontractor pro		()	6,450
	Mechanical		k-up (5%) r Subtotal	6,773 142,223
				,
PLC Programming	50,000 each	1		50,000
Office and lab set-up Health & Safety equipment	10,000 each 10,000 each	1 1		10,000 10,000
Misc construction costs (expenses)	5,000 each	1		<u>5,000</u>
	Subtotal for Groundwate	er System Ca	apital Cost	2,903,262
Reporting - As-built drawings				30,000
On-Site Construction Management, Engineering, and Start-up (5%)				145,200
Project Management (3%)			0.1.0.01	87,100
		Conting	Subtotal ency (5%)	3,165,562 158,278
		Conting		100,210
Total Groundwater Pump and Treat Capital Cost				3,324,000
undwater Pump and Treat System Startup Cost (assume 2 weeks)				
Senior principal engineer oversight	180 \$/hour 127 \$/hour	8		1,400
Senior engineer oversight Engineer management	127 \$/nour 98 \$/hour	40 100		5,100 9,800
Lead operator	79 \$/hour	100		7,90
Junior operator	68 \$/hour	100		6,80
Subcontractor support (mechanical)	3,000 LS	1		3,00
Subcontractor support (electrical) Subcontractor support (controls)	3,000 LS 6,000 LS	1 1		3,00 6,00
ARCADIS general expenses	5,000 LS	1		<u>5,00</u>
			Subtotal	48,00
Project Management (10%)				2,40
				2,10
Total Groundwater Pump and Treat Startup Costs				50,000
Senior principal engineer oversight (1 hours per week) Senior engineer oversight (2 hours per week) Engineer management (6 hours per week) Lead operator (30 hours per week) Junior operator (10 hours per week) Subcontractor support General expenses Utilities - plant electric (60 HP, \$0.12/kw-hr) Sodium hydroxide Discharge to City POTW (100 gpm, 90% uptime) POTW discharge monitoring Utilities - water Internet and communication fees Plant process monitoring Misc site maintenance Equipment repairs/replacement (0.5% of equipment capital cost) AOP operations cost Ion exchange operations cost Sludge disposal Lab and field instrumentation maintenance Health and safety equipment Reporting Contingency (5%) Project Management (10%)	180 \$/hour 127 \$/hour 98 \$/hour 68 \$/hour 500 month 1,000 \$/HP/year 4 gallon 4.00 /1,000 gal 1,000 / samples 6 /1,000 gal 150 month 300 / samples 5,000 LS 3,466 LS 6,000 LS 80,000 LS 200 ton 300 month 500 month	52 104 312 1,560 520 12 12 20 500 4,730 12 40 9 100 1 1 1 1 30 12 12	Subtotal	9,400 13,200 30,600 123,200 6,000 12,000 20,000 2,000 12,000 2,000 12,000 12,000 3,500 6,000 80,000 6,000 424,400 50,000 21,220 21,200
Total Groundwater Pump and Treat O&M Annual Costs				517,000
nual Groundwater Monitoring During Operations				
Groundwater Monitoring				
Off-Site Groundwater Monitoring (semi-annual) Analytical (40 wells, 2 events)	300 well	80		24,000
Analytical (40 wells, 2 events) Sampling expenses (40 wells, 2 events)	100 well	80 80		24,000 8,000
Hydraulic monitoring (90 wells, 2 events)	20 well	180		3,600
Travel expenses	3,000 LS	1		3,000
Labor	70 \$/hour	144	Subtet-1	10,100
			Subtotal	48,700
Reporting and Data Management				
				30.000
Contingency (5%)				30,000 2,435
Contingency (5%) Technical Support (20%) Project Management (10%)				,

4,870
96,000
\$3,324,000
\$50,000
\$517,000
\$96,000

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Table 3 Expected Influent Concentrations and Discharge Criteria

Location ID Screen Interval (ft Date Collected):	Residential Drinking Water Criteria	Maximum Detect Plant 2	Maximum Detect Plant 6	Arithmetic Average Plant 2	Arithmetic Average Plant 6	Expected Influent Concentration (Flow-weighted Average)
Volatile Organics					20%	80%	
Chlorobenzene	1	100(A)	0.8	210	0.800	210	168.2
1,4-Dioxane	μg/L	85	2500	68	269	22.9	72.1
Tetrachloroethene	μg/L	5(A)	361	12	105	4.03	24.2
Vinyl chloride	μg/L	2(A)	4.2	13	3.10	4.22	4.0
Benzene	μg/L	5(A)	840	134	82.2	22.0	34.0
Ethylbenzene	μg/L	74(E)	1320	33000	316	2440	2,015.2
Toluene	μg/L	790(E)	2940	820	180	110	124.0
o-Xylene	μg/L	280(E)	350	24000	56.0	1880	1,515.2
m&p-Xylene	μg/L	280(E)	1530	124000	679	10000	8,135.8
Xylene (total)	μg/L	280(E)	1880	148000	405	9780	7,905.0
Semivolatile Organics							
Chrysene	μg/L	1.6(S)	80		80.0		16.0
Semivolatile Organics-Filtered							
PCBs							
Aroclor-1242 (PCB-1242)	μg/L	0.5(A)	800		800		160.0
Total PCBs	μg/L	0.5(A)	800		800		160.0
PCBs-Filtered			-				
Total PCBs (dissolved)	μg/L	0.5(A)	30		11.4		2.3
Aroclor-1242 (PCB-1242)	μg/L	0.5(A)	30		17.0		3.4
Inorganics			-				
Antimony	mg/L	0.006(A)		0.077		0.0168	0.013
Arsenic	mg/L	0.01(A)	0.0327	0.109	0.00880	0.0167	0.015
Chromium VI (hexavalent)	mg/L	0.1(A)					0.000
Chromium	mg/L	0.1(A)	0.058	0.033	0.0380	0.0166	0.021
Lead	mg/L	0.004(L)	0.018	1.49	0.00870	0.0475	0.040
Manganese	mg/L	0.05(E)	2.14	1.36	0.314	0.332	0.328
Vanadium	mg/L	0.0045	0.008	0.068	0.00560	0.0111	0.010
Inorganics-Filtered		·					
Arsenic (dissolved)	mg/L	0.01(A)	0.22	0.09	0.0168	0.0137	0.014
Chromium VI (hexavalent) (dissolved)	mg/L	0.1(A)					0.000
Chromium Total	mg/L	0.1(A)	0.066		0.0415		0.008
Lead (dissolved)	mg/L	0.004(L)	0.063	0.024	0.0184	0.00686	0.009
Manganese (dissolved)	mg/L	0.05(E)	2.67	4.23	0.433	0.431	0.431
Selenium (dissolved)	mg/L	0.05(A)	0.008	0.003	0.00425	0.00260	0.003
Vanadium (dissolved)	mg/L	0.0045	0.08	0.046	0.0151	0.0117	0.012

Notes:

Highlighted cells = The cleanup criteria for 1,4-dioxane may decrease to 8.5µg/L in the future and treatment will be included.

(A) = criterion is the state of Michigan drinking water standard established pursuant to Section 5 of 1976 PA 399, MCL 325.1005.

(E) = criterion is the aesthetic drinking water value.

(L) = generic residential drinking water criterion.

(S) = criterion defaults to the hazardous substance specific water solubility limit.

ft = feet

mg/L = milligrams per liter

PCB = polychlorinated biphenyl μg/L = micrograms per liter

Perched PT Cost Estimate.xlsExpected Influent and Effluent

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Table 4Recovery Well and Trench Summary

			Low-Flow Cost Estimate											
Area	Target Depth (ft)	# wells	Flow Rate	Flow Rate per Well	Pump Type									
Plant 2	10-30	2	2.5	1.3	Pneumatic									
Plant 6	10-30	6	7.5	1.3	Pneumatic									
	Totals:	8.0	10.0											

Notes:

ft = feet

Appendix E Restrictive Covenant Cost Detail

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Restrictive Covenant Cost Assumptions:

- All site-wide restrictions will be in one Restrictive Covenant (RC) per Plant
- Area-specific restrictions will be completed per Area
- Each Plant and each Area needing a restriction will be surveyed
- Survey includes actual survey and legal description
- 3 Plants need Site-wide restrictions
- 16 Areas need additional restrictions
 - 16 Areas requiring a Cap either for Direct Contact or Particulate Soil Inhalation Criteria exceedances
- 16 Areas require a Health and Safety Plan due to Direct Contact Criteria exceedances
- 12 Areas do not require additional restrictions
- Cost estimates are engineering estimates, +/- 30 to 50 percent

Restrictive Covenant Coordination and Completion	Unit Cost	Unit	Qty	Markup	Total Cost	Notes
ARCADIS Labor				<u> </u>		
Principal Engineer/Scientist	\$143	hr	47	0%	\$6,726	
Sr Engineer/Sci II	\$131	hr		0%	\$0	
Sr Engineer/Sci I	\$124	hr	94	0%	\$11,658	
Sr Project Engineer/Scientist II	\$108	hr	235	0%	\$25,408	
Sr Project Engineer/Scientist I	\$98	hr	141	0%	\$13,750	
Project Engineer/Scientist	\$89	hr		0%	\$0	
Engineer/Scientist	\$73	hr	80	0%	\$5,851	Oversight of 4 hours per survey
Senior Drafter	\$69	hr	120	0%	\$8,268	Figures for coordination and for RCs
ARCADIS Expenses						
Meals	\$50	day	10	0%	\$500	
Truck	\$115	day	10	0%	\$1,150	
Hotel	\$120	day	8	0%	\$960	
Mileage	\$0.45	mi	600	0%	\$270	
PPE	\$25	day	10	0%	\$250	
Survey Subcontractor						
Survey with legal description	\$1,500	each	19	15%	\$32,775	
			PM	Subtotal 10% C TOTAL	\$108,000 \$11,000 \$119,000	
				Jse Total: Jse Total: =	\$25,000 \$94,000	=

Restrictive Covenant Total: \$119	,000
-----------------------------------	------

Appendix E Monitored Plume Stability Cost Detail

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Monitored Plume Stability Cost Assumptions:

- Interm GW Monitoring Cost from "Attachment 5 2013 and Future Years Cost Re-allocation2013 EA Budget Amendment No. 2"May 2013
- Assume RACER will own the property for 30 years (timeframe for Slab Maintenance)
- Assume Slab Maintenance will occur once every 5 years (starting in year 5)
- Cost estimates are engineering estimates, +/- 30 to 50 percent

Groundwater Monitoring				
Items	Unit	Qty	Cost	Extension
1. Plant 2				
Year 1 (Interim Groundwater Sampling)	annual cost	1	\$156,600	\$156,600
Years 2-5 (Semi-Annual Sampling)	annual cost	4	\$41,100	\$164,400
Years 6-10 (Annual Sampling)	annual cost	5	\$25,200	\$126,000
Years 11-30 (Sampling Every 2 Years)	annual cost	10	\$24,900	\$249,000
2. Plant 3				
Year 1 (Interim Groundwater Sampling)	annual cost	1	\$244,900	\$244,900
Years 2-5 (Semi-Annual Sampling)	annual cost	4	\$68,900	\$275,600
Years 6-10 (Annual Sampling)	annual cost	5	\$38,300	\$191,500
Years 11-30 (Sampling Every 2 Years)	annual cost	10	\$38,000	\$380,000
3. Plant 6				
Year 1 (Interim Groundwater Sampling)	annual cost	1	\$226,100	\$226,100
Years 2-5 (Semi-Annual Sampling)	annual cost	4	\$61,500	\$246,000
Years 6-10 (Annual Sampling)	annual cost	5	\$35,800	\$179,000
Years 11-30 (Sampling Every 2 Years)	annual cost	10	\$34,400	\$344,000
Ground	water Monitoring Pla	ant 2 Subtota	al	\$696,000
O	watan Manifasina Di		-1	¢4 000 000

Groundwater Monitoring Plant 2 Subtotal Groundwater Monitoring Plant 3 Subtotal Groundwater Monitoring Plant 6 Subtotal Groundwater Monitoring Total \$090,000 \$1,092,000 \$996,000 \$2,784,000

Existing Surface (e.g. building slabs, a	sphalt, concrete) Maint	enance and I	nspections	
See "Area Estimate Plants 2 3 6 Surface	Maintenance_revised 30	52014 for qua	ntitiy details (envi	ronmental cost fro
Items	Unit	Qty	Cost	Extension
1. Initial Clearing				
Plant 2 Concrete	acre	17.1	\$2,200	\$37,641
Plant 2 Asphalt	acre	1.4	\$9,700	\$13,851
Plant 3 Concrete	acre	7.5	\$2,200	\$16,505
Plant 3 Asphalt	acre	0.5	\$9,700	\$4,498
Fill Low Areas	LS	1	\$100,000	\$100,000
ARCADIS Labor/Expenses	LS	1	\$34,499	\$34,499
2. Annual Maintenance				
Plant 2	annual cost	30	\$17,000	\$510,000
Plant 3	annual cost	30	\$8,500	\$255,000
ARCADIS Labor/Expenses	annual cost	30	\$5,100	\$153,000
3. Periodic Maintenance (years 5, 10, 1	5, 20, 25, and 30)			
Plant 2	annual cost	6	\$10,000	\$60,000
Plant 3	annual cost	6	\$5,000	\$30,000
ARCADIS Labor/Expenses	annual cost	6	\$3,000	\$18,000
Maintena	nce and Inspections PI	ant 2 Subtota	l	\$775,000
Maintena	nce and Inspections PI	ant 3 Subtota	l	\$443,000
Maintena	nce and Inspections PI	ant 6 Subtota	l	\$0

Maintenance and Inspections Plant 6 Subtotal Maintenance Total

\$1,218,000

Appendix E Monitored Plume Stability Cost Detail

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Well Abandonment					
Items		Unit	Qty	Cost	Extension
Well Abandonment					
Plant 2		LS	1	\$26,000	\$26,000
Plant 3		LS	1	\$55,000	\$55,000
Plant 6		LS	1	\$41,000	\$41,000
	Maint	enance and Ins	pections Total		\$122,000
	Groundwate	r Monitoring M	onitoring Total		\$2,784,000
	Maint	enance and Ins	pections Total		\$1,218,000
		Well Aba	ndomnet Total		\$122,000
С	Monitored Plun	ne Stability T	otal (30 yrs)		\$4,124,000

Appendix E Plant 2 Cap and Excavation Cost Detail

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

										Plant 2							
				A	rea 2			Are	ea 5-1			-	Are	ea 5-2			
CONCEPTUAL CORRECTIVE MEASURES EXCAVATION AND CAPPING COSTS RACER TRUST L	ANSING PLANT 2			DC/PSIC Excava	ation Area: 800 ft ²	SVIIC Excavation	on Area: 7,700 ft ²	DC/PSIC Excava	tion Area: 4,900 ft ²			DC/PSIC Excavate Area 5-2: 135,000		4	LNAPL Plume Area: 000 ft ²		ition LNAPL Area: 00 ft ²
		Soil Cap A	.rea: 800 ft2	Excavation Dep	oth: 2 ft and 10 ft	Excavation Dep	oth: 20 ft and 25 ft		n Depth: 5 ft Area: NA	Concrete Cap	Area: 20,000 ft ²		on Depth: 5 ft 2 area to 27 ft)	Excavation Av	erage Depth: 15 ft		pths: 6 ft to 13 ft rea: NA
DIRECT LABOR	Unit Billing Rate	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost
	Rate				PROJEC	T MANAGEMENT	WORKPLAN PREP	ARATION									
Principal	\$145	1	\$145	2	\$290	2	\$290	1	\$145	2	\$290	2	\$290	2	\$290	1	\$145
Program Manager/Principal	\$145	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Senior Project Engineer/Senior Professional II Manager of Site Investigation/Senior Professional I	\$105 \$95	4	\$0 \$380	0	\$0 \$760	0 117	\$0 \$11,115	0	\$0 \$1,520	20	\$0 \$1,900	200	\$0 \$19,000	0 100	\$0 \$9,500	60	\$0 \$5,700
Project Manager/Project Professional II	\$80	20	\$1,600	80	\$6,400	468	\$37,440	100	\$8,000	100	\$8,000	800	\$64,000	600	\$48,000	200	\$16,000
Project Geologist/Project Professional II	\$80	0	\$0	40	\$3,200	234	\$18,720	50	\$4,000	20	\$1,600	400	\$32,000	300	\$24,000	100	\$8,000
	0.05		4=00				RRECTIVE MEASUR		A = 0=0		AA AAA	1000	A 4 4 A 4 A 4	0050	0 /50//0		A 10 000
Senior Field II Field Scientist	\$65 \$55	8	\$520 \$0	36	\$2,340 \$0	156	\$10,140 \$0	78	\$5,070 \$0	144	\$9,360 \$0	1832	\$119,080 \$0	2356	\$153,140 \$0	252	\$16,380 \$0
Operator	\$60	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
						DATA PR	OCESSING					-					
CAD II	\$65	2	\$130	4	\$260	8	\$520	6	\$390	12	\$780	50	\$3,250	70	\$4,550	20	\$1,300
CAD I Administrative I	\$55 \$35	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0
	400	0	ψŪ	0	ψŪ	0	40	0	ψŪ	0	ψŪ	0	ψυ	0	ψŪ	0	ψυ
SUB-TOTAL LABOR			\$2,775		\$13,250		\$78,225		\$19,125		\$21,930		\$237,620		\$239,480		\$47,525
SUPPLIES AND EQUIPMENT	Unit Billing	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost
	Rate \$0.5	50	\$25	50	\$25	350	\$175	350	\$175	900	\$450	8.000	\$4.000	11.200	\$5.600	1.050	\$525
Mileage Support Vehicle	\$75	50	\$25	50	\$75	350	\$175	350	\$525	18	\$450	160	\$4,000	224	\$5,600	21	\$525
GPR Unit - Utility Locate	\$400	0	\$0	2	\$800	6	\$2,400	2	\$800	0	\$0	46	\$18,400	47	\$18,800	7	\$2,800
Concrete Core Machine	\$125	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Interface Probe (per day)	\$75	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Generator (per day)	\$75 \$65	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0	0	\$0 \$0
Peristaltic Low-flow Sample Equipment (per day) Submersible Low-flow Sample Equipment (per day)	\$90	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Poly-tubing (per foot)	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Flex-tubing (per foot)	\$2	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
55-Gallon Steel Dum	\$44	0	\$0	0	\$0	0	\$0	0	\$0	0 18	\$0	0 160	\$0	0	\$0	0 21	\$0
PID (per day) Groundwater Metals Filters	\$75 \$17	0	\$75 \$0	0	\$75 \$0	0	\$525 \$0	0	\$525 \$0	0	\$1,350 \$0	0	\$12,000 \$0	224 0	\$16,800 \$0	0	\$1,575 \$0
Sample Prep Supplies	\$10	0	\$0	20	\$200	60	\$600	40	\$400	0	\$0	150	\$1,500	250	\$2,500	60	\$600
Personal Protective Equipment	\$15	1	\$15	1	\$15	7	\$105	7	\$105	18	\$270	160	\$2,400	224	\$3,360	21	\$315
Decontamination Equipment	\$50 \$150	1	\$50 \$0	2	\$100 \$300	13	\$650 \$900	3	\$150 \$300	18	\$900 \$0	46	\$2,300 \$6,900	47	\$2,350 \$7,050	7	\$350 \$1,050
Drilling Supplies Geoprobe (Equipment Only)	\$150	0	\$0 \$0	2	\$300	6	\$900	2	\$300	0	\$0 \$0	40	\$6,900	47	\$7,050	7	\$1,050
	\$000	Ū	ψŪ		¢1,000	Ū	φ4,000	2	¢1,000	Ŭ	φυ		400,000	-11	φ07,000	'	\$0,000
SUB-TOTAL SUPPLIES AND EQUIPMENT			\$240		\$3,190		\$10,680		\$4,580		\$4,320		\$96,300		\$110,860		\$14,390
CORRECTIVE MEASURES	Unit Billing	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost
Saw-cut concrete up to 10-inches thick (per linear foot)	Rate \$6	0	\$0	360	\$2,160	500	\$3,000	400	\$2,400	0	\$0	1,580	\$9,480	900	\$5,400	750	\$4,500
Saw-cut concrete up to 20-inches thick (per linear foot)	\$12	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Concrete Breaker and Operator (per 10-hour day)	\$4,400	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Excavator and Operator (per 10-hour day) Vacuum/Tanker Truck Mobilization (per day)	\$2,900 \$1,500	1	\$2,900 \$0	0	\$0 \$0	7	\$20,300 \$0	1	\$2,900 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0
Groundwater Disposal (per gallon) NON-HAZ	\$1,500	0	\$0	0	\$0	0	\$0 \$0	0	\$0	0	\$0 \$0	0	\$0	0	\$0	0	\$0 \$0
Excavate/Transport/Disposal Non-Harzardous Soil (per trucked yard)	\$30	0	\$0	178	\$5,340	6,204	\$186,111	908	\$27,240	0	\$0	27,200	\$816,000	27,800	\$834,000	3,700	\$111,000
Excavate/Transport/Disposal Concrete (per trucked cubic yard)	\$15	0	\$0	30	\$450	185	\$2,778	182	\$2,730	0	\$0	5,000	\$75,000	1,900	\$28,500	175	\$2,625
TSCA Regulated Contaminated Liquid Disposal (per drum)	\$1,000	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0
TSCA Regulated Contaminated Liquid Transportion (up to 10 drums Lansing to WDI) TSCA Regulated Contaminated Soil Transportaion and Disposal (per ton)	\$1,000 \$200	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0
TSCA Regulated Contaminated Debris Transportation and Disposal (per ton)	\$300	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Backfill material (per trucked cubic yard)	\$10	33	\$330	130	\$1,300	6,204	\$62,037	1,167	\$11,670	0	\$0	32,000	\$320,000	23,500	\$235,000	4,000	\$40,000
Wire-mesh Reinforced Concrete Resurface (per square foot; 6-inches thick)	\$9	0	\$0	0	\$0 \$0	0	\$0 \$0	4,900	\$44,100 \$0	20,000	\$180,000 \$0	50,000	\$450,000 \$0	50,000	\$450,000 \$0	9,400	\$84,600
Wire-mesh Reinforced Concrete Resurface (per square foot; 8-inches thick) Asphalt Resurface (per square foot; 6-inches thick)	\$10 \$8	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0
	ψυ	5	ψυ	0	φυ	0	ψυ		ψυ		ψυ	· · ·	ψυ	0	ψυ	5	ψυ
SUB-TOTAL CORRECTIVE MEASURES			\$3,230		\$9,250		\$274,226		\$91,040		\$180,000		\$1,670,480		\$1,552,900		\$242,725
SUB-TOTAL		\$6	,300	\$25	5,700	\$36	3,200	\$11	4,800	\$20	6,300	\$2,0	004,400	\$1,9	03,300	\$304	4,700
CONTINGENCY	30%	\$1.	,900	\$7	,800	\$10	9,000	\$34	4,500	\$61	,900	\$60	01,400	\$57	71,000	\$91	,400
				1						1						**	
TOTAL BUDGETARY COST CAP		\$9,	000							\$269	9,000						
TOTAL BUDGETARY COST EXCAVATION				\$34	,000	\$47	3,000	\$15	0,000			\$2,6	06,000	\$2,4	75,000	\$397	7,000

ASSUMPTIONS:

Costs assume excavated material is not classified as a Listed or Hazardous Waste. Costs associated with performance bonding not included. Costs assume approximately 1000-cubic yards of material excavated, transported, and disposed per day.

Costs assume approximately 2,000-square feet of concrete cap installed per day.

All work will be completed under Level D or Level C PPE. Costs assume no shoring will be required and any materials removed for excavation benching and sloping will not require offsite transport and disposal. Costs assume benching and sloping activities are incidental to the project and are not subject to unit rates.

Conceptual costs assume the existing concrete slab over each proposed excavation area at Plant 2 will be saw cut prior to implementing corrective measures activities. Excavation area and depths provided by ARCADIS. Conceptual costs assume the total depth of excavation beneath the bottom of existing concrete slabs. Soil and Concrete Disposal: Assumes all soil and concrete is classified as characteristically non-hazardous waste.

Groundwater Disposal: Assumes an solir and contracts is classified as characteristically non-hazardous waste. Plant 2 Corrective Measures Project Totals does not include cost for excavation dewatering/groundwater disposal.

Appendix E Plant 2 Cap and Excavation Cost Detail

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

					Pla	n 2			
			Are	a 5-3			Are	ea 5-5	
CONCEPTUAL CORRECTIVE MEASURES EXCAVATION AND CAPPING COSTS RAC PLANT 2	ER TRUST LANSING	Concrete Ca	p Area: 800 ft2		ntion Area: 3,300 ft ²	Soil Cap #	vrea: 2,200 ft ²	DC/PSIC Excava	ation Area
	Unit Billing		1						
DIRECT LABOR	Rate	Units	Cost	Units	Cost	Units	Cost	Units	c
		MANAGEMENT -	WORKPLAN PREI	PARATION					
Principal	\$145	1	\$145	1	\$145	1	\$145	1	\$
Program Manager/Principal	\$145	0	\$0	0	\$0	0	\$0	0	
Senior Project Engineer/Senior Professional II	\$105	0	\$0	0	\$0	0	\$0	0	
Manager of Site Investigation/Senior Professional I	\$95	4	\$380	8	\$760	4	\$380	8	9
Project Manager/Project Professional II	\$80	20	\$1,600	60	\$4,800	20	\$1,600	60	\$4
Project Geologist/Project Professional II	\$80	0	\$0	30	\$2,400	4	\$320	30	\$2
N 1 197110		ERSIGHT OF COR			00.100	10	* 1 • 1 •	10	-
Senior Field II Field Scientist	\$65 \$55	8	\$520 \$0	48 0	\$3,120 \$0	16 0	\$1,040 \$0	48 0	\$3
	\$60	0	\$0 \$0	0	\$0 \$0	0	\$0	0	
Dperator	ναφ			U	φU	U	φU	U	
CAD II	\$65	2	\$130	4	\$260	4	\$260	4	9
CAD I	\$55	0	\$130	0	\$200	0	\$200	0	
Administrative I	\$35	0	\$0	Ő	\$0	0	\$0	0 0	
				-		-			
SUB-TOTAL LABOR			\$2,775		\$11,485		\$3,745		\$1
SUPPLIES AND EQUIPMENT	Unit Billing	Units	Cost	Units	Cost	Units	Cost	Units	0
SUFFLIES AND EQUIFINIENT	Rate								
Mileage	\$0.5	50	\$25	150	\$75	100	\$50	150	
Support Vehicle	\$75	1	\$75	3	\$225	2	\$150	3	\$
GPR Unit - Utility Locate	\$400	0	\$0	0	\$0	0	\$0	0	_
Concrete Core Machine	\$125	0	\$0	2	\$250	0	\$0	2	43
nterface Probe (per day)	\$75	0	\$0	0	\$0	0	\$0	0	
Generator (per day)	\$75	0	\$0	0	\$0	0	\$0	0	_
Peristaltic Low-flow Sample Equipment (per day)	\$65	0	\$0 \$0	0	\$0	0	\$0	0	
Submersible Low-flow Sample Equipment (per day)	\$90	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	_
Poly-tubing (per foot) Flex-tubing (per foot)	\$0 \$2	0	\$0	0	\$0 \$0	0	\$0 \$0	0	-
55-Gallon Steel Dum	\$44	0	\$0	0	\$0	0	\$0	0	
PID (per day)	\$75	1	\$75	3	\$225	2	\$150	3	\$
Groundwater Metals Filters	\$17	0	\$0	0	\$0	0	\$0	0	
Sample Prep Supplies	\$10	0	\$0	20	\$200	0	\$0	20	9
Personal Protective Equipment	\$15	1	\$15	3	\$45	2	\$30	3	
Decontamination Equipment	\$50	1	\$50	2	\$100	2	\$100	2	9
Drilling Supplies	\$150	0	\$0	2	\$300	0	\$0	2	9
Geoprobe (Equipment Only)	\$800	0	\$0	2	\$1,600	0	\$0	2	\$
SUB-TOTAL SUPPLIES AND EQUIPMENT			\$240		\$3,020		\$480		\$:
CORRECTIVE MEASURES	Unit Billing	Units	Cost	Units	Cost	Units	Cost	Units	
	Rate								
Saw-cut concrete up to 10-inches thick (per linear foot)	\$6	0	\$0 \$0	540	\$3,240	0	\$0	190	\$
Saw-cut concrete up to 20-inches thick (per linear foot)	\$12 \$4,400	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	_
Concrete Breaker and Operator (per 10-hour day) Excavator and Operator (per 10-hour day)	\$4,400 \$2,900	0	\$0 \$0	0	\$0 \$0	2	\$0	0	
/acuum/Tanker Truck Mobilization (per day)	\$1,500	0	\$0	0	\$0	0	\$3,800	0	-
Groundwater Disposal (per gallon) NON-HAZ	\$0	0	\$0	0	\$0	0	\$0	0	
Excavate/Transport/Disposal Non-Harzardous Soil (per trucked yard)	\$30	0	\$0	250	\$7,500	0	\$0	244	\$
Excavate/Transport/Disposal Concrete (per trucked cubic yard)	\$15	0	\$0	125	\$1,875	0	\$0	81	\$
ISCA Regulated Contaminated Liquid Disposal (per drum)	\$1,000	0	\$0	0	\$0	0	\$0	0	
TSCA Regulated Contaminated Liquid Transportion (up to 10 drums Lansing to WDI)	\$1,000	0	\$0	0	\$0	0	\$0	0	
ISCA Regulated Contaminated Soil Transportaion and Disposal (per ton)	\$200	0	\$0	0	\$0	0	\$0	0	
TSCA Regulated Contaminated Debris Transportation and Disposal (per ton)	\$300	0	\$0	0	\$0	0	\$0	0	
Backfill material (per trucked cubic yard)	\$10	0	\$0	400	\$4,000	88	\$880	314	\$
Nire-mesh Reinforced Concrete Resurface (per square foot; 6-inches thick)	\$9	800	\$7,200	3,300	\$29,700	0	\$0	0	
Nire-mesh Reinforced Concrete Resurface (per square foot; 8-inches thick)	\$10	0	\$0	0	\$0	0	\$0	0	
Asphalt Resurface (per square foot; 6-inches thick)	\$8	0	\$0	0	\$0	0	\$0	0	_
					A 15		AC		<u> </u>
SUB-TOTAL CORRECTIVE MEASURES			\$7,200		\$46,315		\$6,680		\$1
SUB-TOTAL			,300		0,900		1,000		27,400
CONTINGENCY	30%	\$3	,100	\$1	8,300	\$	3,300	\$8	8,200
TOTAL BUDGETARY COST CAP TOTAL BUDGETARY COST EXCAVATION		\$11	,000		1.000	\$1	1,000		28,000

ASSUMPTIONS:

ASSUMPTIONS: Costs associated with performance bonding not included. Costs associated with performance bonding not included. Costs associated with performance bonding not included. Costs assume approximately 1000-cubic yards of material excavated, transported, and disposed per day. Costs assume approximately 2,000-square feet of concrete cap installed per day. All work will be completed under Level D or Level C PPE. Costs assume bonching will be required and any materials removed for excavation benching and sloping will not require offsite transport and disposal. Costs assume benching and sloping activities are incidental to the project and en ot subject to unit rates. Conceptual costs assume the existing concrete slab over each proposed excavation area at Plant 2 will be saw cut prior to implementing corrective measures activities. Excavation area and depths provided by ARCADIS. Conceptual costs assume the total depth of excavation beneath the bottom of existing concrete slabs. Soil and Concrete Disposal: Assumes all soil and concrete is classified as characteristically non-hazardous waste. Flant 2 Corrective Measures Project Totals does not include cost for excavation dewatering/groundwater disposal.

a: 2,200 ft ²
: 3 ft
Cost
\$145
\$U ©0
\$760
\$7.00 \$4.800
\$2,400
0.400
\$3,120
\$0 \$0
\$0
\$260
\$0
\$0
11,485
Cost
\$75
\$225
\$0
\$250
\$0
\$0 \$0
\$0 \$0
\$0
\$0
\$0
\$225 \$0
\$200
\$45
\$100
\$300
\$1,600
\$3,020
Cost
\$1,140
\$0
\$0 \$0
\$0 \$0
\$0
\$7,320
\$0 \$0
\$0 \$0
\$0
\$3,140
\$0
\$0 \$0
\$0
12,815

Appendix E Plant 3 Cap and Excavation Cost Detail RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

										Pla	int 3									
		Are	ea 11	Area 16			Are	ea 17		114		Ar	rea 18		Are	ea 19	Are	ea 20	Are	a 21
CONCEPTUAL CORRECTIVE MEASURES EXCAVATION AND CAPPING COSTS I LANSING PLANT 3	RACER TRUST	SVIIC Excavatio	on Area: 2,400 ft ²	DC/PSIC Excavation Area: 3,500	r ²			LNAPL Plume Area 00 ft ²		vation LNAPL Area: 800 ft ²			DC/PSIC Excava	tion Area: 8,300 ft ²	DC/PSIC Excava	tion Area: 3,400 ft ²	DC/PSIC Excava	ation Area: 4,700 ft ²	DC/PSIC Excavat	tion Area: 1,000 ft ²
		Excavation	Depth: 15 ft	Excavation Depth: 9 ft	Concrete Ca	ap Area: 3,800 ft ²		th: North Plume 10 Plume 22 ft	Excavatio	on Depth: 5 ft	Soil Cap A	rea: 8,300 ft ²	Excavation	Depth: 2 ft	Excavation Depth: 10 ft		Excavation Depth: 18 ft		Excavation	n Depth: 5 ft
DIRECT LABOR	Unit Billing Rate	Units	Cost	Units Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost
	Auto					PR	OJECT MANAGEME	NT - WORKPLAN P	REPARATION											
Principal	\$145	2	\$290	2 \$290	1	\$145	2	\$290	1	\$145	2	\$290	2	\$290	1	\$145	2	\$290	1	\$145
Program Manager/Principal	\$145	0	\$0	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Senior Project Engineer/Senior Professional II	\$105 \$95	0 18	\$0 \$1,710	0 \$0 8 \$760	0	\$0 \$380	0 36	\$0 \$3,420	0 20	\$0 \$1,900	0	\$0 \$760	0	\$0 \$760	0	\$0 \$950	0 28	\$0 \$2,660	0	\$0 \$760
Manager of Site Investigation/Senior Professional I Project Manager/Project Professional II	\$80	72	\$5,760	80 \$6,400	40	\$3.200	200	\$16.000	100	\$8,000	40	\$3.200	80	\$6,400	80	\$6,400	160	\$12,800	80	\$6.400
Project Geologist/Project Professional II	\$80	36	\$2,880	40 \$3,200	4	\$320	100	\$8,000	50	\$4,000	20	\$1,600	40	\$3,200	40	\$3,200	80	\$6,400	40	\$3,200
	1					T		CORRECTIVE MEA					-	T						
Senior Field II	\$65	24	\$1,560	80 \$5,200	24	\$1,560	268	\$17,420	88	\$5,720	40	\$2,600	64	\$4,160	64	\$4,160	208	\$13,520	40	\$2,600
Field Scientist Operator	\$55 \$60	0	\$0 \$0	0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0
	φυυ			υ φυ	. 0	90	DATA		. 0	- ^{QU}	. 0		. 0		. 0	ψυ	. 0	ψυ	5	Ψ
CAD II	\$65	44	\$2,860	6 \$390	4	\$260	32	\$2,080	10	\$650	8	\$520	8	\$520	10	\$650	24	\$1,560	4	\$260
CADI	\$55	0	\$0	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Administrative I	\$35	0	\$0	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
SUB-TOTAL LABOR			\$15,060	\$16.240		\$5.865		\$47.210		\$20.415		\$8.970		\$15.330		\$15.505		\$37.230		\$13.365
SUPPLIES AND EQUIPMENT	Unit Billing Rate	Units	Cost	Units Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost
Mileage	\$0.5	100	\$50	350 \$175	150	\$75	1,150	\$575	400	\$200	200	\$100	250	\$125	400	\$200	850	\$425	100	\$50
Support Vehicle	\$75	2	\$150	7 \$525	3	\$225	23	\$1,725	8	\$600	4	\$300	5	\$375	8	\$600	17	\$1,275	2	\$150
GPR Unit - Utility Locate	\$400	0	\$0	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Concrete Core Machine	\$125	3	\$375	2 \$250	0	\$0	7	\$875	2	\$250	0	\$0	2	\$250	3	\$375	6	\$750	2	\$250
Interface Probe (per day) Generator (per day)	\$75 \$75	0	\$0 \$0	0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0
Peristaltic Low-flow Sample Equipment (per day)	\$65	0	\$0	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0 \$0	0	\$0	0	\$0 \$0	0	\$0 \$0
Submersible Low-flow Sample Equipment (per day)	\$90	0	\$0	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Poly-tubing (per foot)	\$0	0	\$0	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Flex-tubing (per foot)	\$2	0	\$0	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
55-Gallon Steel Dum PID (per day)	\$44 \$75	0	\$0 \$150	0 \$0 7 \$525	0	\$0 \$225	23	\$0 \$1,725	0	\$0 \$600	0	\$0 \$300	0	\$0 \$375	0	\$0 \$600	0	\$0 \$1,275	2	\$0 \$150
Groundwater Metals Filters	\$17	0	\$130	0 \$0	0	\$225	0	\$1,725	0	\$800	4	\$300	0	\$375	0	\$000	0	\$1,275	0	\$130
Sample Prep Supplies	\$10	40	\$400	40 \$400	0	\$0	100	\$1,000	50	\$500	0	\$0	20	\$200	40	\$400	60	\$600	20	\$200
Personal Protective Equipment	\$15	2	\$30	7 \$105	3	\$45	23	\$345	8	\$120	4	\$60	5	\$75	8	\$120	17	\$255	2	\$30
Decontamination Equipment	\$50	5	\$250	2 \$100	3	\$150	7	\$350	8	\$400	4	\$200	2	\$100	3	\$150	6	\$300	2	\$100
Drilling Supplies Geoprobe (Equipment Only)	\$150 \$800	3	\$450 \$2,400	2 \$300 2 \$1,600	0	\$0 \$0	7	\$1,050 \$5,600	0	\$0 \$1,600	0	\$0 \$0	2	\$300 \$1,600	3	\$450 \$2,400	6	\$900 \$4,800	2	\$300 \$1,600
	\$800		φ2, 4 00	2 \$1,000	0	ψŪ	'	\$5,000	2	\$1,000	0	ψŪ	2	\$1,000		φ2,400	0	\$ 4 ,000	2	\$1,000
SUB-TOTAL SUPPLIES AND EQUIPMENT			\$4,255	\$3,980		\$720		\$13,245		\$4,270		\$960		\$3,400		\$5,295		\$10,580		\$2,830
CORRECTIVE MEASURES	Unit Billing Rate	Units	Cost	Units Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost
Saw-cut concrete up to 10-inches thick (per linear foot)	\$6	200	\$1,200	240 \$1,440	0	\$0	480	\$2,880	480	\$2,880	0	\$0	370	\$2,220	240	\$1,440	280	\$1,680	140	\$840
Saw-cut concrete up to 20-inches thick (per linear foot)	\$12	0	\$0	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Concrete Breaker and Operator (per 10-hour day)	\$4,400 \$2,900	0	\$0 \$5,800	0 \$0 0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$11.600	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0
Excavator and Operator (per 10-hour day) Vacuum/Tanker Truck Mobilization (per day)	\$2,900	0	\$5,800	0 \$0	0	\$0	0	\$0	0	\$0	4	\$11,600	0	\$0 \$0	0	\$0	0	\$0 \$0	0	\$0 \$0
Groundwater Disposal (per gallon) NON-HAZ	\$0.45	0	\$0	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0 \$0	0	\$0
Excavate/Transport/Disposal Non-Hazardous Soil (per trucked yard)	\$30	1,333	\$40,000	1,167 \$35,010	0	\$0	4,100	\$123,000	704	\$21,120	0	\$0	615	\$18,450	1,260	\$37,800	3,134	\$94,020	185	\$5,550
Excavate/Transport/Disposal Concrete (per trucked cubic yard)	\$15	89	\$1,333	0 \$0	0	\$0	280	\$4,200	280	\$4,200	0	\$0	308	\$4,620	126	\$1,890	175	\$2,625	37	\$555
TSCA Regulated Contaminated Liquid Disposal (per drum)	\$1,000	0	\$0	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
TSCA Regulated Contaminated Liquid Transportation (up to 10 drums Lansing to WDI)	\$1,000	0	\$0	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
TSCA Regulated Contaminated Soil Transportation and Disposal (per ton)	\$200	0	\$0	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
TSCA Regulated Contaminated Debris Transportation and Disposal (per ton)	\$300	0	\$0 \$12.222	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Backfill material (per trucked cubic yard) Wire-mesh Reinforced Concrete Resurface (per square foot; 6-inches thick)	\$10 \$9	1,333 2,400	\$13,333 \$21,600	1,387 \$13,870 0 \$0	0 3.800	\$0 \$34,200	4,710 7,400	\$47,100 \$66,600	950 7,400	\$9,500 \$66,600	350	\$3,500 \$0	1,350	\$13,500 \$0	1,484 3,400	\$14,840 \$30,600	3,541 2,800	\$35,410 \$25,200	238	\$2,380 \$0
Wire-mesh Reinforced Concrete Resurface (per square foot; 8-inches thick)	\$9	0	\$0	0 \$0	0	\$34,200	0	\$00,000	0	\$00,000	0	\$0	0	\$0	0	\$30,600	2,800	\$25,200	0	\$0 \$0
Asphalt Resurface (per square foot; 6-inches thick)	\$8	0	\$0	0 \$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
			\$83,267					0045		040.000		0 45 · · · ·		000	<u> </u>	005		0.55		00.077
SUB-TOTAL CORRECTIVE MEASURES SUB-TOTAL		640	\$03,207 2,600	\$50,320		\$34,200		\$243,780		\$104,300		\$15,100		\$38,790		\$86,570		\$158,935	~	\$9,325
	2004			\$70,600		40,800		4,300		29,000		5,100		,600		7,400		06,800		520
CONTINGENCY	30%	\$30	0,800	\$21,200	\$	12,300	\$9	1,300	\$3	8,700	\$7	,600	\$1,	,300	\$3	2,300	\$63	2,100	\$7,	,700
TOTAL BUDGETARY COST CAP		1			\$	54,000			1		\$33	3,000	1		1					
TOTAL BUDGETARY COST EXCAVATION		\$13	4,000	\$92,000	ψ	0.,000	\$39	6,000	\$16	68,000	450	5,000	\$75	,000	\$14	10,000	\$26	69,000	\$26	6,000
		- ,			-															

ASSUMPTIONS:

Costs assume excavated material is not classified as a Listed or Hazardous Waste. Costs associated with performance bonding not included. Costs assume approximately 1000-cubic yards of material excavated, transported, and disposed per day. Costs assume approximately 2,000-square feet of concrete cap installed per day.

Costs assume approximately 2,000-square feet of concrete cap installed per day. All work will be completed under Level D or Level C PPE Costs assume no shoring will be required and any materials removed for excavation benching and sloping will not require offsite transport and disposal. Costs assume benching and sloping activities are incidental to the project and are not subject to unit rates. Conceptual costs assume the existing concrete slab over each proposed excavation area at Plant 3 (with the exception of Area 16) will be saw cut prior to implementing corrective measures activities. Excavation area and depths provided by ARCADIS. Conceptual costs assume the total depth of excavation beneath the bottom of existing concrete slabs. Soil and Concrete Disposal: Assumes all goil and concrete is classified as characteristically non-hazardous waste. Plant 3 Corrective Measures Project Totals does not include cost for excavation dewatering/groundwater disposal.

Appendix E Plant 6 Cap and Excavation Cost Detail

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

		Plant 6																			
			Are	a 5-6		Are	ea 5-7	Are	a 5-8				Ar	rea 7						Area 9	
CONCEPTUAL CORRECTIVE MEASURES EXCAVATION AND CAPPING COSTS RACE PLANT 6	R TRUST LANSING	Soil Cap Ar	ea: 20,000 ft ²	Excavation A	vrea: 20,000 ft ²	SVIIC Excavati	ion Area: 1,650 ft ²	DC/PSIC Excavat	ion Area: 2,200 ft ²		Area: 400 ft ² st Area)	Soil Cap Area (East A		DC/PSIC Excava Area: 2		SVIIC Excavatio	on Area: 1,650 ft ²		vation Excavation 1,400 ft ²	SVIIC Excavatio	on Area: 1,400 ft ²
				Excavation	n Depth: 7 ft	Excavation	n Depth: 12 ft	Excavatior	Depth: 3 ft					Excavation Dep	th: 2 ft and 10 ft	0 ft Excavation Depth: 1		Excavation Depth: 12 ft		Excavation Depth: 12 ft	
DIRECT LABOR	Unit Billing Rate	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost
Distant.	6145		\$115	<u>^</u>	\$ 105			MANAGEMENT -	NORKPLAN PREP	ARATION	0115		0445	2	* 2000	<u>^</u>	\$ 000		\$ 2000	â	* 2000
Principal Program Manager/Principal	\$145 \$145	1	\$145 \$0	3	\$435 \$0	2	\$290 \$0	1	\$145 \$0	0	\$145 \$0	1	\$145 \$0	2	\$290 \$0	2	\$290 \$0	2	\$290 \$0	2	\$290 \$0
Senior Project Engineer/Senior Professional II	\$105	0	\$0	0	\$0	0	\$0 \$0	0	\$0 \$0	0	\$0	0	\$0	0	\$0 \$0	0	\$0 \$0	0	\$0	0	\$0
Manager of Site Investigation/Senior Professional I	\$95	20	\$1,900	48	\$4,560	27	\$2,565	8	\$760	4	\$380	8	\$760	63	\$5,985	54	\$5,130	54	\$5,130	54	\$5,130
Project Manager/Project Professional II Project Geologist/Project Professional II	\$80 \$80	60 20	\$4,800 \$1.600	248 124	\$19,840 \$9,920	108 54	\$8,640 \$4,320	60 30	\$4,800 \$2,400	20	\$1,600 \$800	30 15	\$2,400 \$1,200	252 126	\$20,160 \$10,080	216 108	\$17,280 \$8.640	216 108	\$17,280 \$8,640	216 108	\$17,280 \$8,640
	\$0U	20	\$1,000	124	\$9,920	- 54			SECTIVE MEASUR		\$000	15	\$1,200	120	\$10,080	108	\$0,040	108	\$6,640	108	\$6,640
Senior Field II	\$65	80	\$5,200	356	\$23,140	36	\$2,340	48	\$3,120	8	\$520	8	\$520	84	\$5,460	72	\$4,680	72	\$4,680	72	\$4,680
Field Scientist	\$55	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Operator	\$60	0	\$0	0	\$0	0	\$0	0 DATA PRO	\$0 CESSING	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
CAD II	\$65	16	\$1,040	40	\$2,600	8	\$520	4	\$260	4	\$260	8	\$520	4	\$260	8	\$520	8	\$520	8	\$520
CAD I	\$55	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Administrative I	\$35	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
SUB-TOTAL LABOR			\$14,685		\$60,495		\$18,675		\$11,485		\$3,705		\$5,545		\$42,235		\$36,540		\$36,540		\$36,540
SUPPLIES AND EQUIPMENT	Unit Billing Rate	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost	Units	Cost
Mileage Support Vehicle	\$0.5 \$75	500 10	\$250 \$750	1,550	\$775 \$2.325	50	\$25 \$75	150	\$75 \$225	50	\$25 \$75	50	\$25 \$75	250	\$125 \$375	200 4	\$100 \$300	200 4	\$100 \$300	200	\$100 \$300
GPR Unit - Utility Locate	\$400	0	\$750	0	\$2,325	1	\$0	0	\$225 \$0	0	\$75	0	\$75	0	\$375 \$0	4	\$300	4	\$300	4	\$300
Concrete Core Machine	\$125	0	\$0	9	\$1,125	2	\$250	2	\$250	0	\$0	0	\$0	2	\$250	2	\$250	2	\$250	2	\$250
Interface Probe (per day)	\$75	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Generator (per day)	\$75 \$65	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0
Peristaltic Low-flow Sample Equipment (per day) Submersible Low-flow Sample Equipment (per day)	\$90	0	\$0	0	\$0	0	\$0 \$0	0	\$0	0	\$0	0	\$0	0	\$0 \$0	0	\$0 \$0	0	\$0	0	\$0 \$0
Poly-tubing (per foot)	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Flex-tubing (per foot)	\$2	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
55-Gallon Steel Dum PID (per day)	\$44 \$75	0 10	\$0 \$750	0	\$0 \$2,325	0	\$0 \$75	0	\$0 \$225	0	\$0 \$75	0	\$0 \$75	0	\$0 \$75	0	\$0 \$75	0	\$0 \$75	0	\$0 \$75
Groundwater Metals Filters	\$17	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Sample Prep Supplies	\$10	10	\$100	160	\$1,600	73	\$733	20	\$200	0	\$0	0	\$0	88	\$881	73	\$733	62	\$622	62	\$622
Personal Protective Equipment	\$15	10 31	\$150 \$1,550	31 9	\$465	1	\$15 \$150	3	\$45	1	\$15	1	\$15	1	\$15	1	\$15	1	\$15	1	\$15
Decontamination Equipment Drilling Supplies	\$50 \$150	0	\$1,550	9	\$450 \$1,350	2	\$150	2	\$100 \$300	0	\$50 \$0	0	\$50 \$0	2	\$150 \$300	2	\$150 \$300	2	\$150 \$300	2	\$150 \$300
Geoprobe (Equipment Only)	\$800	0	\$0	9	\$7,200	2	\$1,600	2	\$1,600	0	\$0	0	\$0	2	\$1,600	2	\$1,600	2	\$1,600	2	\$1,600
			00.550		017.015		6 0.000		6 0.000		* 0.40		* 0.40		60 77 1		60 500		00.110		00.110
SUB-TOTAL SUPPLIES AND EQUIPMENT	Unit Billing		\$3,550		\$17,615		\$3,223		\$3,020		\$240		\$240		\$3,771		\$3,523		\$3,412		\$3,412
CORRECTIVE MEASURES Saw-cut concrete up to 10-inches thick (per linear foot)	Rate \$6	Units 0	Cost \$0	Units 570	Cost \$3,420	Units 160	Cost \$960	Units 190	Cost \$1,140	Units 0	Cost \$0	Units 0	Cost \$0	Units 160	Cost \$960	Units 160	Cost \$960	260	Cost \$1,560	Units 260	Cost \$1,560
Saw-cut concrete up to 20-inches thick (per linear foot)	\$12	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Utility Management (36 inch sewer, Area 9 only)	\$5,000	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0 \$0	0	\$0	0	\$0	3	\$15,000	3	\$15,000
Concrete Breaker and Operator (per 10-hour day) Excavator and Operator (per 10-hour day)	\$4,400 \$2,900	0	\$0 \$29,000	0	\$0 \$0	0	\$0 \$2,900	0	\$0 \$0	0	\$0 \$2,900	0	\$0 \$2,900	4	\$17,600 \$2,900	3	\$13,200 \$2,900	0	\$0 \$2,900	0	\$0 \$2,900
Vacuum/Tanker Truck Mobilization (per day)	\$1,500	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Groundwater Disposal (per gallon) Non-Hazardous	\$0.45	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Excavate/Transport/Disposal Non-Hazardous Soil (per trucked cubic yard)	\$30 \$15	0	\$0 \$0	5,185 741	\$155,550 \$11,115	733 61	\$22,000 \$917	250 81	\$7,500 \$1,215	0	\$0 \$0	0	\$0 \$0	881	\$26,444 \$1	733 61	\$22,000 \$917	622 156	\$18,667 \$2,340	622 156	\$18,667 \$2,340
Excavate/Transport/Disposal Concrete (per trucked cubic yard) TSCA Regulated Contaminated Liquid Disposal (per drum)	\$15	0	\$0 \$0	0	\$11,115	0	\$917	0	\$1,215	0	\$0	0	\$0	0	\$0	0	\$917	0	\$2,340	0	\$2,340
TSCA Regulated Contaminated Liquid Transportation (up to 10 drums Lansing to WDI)	\$1,000	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
TSCA Regulated Contaminated Soil Transportation and Disposal (per ton) TSCA Regulated Contaminated Debris Transportation and Disposal (per ton)	\$200 \$300	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0
Backfill material (per trucked cubic yard)	\$300	790	\$7,900	7,150	\$71,500	733	\$7,333	268	\$0	20	\$200	90	\$900	881	\$8,815	733	\$0 \$7,333	1,832	\$18,320	1,832	\$18,320
Wire-mesh Reinforced Concrete Resurface (per square foot; 6-inches thick)	\$9	0	\$0	0	\$0	0	\$0	2,200	\$19,800	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
Wire-mesh Reinforced Concrete Resurface (per square foot; 8-inches thick) Asphalt Resurface (per square foot; 6-inches thick)	\$10 \$8	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0	0	\$0 \$0
	φο	U		U		0		0		U		0		U		0		U		0	
SUB-TOTAL CORRECTIVE MEASURES			\$36,900		\$241,585		\$34,110		\$32,335		\$3,100		\$3,800		\$56,720		\$47,310		\$58,787		\$58,787
SUB-TOTAL			5,200		9,700		6,100		,900		,100	\$9,60		\$102			,400	-	98,800	-	,800
CONTINGENCY	30%	\$16	5,600	\$96	5,000	\$1	6,900	\$14	,100	\$2	,200	\$2,90	00	\$30	,900	\$26	5,300	\$2	29,700	\$29	,700
TOTAL BUDGETARY COST CAP		\$72	2,000							\$10	0,000	\$13,0	000								
TOTAL BUDGETARY COST EXCAVATION				\$41	6,000	\$7	3,000	\$61	,000					\$134	1,000	\$114	4,000	\$12	29,000	\$129	9,000

ASSUMPTIONS:

Costs assume excavated material is not classified as a Listed or Hazardous Waste.

Costs assume excavated material is not classified as a Listed or Hazaroous waste. Costs assume approximately 1000-cubic yards of material excavated, transported, and disposed per day. Costs assume approximately 2,000-square feet of concrete cap installed per day. All work will be completed under Level D or Level C PPE. Costs assume no shoring will be required (with the exception of Area 9) and any materials removed for excavation benching and sloping will not require offsite transport and disposal.

Costs assume hos shoring will be required (with the exception of Area 9) and any materials relative to the xavation benching and sloping activities are incidental to the project and are not subject to unit rates. Conceptual costs assume the existing concrete slab over each proposed excavation area at Plant 6 will be saw cut prior to implementing corrective measures activities. Excavation area and depths provided by ARCADIS. Conceptual costs assume the total depth of excavation beneath the bottom of existing concrete slabs. Soil and Concrete Disposal: Assumes all soil and concrete is classified as characteristically non-hazardous waste. Plant 6 Corrective Measures Project Totals does not include cost for excavation dewatering/groundwater disposal.

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

ISCO Cost Assumptions:

- Investigation to refine vertical and horizontal treatment area will be conducted, cost for investigation is not included as a separate line item as it is assumed it will be covered by the cost savings from reducing the treatment area.
- Base cost assumes pilot test of 2 injection wells and full-scale injection of 12 wells
- Injection Wells installed to a depth of 10 feet with 5 foot treatment interval (5-10 ft)
- Injection Wells installed for full coverage, assuming a 10 foot ROI
- Assumes 2 injections to reduce Xylene concentrations below FESL, not to MCLs
- Assume pilot test wells will be utilized in full-scale system operation
- Sonic drilling for all wells
- · Assumes no subgrade utilities in the injection area and directly downgradient of the injection area
- Cost estimates are engineering estimates, +/- 30 to 50 percent

tems	Unit	Qty	Cost	Extension	Assumptions
1. Labor					
Principal Engineer/Scientist	HR	25	\$143	\$3,578	
Sr Engineer/Sci II	HR		\$131	\$0	
Sr Engineer/Sci I	HR	50	\$124	\$6,201	
Sr Project Engineer/Scientist II	HR		\$108	\$0	
Sr Project Engineer/Scientist I	HR	100	\$98	\$9,752	
Project Engineer/Scientist	HR		\$89	\$0	
Engineer/Scientist	HR	50	\$73	\$3,657	
	Labo	r Markup	0%	\$0	

Project Management 10% Permitting, Work Plan Subtotal

\$2,319 \$26,000

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6

Lansing, Michigan

aseline Monitoring 1 Labor and expenses include baseline mo	nitoring of 8 wells (6	new Dose	Response	and Down G	Gradient Wells)	
Assumes sampling rate of	6 wells/day	/	•			
2 Subs						
Laboratory cost for:						
	8 wells					
	1 QA/QC					
tems		Unit	Qty	Cost	Extension	Assumptions
1. Labor						
Principal Engineer/Scientist		HR		\$143	\$0	
Sr Engineer/Sci II		HR	4	\$131	\$526	
Sr Engineer/Sci I		HR	4	\$124	\$496	
Sr Project Engineer/Scientist II		HR		\$108	\$0	
Sr Project Engineer/Scientist I		HR	8	\$98	\$780	
Project Engineer/Scientist		HR		\$89	\$0	
Engineer/Scientist		HR	24	\$73	\$1,755	
2. ARCADIS Expenses						
Field vehicle		DAY	2	\$115	\$230	
Mileage		MI	120	\$0.45	\$54	
Meals		DAY	2	\$50	\$100	
Hotel		DAY	1	\$120	\$120	
PPE		DAY	2	\$25	\$50	
Peristaltic Pump		DAY	2	\$35	\$70	
Water Level Meter		DAY	2	\$37	\$74	
Turbidity Meter		DAY	2	\$20	\$40	
Tubing		LS	2	\$50	\$100	
3. Subcontractor						
Lab- VOCs 8260		EACH	9	\$75	\$675	
Lab- Metals and Na, Al, Mn 6010		EACH	9	\$150	\$1,350	
Lab- Mercury 245.1		EACH	9	\$25	\$225	
Lab- Sulfate SM 4500 SO4-D		EACH	9	\$15	\$135	
Lab- TDS SM 2540C		EACH	9	\$20	\$180	
Lab- Fe 200.7		EACH	9	\$10	\$90	
Lab- Alkalinity 310.1		EACH	9	\$20	\$180	
Lab- TOC 9060		EACH	9	\$20	\$180	
		Labo	r Markup	0%	\$0	
	Markup on A	RCADIS E	xpenses	15%	\$126	
		Markup	on Subs	15%	\$452	
	Pro	oject Mana	agement	10%	\$356	
	Baseline M	Ionitoring	Subtotal		\$8 400	

Project Management Baseline Monitoring Subtotal

\$8,400

RCRA Corrective Action Corrective Measures Study

RACER Plants 2, 3, and 6

Lansing, Michigan

jection Test Well Drilling 1 Labor and expenses include oversight of inje						
development. Geologist to oversee drilling a	nd development	t.				
2 Drilling						
Treatment depth	10 ft					
Treatment thickness	5 ft					
Mobile porosity	0.1					
Injection well ROI	10 ft					
Injection well volume per well	1175 gal					
Number of Is	2 wells					
IW Well Depth	10 ft					
Number of Shallow MWs	2 wells	Installed	at expecte	d ROI (10ft)		
Shallow MW Well Depth	10 ft					
Number of Deep MWs	4 wells	2 Installe	d at expec	ted ROI (10ft), 2 installed dowr	aradient
Deep MW Well Depth	20 ft	2 motanes	u ui expee		, z mstaned down	igradion
Drilling rate	50 ft/day					
Injection wells are 2" diameter with 5' SS scr						
Monitoring wells are 2" diameter with 5' PVC						
5	screens					
3 Other						
PID rental for drilling (not needed for well de	/elopment)					
Survey new injection and monitoring wells						
Hours per well for setup/decon/move	1 hr					
Hours per well for development	1.5 hr				r	1
ms		Unit	Qty	Cost	Extension	Assumptions
Labor Principal Engineer/Scientist		HR	7	\$143	\$1,002	
Sr Engineer/Sci II		HR		\$131	\$0	
Sr Engineer/Sci I		HR	11	\$124	\$1,364	
Sr Project Engineer/Scientist II		HR	11		\$0	
Si Piojeci Engineen/Scientist II				\$108	م 0	Coordination,
Sr Project Engineer/Scientist I		HR	21	\$98	\$2,048	Contracting, Field Support
Project Engineer/Scientist		HR		\$89	\$0	
Engineer/Scientist		HR	41	\$73	\$2,999	Field 12 hrs/day, 1 da utility located and KO Meeting
ARCADIS Expenses						
Field vehicle		DAY	4	\$115	\$460	
Mileage		MI	240	\$0.45	\$108	
Meals		DAY	4	\$50	\$200	
Hotel		DAY	3	\$120	\$360	
PPE		DAY	4	\$25	\$100	
PID		DAY	4	\$75	\$300	
Subcontractor Drilling						
Mob/Demob		ls	1	\$1,200	\$1,200	
4" x 6" Sonic Drilling with Continuous Sampli	na	ft	120	\$32	\$3,840	
7" x 8" Sonic Drilling with Continuous Sampli		ft	0	\$45	\$0	1
Sonic Bedrock Drilling		ft	0	\$60	\$0 \$0	1
2" PVC Well Installation (Labor and Materials	3)	ft	110	\$00 \$16	\$1,760	
2" x 5' SS Screen (Labor and Materials)	<u>''</u>	each	2	\$350	\$700	+
· · · · · · · · · · · · · · · · · · ·		_	2 12	\$350 \$175	\$2,100	+
Development Well Completions		hr		\$300	\$2,100	
		each	8			
Drums		each	5	\$60	\$300	
Move, Setup, Decon, IDW Handling (sonic)		hr	8	\$325	\$2,600	
Stand-By Other		hr		\$400	\$0	<u> </u>
IDW - Disposal Soil		drum	5	\$100	\$500	
IDW - Disposal Water		drum	3	\$100	\$300	
IDW - Transportation		trip	1	\$200	\$200	Assume 20 drums pe
Survey new wells		LS	1	\$500	\$500	trip
Ourvey new wens		-	r Markup	<u>\$500</u>	\$500 \$0	1
					•	
	Markup on A	ARCADIC E	vnoneoe	150/	ແລວບ	
	Markup on A			15% 15%	\$229 \$2.460	
		ARCADIS E Markup roject Mana	on Subs	15% 15% 10%	\$229 \$2,460 \$741	

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6

Lansing, Michigan

njection Test						
1 Labor and expenses includes personnel to perform	m the injectio	n.				
2 Materials						
Number of Injection Wells	2		Sodium P	ersulfate Con	centration	50 g/L
Estimated Mobile Porosity	0.1		Sodium P	ersulfate Mas	S	980 lbs
Radius of influence	10	ft	Ferrous S	ulfate Heptah	ydrate Concentrati	1.3 g/L
Screen length	5	ft	Ferrous S	ulfate Heptah	ydrate Mass	25 lbs
Injection Volume per well	1175		Citric Acic	d Concentratio	n	0.86 g/L
Total Injection Volume	2350	gal	Citric Acic	Mass		17 lbs
Estimated flow rate	3	gpm				
Wells Injected Simultaneously	2	wells				
Daily injection time	10	hrs/day				
Total injection time for one injection	1	days				
tems		Unit	Qty	Cost	Extension	Assumptions
. Labor						
Principal Engineer/Scientist		HR	5	\$143	\$716	
Sr Engineer/Sci II		HR		\$131	\$0	
Sr Engineer/Sci I		HR	10	\$124	\$1,240	Field Support
Sr Project Engineer/Scientist II		HR		\$108	\$0	Field Support
Sr Project Engineer/Scientist I		HR	14	\$98	\$1,365	Coordination, field support
Project Engineer/Scientist		HR	28	\$89	\$2,493	Field Injection, setup/tare down
Engineer/Scientist		HR		\$73	\$0	
a. ARCADIS Expenses						•
Field vehicle		DAY	3	\$115	\$345	
Mileage		MI	180	\$0.45	\$81	
Meals		DAY	3	\$50	\$150	
Hotel		DAY	2	\$120	\$240	
Level D PPE		DAY	3	\$25	\$75	
c. Materials				·		
Sodium Persulfate		LB	980	\$1.41	\$1,382	
Citric Acid		BAG	1	\$113.00	\$113	
Ferrous Sulfate		LB	50	\$4.55	\$228	
Chemical freight and tax		LS	1	\$345	\$345	
City Permitting, hydrant tap, flow meter		DAY	3	\$100	\$280	
Utilities - water		GAL	2,350	\$0.03	\$70	
Meters: cond, WL, pump		DAY	3	\$500	\$1,400	
Transducers		EACH	6	\$1,000	\$6,000	
Field Sodium Permanganate testing kits		EACH	2	\$100	\$200	
Replacement part/misc supplies		LS	1	\$1,000	\$1,000	
3. Subcontractor		•		• •	• • •	•
Water Tank/Truck		LS	2	\$2,000	\$4,000	
Injection Trailer		DAY	2	\$4,000	\$8,000	
		Labo	or Markup	0%	\$0	
Μ	arkup on AF			15%	\$1,786	
	•		on Subs	15%	\$1,800	
	Pro		agement	10%	\$581.41	

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6

Lansing,	Michigan
----------	----------

Sampling equipment			LS	8	\$250	\$2,000	
Field Sodium Permanganate testing kits			EACH	8	\$100	\$800	
Level D PPE			DAY	8	\$25	\$200	
Hotel			DAY	0	\$120	\$0	
Meals			DAY	8	\$50	\$400	
Mileage			MI	960	\$0.45	\$432	
Field vehicle			DAY	8	\$115	\$920	
2. ARCADIS Expenses							
Engineer/Scientist			HR	96	\$73	\$7,021	Field Sampling
Project Engineer/Scientist			HR		\$89	\$0	
Sr Project Engineer/Scientist I			HR	48	\$98	\$4,681	Coordination/data analysis
Sr Project Engineer/Scientist II			HR		\$108	\$0	
Sr Engineer/Sci I			HR	16	\$124	\$1,984	
Sr Engineer/Sci II			HR		\$131	\$0	
Principal Engineer/Scientist			HR	16	\$143	\$2,290	
1. Labor							
Items			Unit	Qty	Cost	Extension	Assumptions
Number of sampling events	8	,					
Assumes sampling rate of	8	wells/day					
Number of wells sampled	8	wells					
1 Labor and expenses for post-injection moni	toring.						

Markup on Subs Project Management Post-Injection Monitoring Subtotal

\$90 \$1,598 1**0**% \$24,000

15%

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

1 Labor to design system					
tems	Unit	Qty	Cost	Extension	Assumptions
1. Labor					
Principal Engineer/Scientist	HR	60	\$174	\$10,440	
Sr Engineer/Sci II	HR		\$145	\$0	
Sr Engineer/Sci I	HR	120	\$135	\$16,200	
Sr Project Engineer/Scientist II	HR		\$115	\$0	
Sr Project Engineer/Scientist I	HR	150	\$98	\$14,700	
Project Engineer/Scientist	HR		\$85	\$0	
Engineer/Scientist	HR	75	\$68	\$5,100	
	Labo	r Markup	0%	\$0	
	Project Mana	agement	10%	\$4,644	
	Full-Scale ISCO Design		\$51,100		

RCRA Corrective Action Corrective Measures Study

RACER Plants 2, 3, and 6

Lansing, Michigan

development. Geologist to oversee drillin	ng and development.					
2 Drilling	40.5					
Treatment depth	10 ft					
Treatment thickness	5 ft 0.1					
Mobile porosity Injection well ROI	10 ft					
Injection well volume per well	1175 gal					
Injection Area:	4200 ft ²					
Number of Is	12 wells					
IW Well Depth	10 ft					
Number of Shallow MWs	0 wells					
Shallow MW Well Depth	15 ft					
Number of Deep MWs	0 wells					
Deep MW Well Depth	25 ft					
Drilling rate	50 ft/day					
Injection wells are 2" diameter with 5' SS						
Monitoring wells are 2" diameter with 5' F	VC screens					
3 Other PID rental for drilling (not needed for well	development)					
Survey new injection and monitoring well						
Hours per well for setup/decon/move	s 1 hr					
Hours per well for development	1.5 hr					
ems		Unit	Qty	Cost	Extension	Assumptions
Labor					-	-
Principal Engineer/Scientist		HR	7	\$143	\$1,002	
Sr Engineer/Sci II		HR	44	\$131	\$0	
Sr Engineer/Sci I Sr Project Engineer/Scientist II		HR HR	11	\$124 \$108	\$1,364 \$0	
Sr Project Engineer/Scientist II		пк		\$108	\$0	
						Coordination,
Sr Project Engineer/Scientist I		HR	21	\$98	\$2,048	Contracting, Field
						Support
Project Engineer/Scientist		HR		\$89	\$0	
Engineer/Scientist		HR	41	\$73	\$2,999	Field 12 hrs/day, 1 da utility located and KO Meeting
. ARCADIS Expenses						weeting
Field vehicle		DAY	4	\$115	\$460	
Mileage		MI	240	\$0.45	\$108	
Meals		DAY	4	\$50	\$200	
Hotel		DAY	3	\$120	\$360	
PPE		DAY	4	\$25	\$100	
PID		DAY	4	\$75	\$300	
Subcontractor Drilling					.	1
Mob/Demob		ls	1	\$1,200	\$1,200	
4" x 6" Sonic Drilling with Continuous Sa		ft #	120	\$32	\$3,840	
7" x 8" Sonic Drilling with Continuous San Sonic Bedrock Drilling	npilng	ft ft	0	\$45 \$60	\$0 \$0	
2" PVC Well Installation (Labor and Mate	rials)	ft ft	60	\$60 \$16	\$0 \$960	
2" x 5' SS Screen (Labor and Materials)		each	12	\$350	\$4,200	
Development		hr	18	\$175	\$3,150	
Well Completions		each	12	\$300	\$3,600	
Drums		each	5	\$60	\$300	
Move, Setup, Decon, IDW Handling (son	ic)	hr	12	\$325	\$3,900	
Stand-By		hr		\$400	\$0	
Other		ا سبام	- ·	0400	* =00	1
IDW - Disposal Soil		drum	5	\$100 \$100	\$500 \$300	
IDW - Disposal Water		drum	3	\$100	\$300	Assume 20 drums por
IDW - Transportation		trip	1	\$200	\$200	Assume 20 drums per trip
Survey new wells		LS	1	\$500	\$500	-
			r Markup	0%	\$0	
	Markup on A	RCADIS E	xpenses	15%	\$229	
	•	Markup o oject Mana		15% 10%	\$3,398 \$741.26	

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6

Lansing, Michigan

Full-Scale Chemical Injection					
1 Labor and expenses includes personnel to perform the injection	on, two en	igineers fu	li time		
2 Materials					
	wells		Persulfate Con		50 g/L
	5 ft		Persulfate Mas		7,093 lbs
Injection Well ROI 10) ft			ydrate Concentrati	
Estimated Mobile Porosity 0.1		Ferrous S	Sulfate Heptah	ydrate Mass	177 lbs
Injection Volume 1175	5 gal	Citric Acie	d Concentratio	on	0.86 g/L
Estimated flow rate 3	3 gpm	Citric Acie	d Mass		121 lbs
Total Injection volume 17,000) gal				
Daily injection time 10) hrs per c	day			
Number of injected simultaneously 6	s wells				
	2 days				
	days				
ltems	Unit	Qty	Cost	Extension	Assumptions
1. Labor	•				
Principal Engineer/Scientist	HR	8	\$143	\$1,145	
Sr Engineer/Sci II	HR		\$131	\$0	
Sr Engineer/Sci I	HR	19	\$124	\$2,356	Field Support
Sr Project Engineer/Scientist II	HR	13	\$124	\$2,330	Field Support
	ארז		φιυο	φυ	Coordination, field
Sr Project Engineer/Scientist I	HR	26	\$98	\$2,536	support
Project Engineer/Scientist	HR	52	\$89	\$4,630	Field Injection, setup/tare down
Engineer/Scientist	HR		\$73	\$0	[
2a. ARCADIS Expenses					
Field vehicle	DAY	5	\$115	\$575	
Mileage	MI	300	\$0.45	\$135	
Meals	DAY	5	\$50	\$250	
Hotel	DAY	4	\$120	\$480	
Level D PPE	DAY	5	\$25	\$125	
2c. Materials	Bitt	Ũ	Ψ20	ψ120	
Sodium Persulfate	LB	7,093	\$1.41	\$10,001	
Citric Acid	BAG	3	\$113.00	\$339	
Ferrous Sulfate	LB	200	\$4.55	\$910	
Deuterium oxide	LD	200	\$4.55 \$222	\$910	
Chemical freight and tax	LS	1	\$2,250	\$2,250	
Deuterium oxide lab analysis	EACH		\$30	\$0	
City Permitting, hydrant tap, flow meter	DAY	5	\$100	\$520	
Utilities - water	GAL	17,000	\$0.03	\$510	
Meters: cond, WL, pump	DAY	5	\$500	\$2,600	
Transducers	EACH	6	\$1,000	\$6,000	
Field Sodium Permanganate testing kits	EACH	2	\$100	\$200	
Replacement part/misc supplies	LS	1	\$1,000	\$1,000	
3. Subcontractor					
Water Tank/Truck	LS	3	\$2,000	\$6,000	
Injection Trailer	DAY	3	\$4,000	\$12,000	
		r Markup	0%	\$0	
Markup on A	RCADIS	Expenses	15%	\$3,884	
p		on Subs	15%	\$2,700	
Pro	•	agement	10%	\$1,067	
Chemical Injection #1 (%	•	•	100%	\$63,000	
Chemical Injection #2 (%		,	100 %	\$63,000	
Chemical Injection #3 (%			100 /0		
Chemical Injection #3 (% Chemical Injection #4 (%	•	,		\$0 \$0	
Chemical injection #4 (%	-	Subtotal		\$0 \$126.000	
	injectior	JUDIOIAI		\$126,000	

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6

Lansing, Michigan

Post-Injection Monitoring							
1 Labor and expenses for post-injection monit	oring.						
Number of wells sampled	8	wells					
Number of oxidant events	8	events					
Number of VOC/Metals sampling events	1	events					
Assumes sampling rate of	8	wells/day	for oxidar	nt			
Assumes sampling rate of	8	wells/day	for VOCs				
tems			Unit	Qty	Cost	Extension	Assumptions
1. Labor							
Principal Engineer/Scientist			HR		\$143	\$0	
Sr Engineer/Sci II			HR	2	\$131	\$263	
Sr Engineer/Sci I			HR	10	\$124	\$1,240	
Sr Project Engineer/Scientist II			HR	20	\$108	\$2,162	
Sr Project Engineer/Scientist I			HR	30	\$98	\$2,926	
Project Engineer/Scientist			HR		\$89	\$0	
Engineer/Scientist			HR	108	\$73	\$7,899	
2. ARCADIS Expenses			-				
Field vehicle			DAY	9	\$115	\$1,035	
Mileage			MI	1080	\$0.45	\$486	
Meals			DAY	9	\$50	\$450	
Hotel			DAY	8	\$120	\$960	
Level D PPE			DAY	9	\$25	\$225	
Sampling equipment			LS	9	\$250	\$2,250	
3. Laboratory							
Lab- VOCs 8260			EACH	8	\$75	\$600	
Lab- Metals 6010			EACH	8	\$120	\$960	
Field analysis - Permanganate			EACH	64	\$10	\$640	
				r Markup	0%	\$0	
	Ma	rkup on AF		•	15%	\$811	
			•	on Subs	15%	\$330	
			ject Mana		10%	\$1,449	
Post-Injectio	n Moni					\$24,700	
				njections		2	
	Post-l	njection Me	onitoring	Subtotal		\$49,400	
				P	lot/Design:	\$173,000	
Full-Scale Well	Install	ation/Injec	tion/Post		0	\$212,000	
	·····				=	<i>\</i>	
				ISC	O Total:	\$390,000	
						+,	

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

ISCO Cost Assumptions:

- Base cost assumes pilot test of 2 injection wells and full-scale injection of 12 wells
- Injection Wells installed to a depth of 80 feet with 10 foot treatment interval (70-80 ft)
- 33 Injection Wells
- Assume pilot test wells will be utilized in full-scale system operation
- Sonic drilling for all wells
- Cost estimates are engineering estimates, +/- 30 to 50 percent

ems	Unit	Qty	Cost	Extension	Assumptions
1. Labor					
Principal Engineer/Scientist	HR	30	\$143	\$4,293	
Sr Engineer/Sci II	HR		\$131	\$0	
Sr Engineer/Sci I	HR	60	\$124	\$7,441	
Sr Project Engineer/Scientist II	HR		\$108	\$0	
Sr Project Engineer/Scientist I	HR	120	\$98	\$11,702	
Project Engineer/Scientist	HR		\$89	\$0	
Engineer/Scientist	HR	60	\$73	\$4,388	
	Lat	Labor Markup			
	Project Ma	inagement	10%	\$2,783	

Permitting, Work Plan Subtotal

\$31,000

\$8,900

Baseline Monitoring		
1 Labor and expenses include baselin	e monitoring o	f 8 wells (2 new Dose Response, 2 new Down Gradient Wells and 4 existing MWs)
Assumes sampling rate of	4	wells/day
2 Subs		

2	Subs	

Laboratory cost for:	8 wells					
	1 QA/QC					
ems	. 4,740	Unit	Qty	Cost	Extension	Assumptions
I. Labor					ł – – – ł –	
Principal Engineer/Scientist		HR		\$143	\$0	
Sr Engineer/Sci II		HR	4	\$131	\$526	
Sr Engineer/Sci I		HR	4	\$124	\$496	
Sr Project Engineer/Scientist II		HR		\$108	\$0	
Sr Project Engineer/Scientist I		HR	8	\$98	\$780	
Project Engineer/Scientist		HR		\$89	\$0	
Engineer/Scientist		HR	24	\$73	\$1,755	
2. ARCADIS Expenses					· ·	
Field vehicle		DAY	2	\$115	\$230	
Mileage		MI	120	\$0.45	\$54	
Meals		DAY	2	\$50	\$100	
Hotel		DAY	1	\$120	\$120	
PPE		DAY	2	\$25	\$50	
Peristaltic Pump		DAY	2	\$35	\$70	
Water Level Meter		DAY	2	\$37	\$74	
Turbidity Meter		DAY	2	\$20	\$40	
Tubing		LS	2	\$50	\$100	
3. Subcontractor		• • •	•		· · · · ·	
Lab- VOCs 8260		EACH	9	\$125	\$1,125	
Lab- Metals and Na, Al, Mn 6010		EACH	9	\$150	\$1,350	
Lab- Mercury 245.1		EACH	9	\$25	\$225	
Lab- Sulfate SM 4500 SO4-D		EACH	9	\$15	\$135	
Lab- TDS SM 2540C		EACH	9	\$20	\$180	
Lab- Fe 200.7		EACH	9	\$10	\$90	
Lab- Alkalinity 310.1		EACH	9	\$20	\$180	
Lab- TOC 9060		EACH	9	\$20	\$180	
		Lat	oor Markup	0%	\$0	
	Markup on ARCADIS Expenses		Expenses	15%	\$126	
	Markup on Subs Project Management			15%	\$520	
				10%	\$356	

Baseline Monitoring Subtotal

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6

Lansing, Michigan

1 Labor and expenses include oversight						
development. Geologist to oversee dri	ling and developmen	t.				
2 Drilling Treatment depth	80 ft					
•						
Treatment thickness	10 ft					
Mobile porosity Injection well ROI	0.1 12.5 ft					
Injection well volume per well Number of IWs	3672 gal 2 wells					
IW Well Depth	2 wens 80 ft					
Number of DRWs	2 wells	Installed	at expected I			
Shallow MW Well Depth	80 ft	Installeu	al expected i			
Number of Downgradient MWs	2 wells					
Downgradient Well Depth	80 ft					
Drilling rate	80 ft/day					
Injection wells are 2" diameter with 10'	,					
Monitoring wells are 2" diameter with 10						
3 Other	51 00 30100113					
PID rental for drilling (not needed for w	ell development)					
Survey new injection and monitoring we						
Hours per well for setup/decon/move	1 hr					
Hours per well for development	1.5 hr					
Items		Unit	Qty	Cost	Extension	Assumptions
1. Labor						
Principal Engineer/Scientist		HR	13	\$143	\$1,860	
Sr Engineer/Sci II		HR		\$131	\$0	
Sr Engineer/Sci I		HR	21	\$124	\$2,604	
Sr Project Engineer/Scientist II		HR		\$108	\$0	
Sr Project Engineer/Scientist I		HR	42	\$98	\$4,096	Coordination, Contracting,
Project Engineer/Scientist		HR		\$89	\$0	
Engineer/Scientist		HR	84	\$73	\$6,144	Field 12 hrs/day, 1 day utility
2. ARCADIS Expenses						
Field vehicle		DAY	7	\$115	\$805	
Mileage		MI	420	\$0.45	\$189	
Meals		DAY	7	\$50	\$350	
Hotel		DAY	6	\$120	\$720	
PPE		DAY	7	\$25	\$175	
PID		DAY	7	\$75	\$525	
3. Subcontractor Drilling						-
Mob/Demob		ls	1	\$1,200	\$1,200	
4" x 6" Sonic Drilling with Continuous S		ft	480	\$32	\$15,360	
7" x 8" Sonic Drilling with Continuous S	ampling	ft		\$45	\$0	
Sonic Bedrock Drilling		ft	0	\$60	\$0	
2" PVC Well Installation (Labor and Ma		ft	460	\$16	\$7,360	
2" x 10' SS Screen (Labor and Material	s)	each	2	\$450	\$900	-
Development		hr	9	\$175	\$1,575	-
Well Completions		each	6	\$300	\$1,800	-
Drums	(a)	each	17	\$60	\$1,020	
Move, Setup, Decon, IDW Handling (so	nic)	hr	6	\$325	\$1,950	
Stand-By		hr		\$400	\$0	
4. Other		drum	17	¢100	¢1 700	
IDW - Disposal Soil		drum	17 3	\$100 \$100	\$1,700 \$200	
IDW - Disposal Water		drum		\$100 \$200	\$300	Accumo 20 drumo por tria
IDW/ Tropoportetion		trip	1	\$200	\$200	Assume 20 drums per trip
IDW - Transportation		10	1	@E00		
IDW - Transportation Survey new wells		LS	1 Dor Markup	\$500	\$500	
	Markun a	Lal	oor Markup	0%	\$0	
	Markup o	Lai n ARCADIS	oor Markup Expenses	0% 15%	\$0 \$414.60	
	Markup o	Lai n ARCADIS Marku	oor Markup	0%	\$0	

Project Management Injection Test Well Drilling Subtotal

\$1,470 \$59,000

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6

Lansing, Michigan

Injection Test						
1 Labor and expenses includes personnel to	perform the injection	on.				
2 Materials	. ,					
Number of Injection Wells	2		Sodium Per	sulfate Conce	Intration	50 g/L
Estimated Mobile Porosity	0.1		Sodium Per	sulfate Mass		3,064 lbs
Radius of influence	12.5	ft	NaOH			40.0 g/L
Screen length	10		NaOH Mass			2,451 lbs
Injection Volume per well	3672		Mass of 25%			9,804 lbs
Total Injection Volume	7343	0	Density			10.66 lbs/gal
Estimated flow rate		gpm	Denety			
Wells Injected Simultaneously		wells				
Daily injection time		hrs/day				
Total injection time for one injection		days				
ems	10	Unit	Qty	Cost	Extension	Assumptions
. Labor		Unit	۳.	0000	Extended	
Principal Engineer/Scientist		HR	32	\$143	\$4,579	
Sr Engineer/Sci II		HR	52	\$131	\$0	
Sr Engineer/Sci I		HR	73	\$124	\$9,053	Field Support
Sr Project Engineer/Scientist II		HR	75	\$108	\$0 \$0	Field Support
Sr Project Engineer/Scientist I		HR	104	\$98	\$10,142	Coordination, field support
Project Engineer/Scientist		HR	208	\$89	\$18,520	Field Injection, setup/tare
Engineer/Scientist		HR	200	\$73	\$10,520	Tield Injection, Setup/tare
a. ARCADIS Expenses				Ψ/ 5	ΨŪ	
Field vehicle		DAY	18	\$115	\$2,070	
Mileage		MI	1080	\$0.45	\$486	
Meals		DAY	1080	\$0.45 \$50	\$900	
Hotel		DAT	10	\$30 \$120	\$2,040	
Level D PPE		DAT	17	\$25	\$450	
c. Materials		DAT	10	φ20	\$45U	
Sodium Persulfate		LB	3,064	\$1.41	¢4.000	
25% NaOH		LB	9.850	\$0.25	\$4,320 \$2,463	
		LB	- /	\$0.25 \$1,356	\$2,463	
Chemical freight and tax		DAY	1 21	\$1,356		
City Permitting, hydrant tap, flow meter					\$2,080	
Utilities - water Meters: cond, WL, pump		GAL	7,343	\$0.03	\$220	
		DAY	21	\$500	\$10,400	
Transducers		EACH	4	\$1,000	\$4,000	
Field Sodium Persulfate testing kits		EACH	100	\$10	\$1,000	
Replacement part/misc supplies		LS	1	\$1,000	\$1,000	
. Subcontractor						
Water Tank/Truck		LS	2	\$2,000	\$4,000	
Subcontractor Mob		LS	1	\$7,500	\$7,500	
Injection Sub		DAY	17	\$4,500	\$76,500	
	•• •		abor Markup	0%	\$0	
	Markup on		IS Expenses	15%	\$4,918	
	-		up on Subs	15%	\$13,200	
	F	lanagement	10%	\$4,229.51		

Project Management Injection Test Subtotal \$4,229.51 \$186,000

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Post-Injection Monitoring							
1 Labor and expenses for post-injection mo	nitorina						
Number of wells sampled	8	wells					
Assumes sampling rate of	4	wells/day					
Number of sampling events	8	oxidant					
Number of sampling events	-	3 VOCs					
Items		5 1005	Unit	Qty	Cost	Extension	Assumptions
1. Labor			•	<u>_</u> .,			
Principal Engineer/Scientist			HR	16	\$143	\$2,290	
Sr Engineer/Sci II			HR		\$131	\$0	
Sr Engineer/Sci I			HR	16	\$124	\$1,984	
Sr Project Engineer/Scientist II			HR		\$108	\$0	
Sr Project Engineer/Scientist I			HR	96	\$98	\$9,362	Coordination/data analysis
Project Engineer/Scientist			HR		\$89	\$0	
Engineer/Scientist			HR	192	\$73	\$14,043	Field Sampling
2. ARCADIS Expenses						•	· · · ·
Field vehicle			DAY	16	\$115	\$1,840	
Mileage			MI	1920	\$0.45	\$864	
Meals			DAY	16	\$50	\$800	
Hotel			DAY	0	\$120	\$0	
Level D PPE			DAY	16	\$25	\$400	
Field Sodium Persulfate testing kits			EACH	64	\$10	\$640	
Sampling equipment			LS	8	\$250	\$2,000	
3. Laboratory							
Lab- VOCs 8260			EACH	24	\$125	\$3,000	
			Lat	oor Markup	0%	\$0	
		Markup on		Expenses	15%	\$982	
			Marku	p on Subs	15%	\$450	
		P	roject Ma	inagement	10%	\$2,768	
	Pos	st-Injection	Monitorir	ng Subtotal		\$42,000	

ems	Unit	Qty	Cost	Extension	Assumptions
. Labor					
Principal Engineer/Scientist	HR	60	\$174	\$10,440	
Sr Engineer/Sci II	HR		\$145	\$0	
Sr Engineer/Sci I	HR	120	\$135	\$16,200	
Sr Project Engineer/Scientist II	HR		\$115	\$0	
Sr Project Engineer/Scientist I	HR	150	\$98	\$14,700	
Project Engineer/Scientist	HR		\$85	\$0	
Engineer/Scientist	HR	75	\$68	\$5,100	
•	Lab	or Markup	0%	\$0	

Project Management Full-Scale ISCO Design Subtotal \$4,644 \$51,100

10%

Appendix E Area 11 In-Situ Chemical Oxidation Cost Detail

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6

Lansing, Michigan

Full-Scale Well Drilling						
1 Labor and expenses include oversight of inj						
development. Geologist to oversee drilling	and development	•				
2 Drilling						
Treatment depth	80 ft					
Treatment thickness	10 ft					
Mobile porosity	0.1					
Injection well ROI	12.5 ft					
Injection well volume per well	3672 gal					
Number of IWs	31 wells					
IW Well Depth	80 ft					
Number of Shallow MWs	0 wells					
Shallow MW Well Depth	0 ft					
Number of Deep MWs	0 wells					
Deep MW Well Depth	0 ft					
Drilling rate	80 ft/day					
Injection wells are 2" diameter with 10' SS s	screens					
3 Other						
PID rental for drilling (not needed for well de	evelopment)					
Survey new injection and monitoring wells Hours per well for setup/decon/move	1 hr					
Hours per well for development	1.5 hr					
Items	1.5 11	Unit	Qty	Cost	Extension	Assumptions
1. Labor		Unit	હાપ્ર	0031	Extension	Assumptions
Principal Engineer/Scientist		HR	58	\$143	\$8,300	
Sr Engineer/Sci II		HR		\$131	\$0	
Sr Engineer/Sci I		HR	96	\$124	\$11,906	
Sr Project Engineer/Scientist II		HR		\$108	\$0	
Sr Project Engineer/Scientist I		HR	192	\$98	\$18,724	Coordination, Contracting,
Project Engineer/Scientist		HR		\$89	\$0	
Engineer/Scientist		HR	384	\$73	\$28,086	Field 12 hrs/day, 1 day utility
2. ARCADIS Expenses						
Field vehicle		DAY	32	\$115	\$3,680	
Mileage		MI	1920	\$0.45	\$864	
Meals		DAY	32	\$50	\$1,600	
Hotel		DAY	31	\$120	\$3,720	
PPE		DAY	32	\$25	\$800	
PID		DAY	32	\$75	\$2,400	
3. Subcontractor Drilling				#1 000	\$4,000	
Mob/Demob	ller er	ls	1	\$1,200	\$1,200	
4" x 6" Sonic Drilling with Continuous Samp 7" x 8" Sonic Drilling with Continuous Samp		ft ft	2480 0	\$32	\$79,360	
Sonic Bedrock Drilling	aing	ft	0	\$45 \$60	\$0 \$0	
2" PVC Well Installation (Labor and Materia	le)	ft	2170	\$00 \$16	\$34,720	
2" x 5' SS Screen (Labor and Materials)	115)	each	31	\$350	\$10,850	
Development		hr	46.5	\$330 \$175	\$8,138	
Well Completions		each	31	\$300	\$9,300	
Drums		each	87	\$60	\$5,220	
Move, Setup, Decon, IDW Handling (sonic)		hr	31	\$325	\$10,075	-
Stand-By		hr		\$400	\$0	
4. Other			ıI			1
IDW - Disposal Soil		drum	87	\$100	\$8,700	
IDW - Disposal Water		drum	3	\$100	\$300	
IDW - Transportation		trip	5	\$200	\$1,000	Assume 20 drums per trip
Survey new wells		LS	1	\$500	\$500	· ·
			bor Markup	0%	\$0	
	Markup on		S Expenses	15%	\$1,960	
		Markı	ip on Subs	15%	\$25,404	
				1370	φ 2 3,404	
	Full-Scale \	Project Ma	anagement	10%	\$6,701.53	

Appendix E Area 11 In-Situ Chemical Oxidation Cost Detail

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6

Lansing, Michigan

Full-Scale Chemical Injection						
1 Labor and expenses includes personnel to p	erform the injecti	on, two er	ngineers full ti	me		
2 Materials			-			
Number of Wells	33	s wells	Sodium Pers	ulfate Conce	ntration	50 g/L
Treatment Thickness	10) ft	Sodium Pers	ulfate Mass		50,901 lbs
Injection Well ROI	12.5		NaOH			40.0 g/L
Estimated Mobile Porosity	0.1		NaOH Mass			40,720 lbs
Injection Volume		3672 gal Mass of 25% NaOH				162,882 lbs
Estimated flow rate		gpm	Density		10.66 lbs/gal	
	122,000		Density			10.00 IDS/gai
Total Injection volume		-				
Daily injection time		hrs per d	ay			
Number of injected simultaneously		wells				
Total injection time for one injection		days				
Set up/Tare Down	1	days		_		
ems		Unit	Qty	Cost	Extension	Assumptions
. Labor				• • • •	• • • • •	
Principal Engineer/Scientist		HR	82	\$143	\$11,734	
Sr Engineer/Sci II		HR		\$131	\$0	
Sr Engineer/Sci I		HR	191	\$124	\$23,688	Field Support
Sr Project Engineer/Scientist II		HR		\$108	\$0	Field Support
Sr Project Engineer/Scientist I		HR	272	\$98	\$26,525	Coordination, field support
Project Engineer/Scientist		HR	544	\$89	\$48,438	Field Injection, setup/tare
Engineer/Scientist		HR		\$73	\$0	
a. ARČADIS Expenses				·		
Field vehicle		DAY	46	\$115	\$5,290	
Mileage		MI	2760	\$0.45	\$1,242	
Meals		DAY	46	\$50	\$2,300	
Hotel		DAY	45	\$120	\$5,400	
Level D PPE		DAY	46	\$25	\$1,150	
c. Materials		Ditt	10	Ψ 2 0	ψ1,100	
Sodium Persulfate		LB	50,901	\$1.41	\$71,770	
25% NaOH		LB	162,882	\$0.25	\$40.720	
Chemical freight and tax		LS	1	\$22,498	\$22,498	
City Permitting, hydrant tap, flow meter		DAY	54	\$100	\$5,440	
Utilities - water		GAL	122,000	\$0.03	\$3,660	
Meters: cond, WL, pump		DAY	54	\$500	\$27,200	
Transducers		EACH	54 4	\$300	. ,	
		-	-		\$4,000	
Field Sodium Persulfate testing kits		EACH	100	\$10	\$1,000	
Replacement part/misc supplies		LS	1	\$2,500	\$2,500	
Subcontractor					* • • • • *	I
Water Tank/Truck		LS	44	\$2,000	\$88,000	
Subcontractor Mobilization		LS	1	\$7,500	\$7,500	
Injection Trailer		DAY	44	\$4,000	\$176,000	
			bor Markup	0%	\$0	
	Markup on		S Expenses	15%	\$29,126	
		Markı	up on Subs	15%	\$40,725	
	I	Project Ma	anagement	10%	\$11,039	
Chamia	al Injection #1 (Malla)	1000/	¢657 000	

Chemical Injection #1 (% of Injection Wells) 100% \$657,000

Appendix E Area 11 In-Situ Chemical Oxidation Cost Detail

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Post-Injection Monitoring							
1 Labor and expenses for post-injection monitor	•						
Number of wells sampled	10	wells					
Number of oxidant events	8	events					
Number of VOC/Metals sampling events	1	events					
Assumes sampling rate of	10		for oxidan	t			
Assumes sampling rate of	4	wells/day	for VOCs				
tems			Unit	Qty	Cost	Extension	Assumptions
1. Labor							
Principal Engineer/Scientist			HR		\$143	\$0	
Sr Engineer/Sci II			HR	2	\$131	\$263	
Sr Engineer/Sci I			HR	10	\$124	\$1,240	
Sr Project Engineer/Scientist II			HR	20	\$108	\$2,162	
Sr Project Engineer/Scientist I			HR	30	\$98	\$2,926	
Project Engineer/Scientist			HR		\$89	\$0	
Engineer/Scientist			HR	126	\$73	\$9,216	
2. ARCADIS Expenses							
Field vehicle			DAY	10.5	\$115	\$1,208	
Mileage			MI	1260	\$0.45	\$567	
Meals			DAY	10.5	\$50	\$525	
Hotel			DAY	9.5	\$120	\$1,140	
Level D PPE			DAY	10.5	\$25	\$263	
Sampling equipment			LS	10.5	\$250	\$2,625	
3. Laboratory							
Lab- VOCs 8260			EACH	10	\$75	\$750	
Lab- Metals 6010			EACH	10	\$120	\$1,200	
Field analysis - Persulfate			EACH	80	\$10	\$800	
			Lal	oor Markup	0%	\$0	

Markup on ARCADIS Expenses 15% Markup on Subs 15% Project Management 10% Post-Injection Monitoring Subtotal Per Injection

\$413 \$1,581 \$27,900

\$949

Pilot/Design:	\$378,000
Full-Scale Well Installation:	\$284,000
Full-Scale ISCO Injection:	\$657,000 per event

Post-Injection Monitoring: \$27,900 per event

ISCO Total for 1 Full-Scale Injection: \$1,350,000

ISCO Total for 3 Full-Scale Injections: \$2,720,000

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Area 5-2 LNAPL Skimming Cost Assumptions:

· Investigation to refine vertical and horizontal treatment area will be conducted, cost for investigation is not included as a separate line item as it is assumed it will be covered by the cost savings from reducing the treatment area.

· Base cost assumes pilot test of 2 LNAPL recovery wells, 6 monitoring wells, and full-scale installation of 160 wells

• Recovery Wells installed to a max depth of 24 feet with 10 foot treatment interval

- Assume average well depth of 18 feet with 10 foot treatment interval (14-24 or 2-12 depending on
- location within LNAPL plume)
- Recover Wells installed for full coverage with 10 ft ROI
 Assume skimmers will be installed in half the recovery wells and rotated around once LNAPL is no longer recoverable on a well by well basis
- · Assumes 30 yrs of operation to reduce source mass concentrations and extract recoverable LNAPL. Not expected to reach MCLs.
- · Assume pilot test wells will be utilized in full-scale system operation

Sonic drilling for all wells

• Cost estimates are engineering estimates, +/- 30 to 50 percent

Pilot Test Work Plan and undate Health and Safety Plan

tems	Unit	Qty	Cost	Extension	Assumptions
1. Labor					
Principal Engineer/Scientist	HR	20	\$143	\$2,862	
Sr Engineer/Sci II	HR		\$131	\$0	
Sr Engineer/Sci I	HR	40	\$124	\$4,961	
Sr Project Engineer/Scientist II	HR		\$108	\$0	
Sr Project Engineer/Scientist I	HR	80	\$98	\$7,802	
Project Engineer/Scientist	HR		\$89	\$0	
Engineer/Scientist	HR	40	\$73	\$2,925.60	
	Labor N	/larkup	0%	\$0	

Project Management 10% Work Plan Subtotal

\$1,855 \$21,000

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

IDW - Disposal Water IDW - Transportation Survey new wells Markup on AR	trip LS Labor M		\$200 \$500 0% 15%	\$200 \$500 \$0 \$184	per trip
IDW - Transportation	LS	1	\$500	\$500	
IDW - Transportation		1			
· · · · ·	trin	1	\$200	\$200	Assume 20 drums
IDW - Disposal Water		-	÷.00		Assume 20 drums
	drum	2	\$100	\$200	1
4. Other IDW - Disposal Soil	drum	6	\$100	\$600	1
Stand-By	hr		\$400	\$0	1
Move, Setup, Decon, IDW Handling (sonic)	hr	8	\$325	\$2,600	
Drums	each	6	\$60	\$360	
Well Completions	each	8	\$300	\$2,400	
Development	hr	12	\$175	\$2,100	
4" x 10' SS Screen (Labor and Materials)	each	2	\$1,300	\$2,600	1
4" PVC Well Installation (Labor and Materials)	ft	16	\$24	\$384	1
2" x 10' SS Screen (Labor and Materials)	each	48	\$700	\$768 \$4,200	1
Sonic Bedrock Drilling 2" PVC Well Installation (Labor and Materials)	ft ft	0 48	\$60 \$16	\$0 \$768	
7" x 8" Sonic Drilling with Continuous Sampling	ft #	36	\$45 \$60	\$1,620	
4" x 6" Sonic Drilling with Continuous Sampling	ft	108	\$32	\$3,456	l
Mob/Demob	ls	1	\$1,200	\$1,200	
3. Subcontractor Drilling				÷ .	1
PID	DAY	4	\$75	\$300	
PPE	DAY	4	\$25	\$100	
Hotel	DAY	3	\$120	\$360	
Meals	DAY	4	\$50	\$200	
Mileage	MI	240	\$0.45	\$108	1
Field vehicle	DAY	4	\$115	\$460	
2. ARCADIS Expenses					and ite meeting
Engineer/Scientist	HR	47	\$73	\$3,438	day utility located and KO Meeting
					Field 12 hrs/day, 1
Project Engineer/Scientist	HR		\$89	\$0	
Sr Project Engineer/Scientist I	HR	24	\$98	\$2,340	Contracting, Field Support
					Coordination,
Sr Project Engineer/Scientist II	HR	12	\$124 \$108	\$1,400 \$0	1
Sr Engineer/Sci I	HR	12	\$131	\$U \$1,488	1
Principal Engineer/Scientist Sr Engineer/Sci II	HR	ŏ	\$143 \$131	\$1,145 \$0	ł
1. Labor	HR	8	¢140	¢1 11E	1
Items	Unit	Qty	Cost	Extension	Assumptions
Hours per well for development 1.5 hr	11	0.0	0	Enter - '	A
Hours per well for setup/decon/move 1 hr					
Survey new injection and monitoring wells					
PID rental for drilling (not needed for well developme	nt)				
3 Other					
Monitoring wells are 2" diameter with 10' SS screens					
recovery wells are 4" diameter with 10' SS screens					
Drilling rate 50 ft/c	lay				
MW Well Depth 18 ft					
•	lls Installed	d at radi	al distances	from RW	
RW Well Depth 18 ft	110				
Recovery Well ROI 10 ft Number of RWs: 2 we	lle				
Treatment thickness 10 ft Recovery Well ROI 10 ft					
Treatment depth 18 ft	One we	II to 24 1	t, One well to	5 12 ft	
	_				
2 Drilling	iopinioni.				
development. Geologist to oversee drilling and devel 2 Drilling	lonment				
		n and			

Markup on Subs Project Management Pilot Test Well Drilling Subtotal

\$841

10%

\$38,000

1 Labor and expenses includes person	nel to perform installatio	n of recove	ery system, a	nd 12 months o	of O&M
tems	Uni	t Qty	Cost	Extension	Assumptions
. Labor					
Principal Engineer/Scientist	HR	22	\$143	\$3,148	
Sr Engineer/Sci II	HR		\$131	\$0	
Sr Engineer/Sci I	HR	54	\$124	\$6,697	Field Support
Sr Project Engineer/Scientist II	HR		\$108	\$0	
Sr Project Engineer/Scientist I	ЯН	108	\$98	\$10,532	Coordination, field support, data analysis
Project Engineer/Scientist	HR		\$89	\$0	
Engineer/Scientist	ян	216	\$73	\$15,798	2 days installation, 12 monthly O&M events, 4 troubleshooting events
a. ARCADIS Expenses					
Field vehicle	DA	Y 18	\$115	\$2,070	
Mileage	M	1080	\$0.45	\$486	
Meals	DA	Y 18	\$50	\$900	
Hotel	DA		\$120	\$480	
Level D PPE	DA	Y 18	\$25	\$450	
PID	DA	Y 18	\$75	\$1,350	
IP	DA	Y 18	\$37	\$666	
8. Subcontractor					
LNAPL Skimmers	LS	2	\$10,000	\$20,000	5K for Spill Buster, 3K for Solar Panels 2K for Skimmer Housing
Subcontractor Skimmer Installation	LS	1	\$8,000	\$8,000	
	Labo	or Markup	0%	\$0	
	Markup on ARCADIS	Expenses	15%	\$658	
	Markup	on Subs	15%	\$4,200	
	Project Man	10%	\$3,618		

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

1 Labor to design system					
Items	Unit	Qty	Cost	Extension	Assumptions
1. Labor					
Principal Engineer/Scientist	HR	60	\$174	\$10,440	
Sr Engineer/Sci II	HR		\$145	\$0	
Sr Engineer/Sci I	HR	120	\$135	\$16,200	
Sr Project Engineer/Scientist II	HR		\$115	\$0	
Sr Project Engineer/Scientist I	HR	240	\$98	\$23,520	
Project Engineer/Scientist	HR		\$85	\$0	
Engineer/Scientist	HR	120	\$68	\$8,160	
-	Labo	Markup	0%	\$0	
	Project Mana	gement	10%	\$5,832	
	Full-Scale Design	Subtotal		\$64,200	

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

ull-Scale Well Drilling					
1 Labor and expenses include oversight of injection well	installatio	n and			
development. Geologist to oversee drilling and develo	pment. we	ell.			
2 Assume one third of the waste would be TSCA Regula	ted				
3 Drilling					
Treatment depth 18 ft					
Treatment thickness 10 ft					
Recovery Well ROI 10 ft					
Recovery Well Area 50,000 ft ²					
Number of RWs: 158 wells	3				
RW Well Depth 18 ft					
•	s Installer	d at radi	al distances	from RW	
MW Well Depth 18 ft	5 motanet	aaraaa			
Drilling rate 50 ft/da	у				
recovery wells are 4" diameter with 10' SS screens					
Monitoring wells are 2" diameter with 10' SS screens					
4 Other					
PID rental for drilling (not needed for well development	3				
Survey new injection and monitoring wells	,				
Hours per well for setup/decon/move 1 hr					
Hours per well for development 1.5 hr	T	-			
ems	Unit	Qty	Cost	Extension	Assumptions
Labor					
Principal Engineer/Scientist	HR	105	\$143	\$15,026	
Sr Engineer/Sci II	HR		\$131	\$0	Γ
Sr Engineer/Sci I	HR	174	\$124	\$21,579	
Sr Project Engineer/Scientist II	HR		\$108	\$0	1
or roject Engineen/odentist II			ψιυσ	φυ	Coordination
			0.5-5	A00	Coordination,
Sr Project Engineer/Scientist I	HR	348	\$98	\$33,937	Contracting, Field
					Support
Project Engineer/Scientist	HR		\$89	\$0	
					Field 12 hrs/day,
Engineer/Scientist	HR	695	\$73	\$50,832	day utility located
Engineen/eelentiet		000	ψισ	φ00,002	and KO Meeting
ARCADIS Expenses					and no meeting
	DAV	50	6445	#0.070	
Field vehicle	DAY	58	\$115	\$6,670	
Mileage	MI	3480	\$0.45	\$1,566	
Meals	DAY	58	\$50	\$2,900	
Hotel	DAY	57	\$120	\$6,840	
PPE	DAY	58	\$25	\$1,450	
PID	DAY	58	\$75	\$4,350	
	DAT	50	\$75	φ 4 ,350	
Subcontractor Drilling	—		.	* / * *	T
Mob/Demob	ls	1	\$1,200	\$1,200	
4" x 6" Sonic Drilling with Continuous Sampling	ft	0	\$32	\$0	
7" x 8" Sonic Drilling with Continuous Sampling	ft	2844	\$45	\$127,980	
Sonic Bedrock Drilling	ft	0	\$60	\$0	
2" PVC Well Installation (Labor and Materials)	ft	0	\$16	\$0	
2" x 10' SS Screen (Labor and Materials)	each	0	\$700	\$0	
4" PVC Well Installation (Labor and Materials)	ft	1264	\$24	\$30,336	
4" x 10' SS Screen (Labor and Materials)	each	158	\$1,300	\$205,400	
Development	hr	237	\$175	\$41,475	
Well Completions	each	158	\$300	\$47,400	Γ
Drums	each	176	\$60	\$10,560	1
Move, Setup, Decon, IDW Handling (sonic)	hr				
		158	\$325	\$51,350	
Stand-By	hr		\$400	\$0	1
Other			-		
IDW - Disposal Soil	drum	116	\$100	\$11,616	
IDW - Disposal Water	drum	23	\$100	\$2,310	
· · · · · · · · · · · · · · · · · · ·					Assume 20 drums
	trip	7	\$200	\$1,400	per trip
IDW - Transportation	unp	-			1P
			\$200	\$11 616	1
IDW - Transportation IDW - TSCA Disposal Soil	Drum	58	\$200	\$11,616	
			\$200	\$11,616	TSCA Regulated
IDW - TSCA Disposal Soil					TSCA Regulated Contaminated Lig
	Drum	58	\$200 \$1,000	\$11,616 \$5,940	Contaminated Liq
IDW - TSCA Disposal Soil	Drum	58			Contaminated Liq
IDW - TSCA Disposal Soil	Drum	58			Contaminated Liq
IDW - TSCA Disposal Soil	Drum	58			Contaminated Liq Disposal (per dru
IDW - TSCA Disposal Soil	Drum	58			Contaminated Liq Disposal (per dru Assume 10 drums
IDW - TSCA Disposal Soil	Drum	58			Contaminated Liq Disposal (per dru Assume 10 drum per trip, TSCA
IDW - TSCA Disposal Soil IDW - TSCA Disposal Water	Drum	6	\$1,000	\$5,940	Contaminated Liq Disposal (per drui Assume 10 drum per trip, TSCA Regulated
IDW - TSCA Disposal Soil	Drum	58			Contaminated Liq Disposal (per drui Assume 10 drum per trip, TSCA Regulated Contaminated Liq
IDW - TSCA Disposal Soil	Drum	6	\$1,000	\$5,940	Contaminated Liq Disposal (per drun Assume 10 drums per trip, TSCA Regulated Contaminated Liq
IDW - TSCA Disposal Soil IDW - TSCA Disposal Water	Drum	6	\$1,000	\$5,940	Contaminated Liq Disposal (per drun Assume 10 drum per trip, TSCA Regulated Contaminated Liq Transportation (u
IDW - TSCA Disposal Soil IDW - TSCA Disposal Water	Drum	6	\$1,000	\$5,940	Contaminated Liq Disposal (per drun Assume 10 drum per trip, TSCA Regulated Contaminated Liq Transportation (u 10 drums Lansing
IDW - TSCA Disposal Soil	Drum	6	\$1,000	\$5,940	Contaminated Liq Disposal (per drun Assume 10 drums per trip, TSCA Regulated Contaminated Liq Transportation (u
IDW - TSCA Disposal Soil IDW - TSCA Disposal Water IDW - TSCA Transportation	Drum Drum Trip	58 6 7	\$1,000 \$200	\$5,940 \$1,400	Contaminated Liq Disposal (per drun Assume 10 drum per trip, TSCA Regulated Contaminated Liq Transportation (u 10 drums Lansing
IDW - TSCA Disposal Soil	Drum Drum Trip LS	58 6 7	\$1,000 \$200 \$500	\$5,940 \$1,400 \$500	Contaminated Liq Disposal (per drun Assume 10 drum per trip, TSCA Regulated Contaminated Liq Transportation (u 10 drums Lansing
IDW - TSCA Disposal Soil IDW - TSCA Disposal Water IDW - TSCA Transportation Survey new wells	Drum Drum Trip LS Labor I	58 6 7 1 Markup	\$1,000 \$200 \$500 0%	\$5,940 \$1,400 \$500 \$0	Contaminated Liq Disposal (per drun Assume 10 drums per trip, TSCA Regulated Contaminated Liq Transportation (u 10 drums Lansing
IDW - TSCA Disposal Soil IDW - TSCA Disposal Water IDW - TSCA Transportation Survey new wells Markup on ARC	Drum Drum Trip LS Labor I CADIS Ex	58 6 7 1 Markup penses	\$1,000 \$200 \$500 0% 15%	\$5,940 \$1,400 \$500 \$0 \$2,914	Contaminated Liq Disposal (per drur Assume 10 drums per trip, TSCA Regulated Contaminated Liq Transportation (u 10 drums Lansing
IDW - TSCA Disposal Soil IDW - TSCA Disposal Water IDW - TSCA Transportation Survey new wells Markup on ARC	Drum Drum Trip LS Labor I	58 6 7 Markup penses n Subs	\$1,000 \$200 \$500 0%	\$5,940 \$1,400 \$500 \$0	Contaminated Liq Disposal (per drun Assume 10 drum per trip, TSCA Regulated Contaminated Liq Transportation (u 10 drums Lansing

Skimmer Installation	nal to parform inst	llation	f room	n ovetem		
1 Labor and expenses includes person	nel to perform insta				Extension	A
tems		Unit	Qty	Cost	Extension	Assumptions
1. Labor				.	.	T
Principal Engineer/Scientist		HR	54	\$143	\$7,727	
Sr Engineer/Sci II		HR		\$131	\$0	
Sr Engineer/Sci I		HR	135	\$124	\$16,743	Field Support
Sr Project Engineer/Scientist II		HR		\$108	\$0	
Sr Project Engineer/Scientist I		HR	270	\$98	\$26,330	Coordination, field support, data analysis
Project Engineer/Scientist		HR		\$89	\$0	
Engineer/Scientist		HR	540	\$73	\$39,496	Assume installatior of 2 Skimmers per day, plus 5 days setup/tare down/misc
2a. ARCADIS Expenses				A =		
Field vehicle		DAY	45	\$115	\$5,175	
Mileage		MI	2700	\$0.45	\$1,215	
Meals		DAY	45	\$50	\$2,250	
Hotel		DAY	4	\$120	\$480	
Level D PPE		DAY	45	\$25	\$1,125	
PID		DAY	45	\$75	\$3,375	
IP		DAY	45	\$0	\$0	
3. Subcontractor		-				
LNAPL Skimmers		LS	79	\$10,000	\$790,000	5K for Spill Buster, 3K for Solar Panels 2K for Skimmer Housing
Subcontractor Skimmer Installation		LS	1	\$316,000	\$316,000	
			Markup	0%	\$0	
	Markup on ARC	ADIS Ex	penses	15%	\$1,537	
	Ma	arkup oi	n Subs	15%	\$165,900	
	Projec Skimmer Instal	t Manag lation S		10%	\$9,030 \$1,387,000	

1 Labor and expenses includes personnel to perform			0	Esteral	A
ems Labor	Unit	Qty	Cost	Extension	Assumptions
Principal Engineer/Scientist	HR	20	\$143	\$2,862	
Sr Engineer/Sci II	HR	20	\$131	<u>\$2,802</u> \$0	
Sr Engineer/Sci I	HR	48	\$124	\$5,953	Field Support
Sr Project Engineer/Scientist II	HR	-10	\$108	\$0	
er rigeet Engineer/edentiet in			φ100	ψυ	Coordination, field
Sr Project Engineer/Scientist I	HR	96	\$98	\$9,362	support, data analysis
Project Engineer/Scientist	HR		\$89	\$0	
Engineer/Scientist	HR	192	\$73	\$14,043	Monthly O&M for 12 months, 4 troubleshooting visits
ARCADIS Expenses					
Field vehicle	DAY	16	\$115	\$1,840	
Mileage	MI	960	\$0.45	\$432	
Meals	DAY	16	\$50	\$800	
Hotel	DAY	4	\$120	\$480	
Level D PPE	DAY	16	\$25	\$400	
PID	DAY	16	\$75	\$1,200	
IP	DAY	16	\$37	\$592	
Misc. Repairs	LS	1	\$15,000	\$15,000	
Subcontractor					
TSCA Regulated LNAPL Disposal	Drum	19	\$1,000	\$19,000	Assume 0.12 gallor per well per day for 30% of the skimmers based or ASTM E2856, TSC Regulated Contaminated Liqu Disposal (per drum
TSCA Regulated LNAPL Transportation	Trip	1	\$200	\$200	Assume 10 drums per trip, TSCA Regulated Contaminated Liqu Transportation (up 10 drums Lansing t MDI)
		Markup	0%	\$0	
Pr	Years of Ope	n Subs ement al O&M	15% 15% 10%	\$862 \$2,880 \$3,222 \$80,000 30 \$2,400,000	
Full-Scale Well Install	-	em ins	t/Design: stallation: cle O&M:	\$204,000 \$2,181,000 \$2,400,000)

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Area 17 LNAPL Skimming Cost Assumptions:

- Investigation to refine vertical and horizontal treatment area will be conducted, cost for investigation is not included as a separate line item as it is assumed it will be covered by the cost savings from reducing the treatment area.
- Base cost assumes pilot test of 2 LNAPL recovery wells, 6 monitoring wells, and full-scale installation of 49 wells
- Recovery Wells installed to a max depth of 22 feet with 10 foot treatment interval (12-22 ft)
- · Recover Wells installed for full coverage with 10 ft ROI
- Assume skimmers will be installed in half the recovery wells and rotated around once LNAPL is no longer recoverable on a well by well basis
- Assumes 30 yrs of operation to reduce source mass concentrations and extract recoverable LNAPL. Not expected to reach MCLs.
- · Assume pilot test wells will be utilized in full-scale system operation
- Sonic drilling for all wells
- Cost estimates are engineering estimates, +/- 30 to 50 percent

tems	Unit	Qty	Cost	Extension	Assumptions
1. Labor					
Principal Engineer/Scientist	HR	20	\$143	\$2,862	
Sr Engineer/Sci II	HR		\$131	\$0	
Sr Engineer/Sci I	HR	40	\$124	\$4,961	
Sr Project Engineer/Scientist II	HR		\$108	\$0	
Sr Project Engineer/Scientist I	HR	80	\$98	\$7,802	
Project Engineer/Scientist	HR		\$89	\$0	
Engineer/Scientist	HR	40	\$73	\$2,925.60	
	Labor	Markup	0%	\$0	

Project Management Work Plan Subtotal

\$1,855 \$21,000

10%

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6

Lansing, Michigan

and d at radial			
d at radial			
	distances fro	om RW	
Qty	Cost	Extension	Assumptions
<u>y</u>			
9	\$143	\$1,288	
	\$131	\$0	+
14	\$124	\$1,736	+
14	\$108	\$0	-
	\$100	ψυ	Coordination,
28	\$98	\$2,731	Contracting, Field
20	\$90	φ2,731	0.
	0.02	¢0	Support
	\$89	\$0	Field 10 hrs/day, 1 d
	A 70	# 4 000	Field 12 hrs/day, 1 d
55	\$73	\$4,023	utility located and KO
	í		Meeting
	.	A -7-	
5	\$115	\$575	
300	\$0.45	\$135	
5	\$50	\$250	_
4	\$120	\$480	
5	\$25	\$125	
5	\$75	\$375	
			-
1	\$1,200	\$1,200	
132	\$32	\$4,224	
44	\$45	\$1,980	
0	\$60	\$0	
72	\$16	\$1,152	
6	\$700	\$4,200	
24	\$24	\$576	
2	\$1,300	\$2,600	1
12	\$175	\$2,100	1
8	\$300	\$2,400	1
8	\$60	\$480	1
8	\$325	\$2,600	+
+	\$400	\$0	+
	ψ100	Ψ0	
8	\$100	\$800	
3	-		+
<u> </u>	\$100	\$300	Assume 20 drums n
1	\$200	\$200	Assume 20 drums p
1	\$500	\$500	trip
r Markun		•	
or Markup			
Expenses			
Expenses on Subs	4001		
	Expenses on Subs	Expenses 15%	Expenses 15% \$235 on Subs 15% \$3,797

Pilot Test						
1 Labor and expenses includes personn	el to perform installation	of rec	overy s	ystem, and	12 months of Oa	&M
tems	Ur	nit	Qty	Cost	Extension	Assumptions
1. Labor	·					•
Principal Engineer/Scientist	Н	R	22	\$143	\$3,148	
Sr Engineer/Sci II	Н	R		\$131	\$0	
Sr Engineer/Sci I	Н	R	54	\$124	\$6,697	Field Support
Sr Project Engineer/Scientist II	Н	R		\$108	\$0	
Sr Project Engineer/Scientist I	н	R	108	\$98	\$10,532	Coordination, field support, data analysi
Project Engineer/Scientist	Н	R		\$89	\$0	
Engineer/Scientist	н	R	216	\$73	\$15,798	2 days installation, 12 monthly O&M events 4 troubleshooting events
2a. ARCADIS Expenses						
Field vehicle	DA	٩Y	18	\$115	\$2,070	
Mileage	N		1080	\$0.45	\$486	
Meals	DA		18	\$50	\$900	
Hotel	DA	٩Y	4	\$120	\$480	
Level D PPE	DA	٩Y	18	\$25	\$450	
PID	DA	٩Y	18	\$75	\$1,350	
IP	DA	٩Y	18	\$37	\$666	
3. Subcontractor						-
LNAPL Skimmers	L	s	2	\$10,000	\$20,000	5K for Spill Buster, 3 for Solar Panels, 2K for Skimmer Housing
Subcontractor Skimmer Installation	L	S	1	\$8,000	\$8,000	
	La	abor N	larkup	0%	\$0	
	Markup on ARCAD	IS Exp	penses	15%	\$658	
	Mark	up on	Subs	15%	\$4,200	
	Project M Pilot T		ement ubtotal	10%	\$3,618 \$80,000	

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

1 Labor to design system					
tems	Unit	Qty	Cost	Extension	Assumptions
1. Labor					
Principal Engineer/Scientist	HR	45	\$174	\$7,830	
Sr Engineer/Sci II	HR		\$145	\$0	
Sr Engineer/Sci I	HR	90	\$135	\$12,150	
Sr Project Engineer/Scientist II	HR		\$115	\$0	
Sr Project Engineer/Scientist I	HR	180	\$98	\$17,640	
Project Engineer/Scientist	HR		\$85	\$0	
Engineer/Scientist	HR	90	\$68	\$6,120	
	Labor	Markup	0%	\$0	
	Project Manag	gement	10%	\$4,374	

Project Management Full-Scale Design Subtotal

\$4,374 \$48,200

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6

Lansing, Michigan

1 Labor and expenses include oversight of in			and			
development. Geologist to oversee drilling	and develop	ment. well.				
2 Drilling						
Treatment depth	22 ft					
Treatment thickness	10 ft					
Recovery Well ROI	10 ft					
Recovery Well Area	3,800 ft ²					
Number of RWs:	11 wells					
RW Well Depth	22 ft					
Number of MWs:	0 wells	Installed	at radial	distances fro	om R₩	
MW Well Depth	22 ft	motaneu	atriadiar			
Drilling rate	50 ft/day					
recovery wells are 4" diameter with 10' SS						
Monitoring wells are 2" diameter with 10' S						
3 Other	0 30100113					
PID rental for drilling (not needed for well d	ovelopment)					
Survey new injection and monitoring wells	evelopment)					
Hours per well for setup/decon/move	1 hr					
Hours per well for development	1.5 hr	110:4	04-	Cast	Extension	Accumptions
iems		Unit	Qty	Cost	Extension	Assumptions
Labor		LID	14	¢140	¢1 574	
Principal Engineer/Scientist		HR	11	\$143	\$1,574	
Sr Engineer/Sci II		HR	10	\$131	\$0	
Sr Engineer/Sci I		HR	18	\$124	\$2,232	
Sr Project Engineer/Scientist II		HR		\$108	\$0	0 " "
						Coordination,
Sr Project Engineer/Scientist I		HR	36	\$98	\$3,511	Contracting, Field
						Support
Project Engineer/Scientist		HR		\$89	\$0	
						Field 12 hrs/day, 1 da
Engineer/Scientist		HR	71	\$73	\$5,193	utility located and KO
						Meeting
2. ARCADIS Expenses						
Field vehicle		DAY	6	\$115	\$690	
Mileage		MI	360	\$0.45	\$162	
Meals		DAY	6	\$50	\$300	
Hotel		DAY	5	\$120	\$600	
PPE		DAY	6	\$25	\$150	
PID		DAY	6	\$75	\$450	
3. Subcontractor Drilling					·	4
Mob/Demob		ls	1	\$1,200	\$1,200	
4" x 6" Sonic Drilling with Continuous Samp	oling	ft	0	\$32	\$0	
7" x 8" Sonic Drilling with Continuous Sam		ft	242	\$45	\$10,890	
Sonic Bedrock Drilling	.9	ft	0	\$60	\$0	
						1
0	als)		-			
2" PVC Well Installation (Labor and Materia	als)	ft	0	\$16	\$0	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials)	·	ft each	0	\$16 \$700	\$0 \$0	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materia	·	ft each ft	0 0 132	\$16 \$700 \$24	\$0 \$0 \$3,168	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materials) 4" x 10' SS Screen (Labor and Materials)	·	ft each ft each	0 0 132 11	\$16 \$700 \$24 \$1,300	\$0 \$0 \$3,168 \$14,300	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materia 4" x 10' SS Screen (Labor and Materials) Development	·	ft each ft each hr	0 0 132 11 16.5	\$16 \$700 \$24 \$1,300 \$175	\$0 \$0 \$3,168 \$14,300 \$2,888	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materia 4" x 10' SS Screen (Labor and Materials) Development Well Completions	·	ft each ft each hr each	0 0 132 11 16.5 11	\$16 \$700 \$24 \$1,300 \$175 \$300	\$0 \$0 \$3,168 \$14,300 \$2,888 \$3,300	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materia 4" x 10' SS Screen (Labor and Materials) Development Well Completions Drums	als)	ft each ft each hr each each	0 0 132 11 16.5 11 15	\$16 \$700 \$24 \$1,300 \$175 \$300 \$60	\$0 \$0 \$3,168 \$14,300 \$2,888 \$3,300 \$900	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materials) 4" x 10' SS Screen (Labor and Materials) Development Well Completions Drums Move, Setup, Decon, IDW Handling (sonic)	als)	ft each ft each hr each each hr	0 0 132 11 16.5 11	\$16 \$700 \$24 \$1,300 \$175 \$300 \$60 \$325	\$0 \$0 \$3,168 \$14,300 \$2,888 \$3,300 \$900 \$3,575	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materials) 4" x 10' SS Screen (Labor and Materials) Development Well Completions Drums Move, Setup, Decon, IDW Handling (sonic) Stand-By	als)	ft each ft each hr each each	0 0 132 11 16.5 11 15	\$16 \$700 \$24 \$1,300 \$175 \$300 \$60	\$0 \$0 \$3,168 \$14,300 \$2,888 \$3,300 \$900	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materials) 4" x 10' SS Screen (Labor and Materials) Development Well Completions Drums Move, Setup, Decon, IDW Handling (sonic) Stand-By	als)	ft each ft each hr each each hr hr	0 0 132 11 16.5 11 15 11	\$16 \$700 \$24 \$1,300 \$175 \$300 \$60 \$325 \$400	\$0 \$0 \$3,168 \$14,300 \$2,888 \$3,300 \$900 \$3,575 \$0	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materials) 4" x 10' SS Screen (Labor and Materials) Development Well Completions Drums Move, Setup, Decon, IDW Handling (sonic) Stand-By . Other IDW - Disposal Soil	als)	ft each ft each hr each each hr hr drum	0 0 132 11 16.5 11 15 11 15 15	\$16 \$700 \$24 \$1,300 \$175 \$300 \$60 \$325 \$400 \$100	\$0 \$0 \$3,168 \$14,300 \$2,888 \$3,300 \$900 \$3,575 \$0 \$1,500	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materials) 4" x 10' SS Screen (Labor and Materials) Development Well Completions Drums Move, Setup, Decon, IDW Handling (sonic) Stand-By	als)	ft each ft each hr each each hr hr	0 0 132 11 16.5 11 15 11	\$16 \$700 \$24 \$1,300 \$175 \$300 \$60 \$325 \$400	\$0 \$0 \$3,168 \$14,300 \$2,888 \$3,300 \$900 \$3,575 \$0	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materials) 4" x 10' SS Screen (Labor and Materials) Development Well Completions Drums Move, Setup, Decon, IDW Handling (sonic) Stand-By Cother IDW - Disposal Soil	als)	ft each ft each hr each each hr hr drum	0 0 132 11 16.5 11 15 11 15 15	\$16 \$700 \$24 \$1,300 \$175 \$300 \$60 \$325 \$400 \$100	\$0 \$0 \$3,168 \$14,300 \$2,888 \$3,300 \$900 \$3,575 \$0 \$1,500	Assume 20 drums pe
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materials) 4" x 10' SS Screen (Labor and Materials) Development Well Completions Drums Move, Setup, Decon, IDW Handling (sonic) Stand-By 1. Other IDW - Disposal Soil IDW - Disposal Water	als)	ft each ft each hr each each hr hr drum drum	0 0 132 11 16.5 11 15 11 15 5	\$16 \$700 \$24 \$1,300 \$175 \$300 \$60 \$325 \$400 \$100 \$100	\$0 \$0 \$3,168 \$14,300 \$2,888 \$3,300 \$900 \$3,575 \$0 \$1,500 \$500	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materials) 4" x 10' SS Screen (Labor and Materials) Development Well Completions Drums Move, Setup, Decon, IDW Handling (sonic) Stand-By 1. Other IDW - Disposal Soil IDW - Disposal Soil IDW - Transportation	als)	ft each ft each hr each hr drum drum trip LS	0 0 132 11 16.5 11 15 11 15 5 1 1 1 15 5 1	\$16 \$700 \$24 \$1,300 \$175 \$300 \$60 \$325 \$400 \$100 \$100 \$200	\$0 \$0 \$3,168 \$14,300 \$2,888 \$3,300 \$900 \$3,575 \$0 \$1,500 \$500 \$200	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materials) 4" x 10' SS Screen (Labor and Materials) Development Well Completions Drums Move, Setup, Decon, IDW Handling (sonic) Stand-By !. Other IDW - Disposal Soil IDW - Disposal Water IDW - Transportation Survey new wells	als)	ft each ft each hr each hr off drum drum trip LS Labor	0 0 132 11 16.5 11 15 5 1 1 Markup	\$16 \$700 \$24 \$1,300 \$175 \$300 \$60 \$325 \$400 \$100 \$100 \$200 \$500	\$0 \$0 \$3,168 \$14,300 \$2,888 \$3,300 \$900 \$3,575 \$0 \$1,500 \$500 \$200 \$500	
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materials) 4" x 10' SS Screen (Labor and Materials) Development Well Completions Drums Move, Setup, Decon, IDW Handling (sonic) Stand-By 4. Other IDW - Disposal Soil IDW - Disposal Water IDW - Transportation Survey new wells	als)	ft each ft each hr each hr drum drum trip LS Labor RCADIS Ex	0 0 132 11 16.5 11 15 1 1 15 5 1 Markup cpenses	\$16 \$700 \$24 \$1,300 \$175 \$300 \$60 \$325 \$400 \$100 \$100 \$100 \$200 \$500 0% 15%	\$0 \$0 \$3,168 \$14,300 \$2,888 \$3,300 \$900 \$3,575 \$0 \$1,500 \$500 \$200 \$200 \$500 \$200 \$200 \$200 \$	Assume 20 drums pe
2" PVC Well Installation (Labor and Materia 2" x 10' SS Screen (Labor and Materials) 4" PVC Well Installation (Labor and Materials) 4" x 10' SS Screen (Labor and Materials) Development Well Completions Drums Move, Setup, Decon, IDW Handling (sonic) Stand-By I. Other IDW - Disposal Soil IDW - Disposal Water IDW - Transportation Survey new wells	als)	ft each ft each hr each hr off drum drum trip LS Labor	0 0 132 11 16.5 11 15 1 1 15 5 1 Markup kpenses on Subs	\$16 \$700 \$24 \$1,300 \$175 \$300 \$60 \$325 \$400 \$100 \$100 \$200 \$500 0%	\$0 \$0 \$3,168 \$14,300 \$2,888 \$3,300 \$900 \$3,575 \$0 \$1,500 \$500 \$200 \$200 \$500 \$2 00 \$2 00 \$3 ,575 \$0 \$0 0 \$1 0,500 \$2 00 \$1 0,500 \$2 00 \$1 0,500 \$2 00 \$3 ,575 \$0 \$0 0 \$1 0,500 \$2 00 \$1 0,500 \$2 00 \$1 0,500 \$2 00 \$1 0,500 \$2 00 \$1 0 \$1 0 \$5 00 \$2 00 \$1 0 \$5 00 \$2 00 \$2 00 \$1 0 \$5 00 \$2 00 \$2 00 \$2 00 \$2 00 \$1 0 \$5 00 \$2 00	

Skimmer Installation						
1 Labor and expenses includes person	nel to perform installation	of re	covery s	ystem		
tems	U	nit	Qty	Cost	Extension	Assumptions
1. Labor	·					·
Principal Engineer/Scientist	Н	IR	10	\$143	\$1,431	
Sr Engineer/Sci II	Н	IR		\$131	\$0	
Sr Engineer/Sci I	Н	IR	24	\$124	\$2,976	Field Support
Sr Project Engineer/Scientist II	Н	IR		\$108	\$0	
Sr Project Engineer/Scientist I	н	IR	48	\$98	\$4,681	Coordination, field support, data analysis
Project Engineer/Scientist	Н	IR		\$89	\$0	
Engineer/Scientist	н	IR	96	\$73	\$7,021	Assume installation of 2 Skimmers per day, plus 5 days setup/ tare down /misc
2a. ARCADIS Expenses						-
Field vehicle		AY	8	\$115	\$920	
Mileage		/1	480	\$0.45	\$216	
Meals	D/	AY	8	\$50	\$400	
Hotel		AY	4	\$120	\$480	
Level D PPE	D/	AY	8	\$25	\$200	
PID	D/	AY	8	\$75	\$600	
IP	D/	AY	8	\$0	\$0	
3. Subcontractor						
LNAPL Skimmers	L	.S	6	\$10,000	\$60,000	5K for Spill Buster, 3k for Solar Panels, 2K for Skimmer Housing
Subcontractor Skimmer Installation		.S	1	\$24,000	\$24,000	
			Markup	0%	\$0	
	Markup on ARCAD		•	15%	\$332	
		•	n Subs	15%	\$12,600	
	Project N Skimmer Installat			10%	\$1,611 \$118,000	

Annual O&M					
1 Labor and expenses includes personnel to perform a		0111	0	Forten sien	A
ems	Unit	Qty	Cost	Extension	Assumptions
. Labor		20	¢4.40	¢4.450	
Principal Engineer/Scientist	HR	29	\$143	\$4,150	
Sr Engineer/Sci II	HR	70	\$131	\$0	Field Over a set
Sr Engineer/Sci I	HR	72	\$124	\$8,929	Field Support
Sr Project Engineer/Scientist II	HR		\$108	\$0	
Sr Project Engineer/Scientist I	HR	144	\$98	\$14,043	Coordination, field support, data analysis
Project Engineer/Scientist	HR		\$89	\$0	
Engineer/Scientist	HR	288	\$73	\$21,064	Monthly O&M for 12 months, 4 troubleshooting visits, 16 hrs per skimmer fo mob to other wells
a. ARCADIS Expenses					
Field vehicle	DAY	24	\$115	\$2,760	
Mileage	MI	1440	\$0.45	\$648	
Meals	DAY	24	\$50	\$1,200	
Hotel	DAY	4	\$120	\$480	
Level D PPE	DAY	24	\$25	\$600	
PID	DAY	24	\$75	\$1,800	
IP	DAY	24	\$37	\$888	
Misc. Repairs	LS	1	\$5,000	\$5,000	
8. Subcontractor				\$0	
Non-TSCA Regulated LNAPL Disposal	Gal	26	\$1	\$26	Assume 0.04 gallon per well per day from 30% of the skimmers based on ASTM E2556
Non-TSCA Regulated LNAPL Transportation	Trip	1	\$200	\$200	Assume 20 drums pe trip or 1 trip per year
	ARCADIS E Markup o Project Mana Ann Years of Op	on Subs gement ual O&M	0% 15% 15% 10%	\$0 \$853 \$4,819 \$68,000 30 \$2,040,000	
Full-Scale Well Instal		em inst	/Design: allation: le O&M: _	\$	\$200,000 \$190,000 2,040,000
Area 17	LNAPL SI	kimme	r Total:	\$2	2,430,000

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Area 17 SVE Cost Assumptions:

- Investigation to refine vertical and horizontal treatment area will be conducted, cost for investigation is not included as a separate line item as it is assumed it will be covered by the cost savings from reducing the treatment area.
- · Base cost assumes pilot test of 2 SVE wells and full-scale SVE of 6 wells
- SVE Wells installed to a depth of 22 feet with 10 foot treatment interval (12-22 ft)
- SVE Wells installed assuming a 20 foot ROI
- · Assume pilot test wells will be utilized in full-scale system operation
- Sonic drilling for all wells
- Cost estimates are engineering estimates, +/- 30 to 50 percent

ilot Test Work Plan and update Health and Safety Plan							
Items	Unit	Qty	Cost	Extension	Assumptions		
1. Labor							
Principal Engineer/Scientist	HR	30	\$143	\$4,293			
Sr Engineer/Sci II	HR		\$131	\$0			
Sr Engineer/Sci I	HR	60	\$124	\$7,441			
Sr Project Engineer/Scientist II	HR		\$108	\$0			
Sr Project Engineer/Scientist I	HR	120	\$98	\$11,702			
Project Engineer/Scientist	HR		\$89	\$0			
Engineer/Scientist	HR	60	\$73	\$4,388			
	Labor	Markup	0%	\$0			

Project Management Work Plan Subtotal

\$2,783 \$31,000

10%

	P Pilot Test W	Markup (roject Mana	gement	15% 10%	\$2,677 \$978 \$34,000	
	Markup on A	ARCADIS E	xpenses	15%	\$235	
Survey new wells		LS	1 Markup	\$500 0%	\$500 \$0	
IDW - Transportation		trip	1	\$200	\$200	Assume 20 drum per trip
IDW - Disposal Water		drum	3	\$100	\$300	
IDW - Disposal Soil		drum	7	\$100	\$700	
Stand-By		hr		\$400	\$0	
Move, Setup, Decon, IDW Handling (sonic)		hr	8	\$325	\$2,600	
Drums		each	7	\$60 \$60	\$420	1
Development Well Completions		hr each	0	\$175 \$300	\$0 \$2,400	
2" x 10' SS Screen (Labor and Materials)		each	2	\$700 \$175	\$1,400	-
2" x 5' SS Screen (Labor and Materials)		each	0	\$350	\$0	
2" PVC Well Installation (Labor and Materials)		ft	156	\$16	\$2,496	1
7" x 8" Sonic Drilling with Continuous Sampling Sonic Bedrock Drilling		ft ft	0	\$45 \$60	\$0 \$0	-
4" x 6" Sonic Drilling with Continuous Sampling		ft	176	\$32	\$5,632	
Mob/Demob		ls	1	\$1,200	\$1,200	
. Subcontractor Drilling					+0.0	
PID		DAT	5	\$75	\$125	
Hotel PPE		DAY DAY	4	\$120 \$25	\$480 \$125	+
Meals		DAY	5	\$50	\$250	
Mileage		MI	300	\$0.45	\$135	
Field vehicle		DAY	5	\$115	\$575	
Engineer/Scientist		HR	55	\$73	\$4,023	day utility located and KO Meeting
· · ·			EE	·		Field 12 hrs/day
Sr Project Engineer/Scientist I Project Engineer/Scientist		HR	28	\$98 	\$2,731 \$0	Contracting, Fiel Support
						Coordination,
Sr Project Engineer/Scientist II		HR		\$108	\$0	
Sr Engineer/Sci I		HR	14	\$124	\$1,736	
Sr Engineer/Sci II		HR HR	9	<u>\$143</u> \$131	\$1,288 \$0	
- Labor Principal Engineer/Scientist			0	¢440	¢4.000	
ems		Unit	Qty	Cost	Extension	Assumptions
Hours per well for setup/decon/move Hours per well for development	1 hr 1.5 hr	-			•	
Survey new injection and monitoring wells						
PID rental for drilling (not needed for well develop	oment)					
3 Other						
VMPs are 2" diameter with PVC screens						
Drilling rate SVE wells are 2" diameter with 10' SS screens	50 ft/day					
VMP Depth	22 ft					
VMPs:	6 wells					
SVE Well Depth	22 ft					
Number of SVE Wells:	20 n 2 wells					
Treatment thickness SVE Well ROI	10 ft 20 ft					
Treatment depth	22 ft					
2 Drilling						
 Labor and expenses include oversight of injection development. Geologist to oversee drilling and d 		ion and				

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Pilot Test 1 Labor and expenses includes personnel to pe	rform the SV/E pilot test				
I Labor and expenses includes personnel to pe		044	Cost	Extension	Accumutions
	Unit	Qty	Cost	Extension	Assumptions
1. Labor			¢4.40	¢4 574	
Principal Engineer/Scientist	HR	11	\$143	\$1,574	
Sr Engineer/Sci II	HR	00	\$131	\$0	F : 110 (
Sr Engineer/Sci I	HR	26	\$124	\$3,225	Field Support
Sr Project Engineer/Scientist II	HR		\$108	\$0	Field Support
Sr Project Engineer/Scientist I	HR	36	\$98	\$3,511	Coordination, field support
Project Engineer/Scientist	HR	72	\$89	\$6,411	Field - 2 People
Engineer/Scientist	HR		\$73	\$0	
2a. ARCADIS Expenses					
Field vehicle	DAY	6	\$115	\$690	
Mileage	MI	360	\$0.45	\$162	
Meals	DAY	6	\$50	\$300	
Hotel	DAY	4	\$120	\$480	
Level D PPE	DAY	6	\$25	\$150	
PID rental	DAY	3	\$75	\$225	
Dreager Chip Reader	DAY	3	\$60	\$180	
Dreager Chips	EACH	4	\$200	\$800	
WL Meter	DAY	3	\$37	\$111	
Gauges, meters, Magnehelic	LS	1	\$1,000	\$1,000	
Generator Rental	WK	1	\$600	\$600	
Generator Delivery	LS	1	\$100	\$100	
Diesel for generator	GAL	60	\$4	\$240	30 hrs, 2 gal/hr, (4.00/gal
Subcontractor - Lab					
Lab - VOC Vapor samples	EACH	15	\$125	\$1,875	
Subcontractor					•
Mobilization and same day set up	LS	1	\$1,150	\$1,150	
System Rental first day	DAY	1	\$1,600	\$1,600	
System Rental after first day	DAY	2	\$150	\$300	
Technician	DAY	3	\$1,050	\$3,150	
Demob/Remob (weekend)	EACH		\$800	\$0	
Vapor Carbon Drums (180lb drums)	LS	2	\$650	\$1,300	
Vapor Carbon Drums (180lb drums) Credit	LS	2	\$500	\$1,000	
Demobilization	LS	1	1,150	1,150	
	Labo	Markup	0%	\$0	•
	Markup on ARCADIS E	xpenses	15%	\$1,037	
	Markun	Culha	4 50/	¢4 700	

Markup on Subs Project Management SVE Pilot Test Subtotal 15% 1**0**%

\$1,729 \$1,472 \$36,000

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

1 Labor to design system					
Items	Unit	Qty	Cost	Extension	Assumptions
1. Labor					
Principal Engineer/Scientist	HR	60	\$174	\$10,440	
Sr Engineer/Sci II	HR		\$145	\$0	
Sr Engineer/Sci I	HR	120	\$135	\$16,200	
Sr Project Engineer/Scientist II	HR		\$115	\$0	
Sr Project Engineer/Scientist I	HR	240	\$98	\$23,520	
Project Engineer/Scientist	HR		\$85	\$0	
Engineer/Scientist	HR	120	\$68	\$8,160	
	Labor I	Markup	0%	\$0	
	Project Manag	ement	10%	\$5,832	
				.	

Project Management Full-Scale SVE Design Subtotal

\$5,832 \$64,200

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Full-Scale Well Drilling						
1 Labor and expenses include oversight of injection	n well installation	on and				
development. Geologist to oversee drilling and c	levelopment.					
2 Drilling						
Treatment depth	22 ft					
Treatment thickness	10 ft					
Injection well ROI	20 ft					
Treatment Area:	3800 ft ²					
Number of SVE Wells:	4 wells					
SVE Well Depth	22 ft					
VMPs	0 wells					
VMP Well Depth	15 ft					
Drilling rate	50 ft/day					
Injection wells are 2" diameter with 5' SS screens	5					
Monitoring wells are 2" diameter with 5' PVC scre	eens					
3 Other						
PID rental for drilling (not needed for well develo	oment)					
Survey new injection and monitoring wells						
Hours per well for setup/decon/move	1 hr					
Hours per well for development	1.5 hr					
Items		Unit	Qty	Cost	Extension	Assumptions
1. Labor		•			•	
Principal Engineer/Scientist		HR	6	\$143	\$859	
Sr Engineer/Sci II		HR		\$131	\$0	
Sr Engineer/Sci I		HR	9	\$124	\$1,116	
Sr Project Engineer/Scientist II		HR	-	\$108	\$0	
						Coordination,
Sr Project Engineer/Scientist I		HR	17	\$98	\$1,658	Contracting, Field
				çõõ	\$1,000	Support
Project Engineer/Scientist		HR		\$89	\$0	
				400	ψū	
						Field 12 hrs/day, 1
Engineer/Scientist		HR	34	\$73	\$2,487	day utility located
						and KO Meeting
2. ARCADIS Expenses		ł	ļļ			4
Field vehicle		DAY	3	\$115	\$345	
Mileage		MI	180	\$0.45	\$81	
Meals		DAY	3	\$50	\$150	
Hotel		DAY	2	\$120	\$240	
PPE		DAY	3	\$25	\$75	
PID		DAY	3	\$75	\$225	
3. Subcontractor Drilling		DAT	5	ψi 5	ψ225	
Mob/Demob		ls	1	\$1,200	\$1,200	
4" x 6" Sonic Drilling with Continuous Sampling		ft	88	\$32	\$2,816	
7" x 8" Sonic Drilling with Continuous Sampling		ft	0	\$45	\$2,810	
Sonic Bedrock Drilling		ft	0	\$60	\$0 \$0	
2" PVC Well Installation (Labor and Materials)		ft	48	\$00 \$16	\$768	
2" x 5' SS Screen (Labor and Materials)		each	40	\$350	\$700	
2" x 10' SS Screen (Labor and Materials) 2" x 10' SS Screen (Labor and Materials)		each	4	\$700	\$0	+
Development		hr	4	\$700 \$175	\$2,800 \$0	+
Well Completions			4	\$300	\$0 \$1,200	
		each		\$300 \$60		
Drums Mayo Satup Decen IDW Handling (conic)		each	4		\$240 \$1,200	
Move, Setup, Decon, IDW Handling (sonic)		hr	4	\$325	\$1,300	
Stand-By 4. Other		hr		\$400	\$0	
		ما ہو:	A .	¢400	¢ 400	
IDW - Disposal Soil		drum	4	\$100	\$400	
IDW - Disposal Water		drum	3	\$100	\$300	
IDW - Transportation		trip	1	\$200	\$200	Assume 20 drums
•		·				per trip
Survey new wells		LS	Marlaur	\$500	\$500	
	Marker		Markup	0%	\$0	
	Markup on A			15%	\$134	
		Markup o		15%	\$1,759	
	n	alaat Mar -	~~~	400/	CC44 04	
	Pr Full-Scale We	oject Mana		10%	\$611.94 \$22,000	

1 Labor and expenses includes personnel ems	Unit	Qty	Cost	Extension	Assumptions
. Labor	•••••	,			Recumptione
Principal Engineer/Scientist	HR	21	\$143	\$3,005	
Sr Engineer/Sci II	HR		\$131	\$0	
Sr Engineer/Sci I	HR	84	\$124	\$10,418	Field Support
Sr Project Engineer/Scientist II	HR		\$108	\$0	Field Support
Sr Project Engineer/Scientist I	HR	210	\$98	\$20,479	Coordination, fiel support, start up
Project Engineer/Scientist	HR	300	\$89	\$26,712	Oversight 5 days electrical, 10 day subgrade, 5 days system, 5 days start up
Engineer/Scientist	HR		\$73	\$0	
Pa. ARCADIS Expenses			0 445	00 150	1
Field vehicle	DAY	30	\$115	\$3,450	
Mileage Meals	MI	1800	\$0.45 \$50	\$810 \$1,500	+
Hotel	DAY DAY	30 24	\$50 \$120	\$1,500 \$2,880	+
Level D PPE	DAT	30	\$120	\$750	
PID rental	DAT	25	\$25 \$75	\$1,875	
Underground	DAT	20	ψ/ 5	ψ1,075	-
Mob/Demobilization	LS	1	\$5,000	\$5,000	
Trenching	LF	300	\$10	\$3,000	estimate for contractor labor and materials
SVE piping	LF	780	\$5	\$3,900	estimate for contractor labor and materials
Backfill/Compaction	LF	300	\$25	\$7,500	estimate for contractor labor and materials
Surface Restoration	LF	300	\$5	\$1,500	estimate for contractor labor and materials
SVE Well Connections	EACH	6	\$250	\$1,500	estimate for contractor labor and materials
KO Leg Vault	LS	1	\$6,000	\$6,000	estimate for contractor labor and materials
IDW- Disposal	TON	227	\$21	\$4,647	
IDW - Transportation	TRIP	4	\$200	\$800	Assume 68 tons per trip (40 cy)
Other Subs/Materials/Equipment			#45 000	#45 000	1
Electrician	LS	1	\$15,000	\$15,000	+
Electrical Drop Equipment Trailer Mob/Unload	LS LS	2	\$20,000 \$5,000	\$40,000 \$5,000	+
Carbon First Fill	LB	2000	\$3	\$6,000	2 1000 lb Vessel
System Construction	LS	1	\$60,000	\$60,000	Conex container and equipment (e.g., blowers, compressor)
Survey	LS	1	\$1,500	\$1,500	survey piping
		or Markup		\$0	
	Markup on ARCADIS Markup Project Mar	on Subs	15% 15% 10%	\$1,690 \$24,202 \$6,061	

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Annual O&M					
1 Labor and expenses for annual O&M	Unit	Qty	Cost	Extension	Assumptions
l. Labor	Onit	QLY	COSI	Extension	Assumptions
Principal Engineer/Scientist	HR	24	\$143	\$3,434	
Sr Engineer/Sci II	HR	24	\$131	<u>\$0,434</u>	
Sr Engineer/Sci I	HR	48	\$124	\$5,953	
Sr Project Engineer/Scientist II	HR	40	\$108	<u>\$0,555</u>	
Sr Project Engineer/Scientist I	HR	96	\$98	\$9,362	
Project Engineer/Scientist	HR		\$89	\$0 \$0	
1 logot Engineer, estendet			φuu	ψŪ	
Engineer/Scientist	HR	192	\$73	\$14,043	Monthly O&M plus 4 troubleshooting visits
2. ARCADIS Expenses					
Field vehicle	DAY	16	\$115	\$1,840	
Mileage	MI	1920	\$0.45	\$864	
Meals	DAY	16	\$50	\$800	
Hotel	DAY	15	\$120	\$1,800	
Level D PPE	DAY	16	\$25	\$400	
PID rental	DAY	16	\$75	\$1,200	
Subs/Materials/Equipment					-
Carbon Fill/Disposal	LB	4000	\$3	\$12,000	2 1000 lb Vessels changed out twice per year
Utilities - Electric	МО	12	\$417	\$5,002	
VOC - Air	EACH	36	\$125	\$4,500	Monthly Influent, Midfluent, Effluen
Misc. supplies	LS	1	\$2,000	\$2,000	
Markup	Labor Markup 0% Markup on ARCADIS Expenses 15% Markup on Subs 15% Project Management 10% Annual O&M Years of O&M O&M Subtotal				
Full-Scale Well In:	stallation/Sys		ot/Design: stallation: O&M:	\$166,000 \$288,000 \$1,070,000)

SVE 17 Total: \$1,530,000

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Area 5-2 MPE Cost Assumptions:

- Area 5-2 MPE Cost Estimate Based on 10 gpm P&T Cost Estimate due to presence of 1,4-Dioxane in groundwater (See P&T Cost estimate for additional MPE assumptions)
- Investigation to refine vertical and horizontal treatment area will be conducted, cost for investigation is not included as a separate line item as it is assumed it will be covered by the cost savings from reducing the treatment area.
- · Base cost assumes pilot test of 2 MPE wells and full-scale MPE of 56 wells
- MPE Wells installed to a depth of 24 feet with 10 foot treatment interval (14-22 ft)
- MPE Wells installed assuming a 15 foot ROI
- · Assume pilot test wells will be utilized in full-scale system operation
- Sonic drilling for all wells
- Cost estimates are engineering estimates, +/- 30 to 50 percent

Items	Unit Price	Units	Cost
Cost Overview			
See attached document			

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

System Capital Cost	Unit Price	Units	Cost
Design			
Treatability studies	40,000 LS	1	40,0
Pilot Test Well Drilling	46,000	1	46,0
0	146,000	1	146,0
Pilot Testing			
Site surveying	30,000 LS	1	30,0
Design and Bid Packages (Recovery System)	30,000 LS	1	30,0
Design and Bid Packages (Treatment System)	100,000 LS	1	100,0
Permitting/Access Agreements			
Permitting - sanitary sewer discharge permitting	8,000 LS	1	8,0
Recovery System			
Full-Scale Well Installation	229,000 LS	1	229,0
Full-Scale Subgrade Piping	242,047 LS	1	242,0
		Recovery System Subtotal	471,0
		taxes (7%)	32,9
		mark-up (5%)	25,2
		Recovery System Total	529,2
Mater Dreeses Equipment			
Water Process Equipment Influent equalization tanks	5,000 LS	1	5,0
Aeration blower	1,500 LS	2	3,0
pH adjust system	5,000 LS	1	5,0
Transfer pump	2,500 LS	2	5,0
Multi-media filters	18,000 LS	2	
	,		18,0
Cartridge filter system	3,000 LS	1	3,0
Clean backwash tank	3,000 LS	1	3,0
Backwash pump	2,500 LS	1	2,5
Polymer metering pump	2,000 LS	1	2,0
Static mixer	1,000 LS	1	1,0
Flocculator tank	6,000 LS	1	6,0
Flocculator mixer	1,500 LS	1	1,5
Solids transfer pump	1,200 LS	1	1,2
Filter press	20,000 LS	0	
Filter press stand	10,000 LS	0	
Filter press feed pump	2,000 LS	0	
Pre-coat tank	1,000 LS	0	
Pre-coat pump	1,500 LS	0	
Air stripper	20,000 LS	1	20,0
Transfer pump	2,500 LS	2	5,0
Vapor-phase granular activated carbon	3,000 LS	3	9,0
Advanced oxidation system (HiPOx)	200.000 LS	1	200,0
Transfer pump	2,500 LS	2	5,0
lon exchange system	250,000 LS	- 1	250,0
Granular activated carbon	3,000 LS	3	9,0
Air compressor	5,000 LS	1	5,0
Refrigerated air dryer	1,000 LS	1	5,0 1,0
Containment area pump	1,500 LS	2	3,0
		2 1	
Instrumentation	30,000 LS		30,0
Control panel	30,000 LS	1	30,0
Distribution panel	20,000 LS	2	40,0
VFD panel	15,000 LS	1	15,0
PLC and data communications	5,000 LS	1	5,0
Data collection software and hardware Dial-out/internet communications package	5,000 LS 5,000 LS	1	5,0 5,0
Diar out internet communications package	5,000 L3	·	5,0
		Process Equipment Subtotal	693,2
		taxes (7%)	48,
		shipping (10%)	69,3
		mark-up (5%)	40,5
		Equipment Total	851 5

851,596

Equipment Total

Permitting - local building/plumbing10,000 LS110Building and foundation80 square feet3,200256Parking area and fencing15,000 LS115	9,000 9,000 9,000 9,000 9,000 9,000
Building and foundation80 square feet3,200256Parking area and fencing15,000 LS115	,000 ,000 ,000
Parking area and fencing 15,000 LS 1 15	,000 ,000
	,000
Landscaping and finishing 15.000 LS 1 15	,000
Building Subcontractor Subtotal 326	
	,600
Plant Subcontractors (Mechanical)	
	,000
	,000
	,000
•	,000
	,000
	,000
	,000
	,000
Markes for Delayers and Alexandre Order and Alexandre Order	
	,000
	,600
	,130
Mechanical Subcontractor Subtotal 233	,730
Plant Subcontractors (Electrical)	
Permitting - local electrical 5,000 LS 1 5	,000
Panel receiving and installation 5,000 LS 1 5	,000
Conduit and wiring - materials40,000 LS140	,000
Conduit and wiring - installation 40,000 LS 1 40	,000,
Panel terminations 9,000 LS 1 9	,000
Conduit racks 10,000 LS 1 10	,000
Lightning/surge protection 20,000 LS 1 20	,000
Electrical Subcontractor Subtotal 129	,000
Subcontractor project management (5%) 6	,450
	,773
Mechanical Subcontractor Subtotal 142	,223
PLC Programming 50,000 each 1 50	,000
	,000
	,000
	,000
Subtotal for Groundwater System Capital Cost 2,590	270
Subtotal for Groundwater System Capital Cost 2,390	,370
	,000
	,500
	,700
Subtotal 2,827	
Contingency (5%) 141	,378
Total MPE Capital Cost 2,969	,000

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

MPE System Startup Cost (assume 2 weeks)

Engineer management 98 Shour 100 9.80 Lead operator 79 Shour 100 6.80 Subcontractor support (leachanical) 3,000 LS 1 3,000 Subcontractor support (leachanical) 3,000 LS 1 3,000 ARCADIS general expenses 5,000 LS 1 6,00 ARCADIS general expenses 5,000 LS 1 6,00 Met Operations Cost Subtotal 48,00 5,000 Met Operations Cost Senior principal engineer oversight (1 hours per week) 120 Shour 52 9,44 Senior principal engineer oversight (2 hours per week) 122 Shour 104 132 Engineer management (6 hours per week) 120 Shour 120 344 Subcontractor support 660 month 12 600 Junior operator (70 hours per week) 120 Shour 120 600 Subcontractor support 500 month 12 600 General oxpenses 1,000 month 12 120 Utilities - plant electric (60 HP, \$0.12 k/w.hr) 1,000 samples 1	Senior principal engineer oversight	180 \$/hour	8		1,400
Lead operator 79 Shour 100 67.8% Junicr operator 68 Shour 100 67.8% Subcontractor support (electrical) 3,000 LS 1 3,00 Subcontractor support (controls) 6,000 LS 1 6,00 ARCADIS general expenses 5,000 LS 1 5,000 Total MPE Startup Costs 50,000 5 1 5,000 Annual CAR Costs 50,000 52 9,44 53,000 MPE Operations Cost Annual CAR Costs 50,000 122 9,44 Senior engineer oversight (1 hours per week) 180 Shour 52 9,44 Senior engineer oversight (2 hours per week) 127 Shour 104 13,22 Junicr operator (3 hours per week) 68 Shour 12 3,66 Lead operator (20 hours per week) 98 Shour 1,20 3,64 Subcontractor support 500 month 12 20,00 2,00 Solut hydroide 79 Shour 1,600 2,00 2,00 2,00 2,00 2,00 2,00					5,100
Junior operator 68 Shour 100 6.80 Subcontractor support (electrica) 3.000 LS 1 3.00 Subcontractor support (controls) 6.000 LS 1 6.00 ARCADIS general expenses 5.000 LS 1 6.00 Project Management (10%) 2.40 Subtotal 48.00 Project Management (10%) 2.40 Subtotal 50.00 MPE Operations Cost Subtotal 9.40 52.00 Senior principal engineer oversight (1 hours per week) 180 Shour 52.9 9.40 Senior principal engineer oversight (2 hours per week) 180 Shour 150.0 123.22 Lead operator (30 hours per week) 180 Shour 150.0 123.22 Junior operator (10 hours per week) 68 Shour 150.0 123.22 Junior operator (10 hours per week) 180 Shour 150.0 2.00 Subcortactor support 500 month 12 6.00 General expenses 1.000 simples 12.00 2.00 Subtorator support 500 month 12 1.000	5 S				9,800
Subcontractor support (centrols) 3.000 LS 1 3.00 Subcontractor support (centrols) 6.000 LS 1 6.00 ARCADIS general expenses 5.000 LS 1 5.00 Project Management (10%) 2.40 5.000 LS 1 5.000 LS Total MPE Startup Costs 50.00 50.00 50.00 50.00 50.00 MPE Operations Cost Annual OM Costs. 70 9.44 13.22 9.44 Senior engineer oversight (1 hours per week) 180 \$/hour 52 9.44 13.22 3.06 Lead operator (30 hours per week) 127 \$/hour 10.4 13.22 3.06 12.2 3.06 12.2 3.06 12.2 3.06 12.2 3.06 12.2 3.06 12.2 1.00 12.2 1.00 12.2 1.00 12.2 12.0 1.00 12.2 1.00 12.2 1.00 12.2 1.00 12.2 1.00 12.2 1.00 12.2 1.00 12.2 1.00 12.0 1.00 2.00<	•				
Subcontrator support (entrols) 3,000 LS 1 3,000 LS 1 6,00 ARCADIS general expenses 5,000 LS 1 5,000 LS 1 5,000 LS 1 5,000 LS 1 5,000 LS 1 5,000 LS 1 5,000 LS 1 5,000 LS 1 5,000 LS 1 5,000 LS 1 5,000 LS 1 5,000 LS 1 5,000 LS 1 5,000 LS 1 2,44 45,000 LS 1 2,460 LS 5,000 LS 1 2,460 LS 2,460 LS 5,000 LS 1 2,460 LS 2,560 1,25,250 LS 1,25,250 LS 1,25,250 LS 1,000 LS 1,000 LS 1,000 <td< th=""><th></th><th></th><th></th><th></th><th>,</th></td<>					,
Subcontractor support (controls) 6,000 LS 1 5,000 LS 1 ARCADIS general expenses 5,000 LS 1 5,000 LS 1 Project Management (10%) 2,40 2,40 50,00 1 3,000 1 3,000 1 3,000 1 4,000 3,000 1 3,000 <th></th> <th>,</th> <th></th> <th></th> <th>3,000</th>		,			3,000
ARCADIS general expenses 5,000 LS 1 5000 LS 1		·			6,000
Subtotal 48,00 Project Management (10%) 2,40 Total MPE Starup Costs 50,00 Annual OMM Costs 2,40 Coperations Cost Annual OMM Costs Operations Labor 52 9,44 Senior engineer oversight (1 hours per week) 180 S/hour 52 9,44 Senior engineer oversight (2 hours per week) 198 S/hour 1312 30,66 Lead operator (30 hours per week) 79 S/hour 14,60 1232,27 Junior operator (10 hours per week) 68 S/hour 520 35,44 Subcontrator (30 hours per week) 68 S/hour 520 35,44 Subcontrator support 1,000 S/HP/year 20 20,00 Ottimes expenses 1,000 1,000 S/HP/year 20 20,00 Subcontrator (10 hours per weeller et day 223 drum 1,000 223,00 20,00 TSCA Regulated LMAPL Disposal (2 gal per well per day 223 drum 1,000 223,00 20,00 Discharge to G/H PO/W (1,6 gam per well) 4,00 /1,000 gal 47,094 188,46 20,00					5,000
Total MPE Startup Costs 50,00 MPE Operations Cost Annual OSM Costs Operations Labor		-,		Subtotal	48,000
MPE Operations Cost Annual O&M Costs. Operations Labor Annual O&M Costs. Operations Labor Senior principal engineer oversight (1 hours per week) Senior engineer oversight (2 hours per week) 180 \$hour 52 9.44 Senior engineer oversight (2 hours per week) 127 \$hour 132 30.66 Lead operator (30 hours per week) 79 \$hour 132 30.66 Junior operator (10 hours per week) 79 \$hour 12.650 132.4 Subcontractor support 600 month 12 6.00 General expenses 1.000 month 12 12.00 Solutor hydroxide 4 gallon 500 20.00 Solutin hydroxide 4 gallon 500 20.00 TSCA Regulated LNAPL Disposal (2 gal per well per day 223 drum 1,000 223,00 for 30% of the wells based on ASTM E2556) 0 12.00 12.00 Discharge to Gity POTW (1.6 grm per well) 4.00 /1,000 gal 47,094 188,40 POTW discharge monitoring 3.00 / samples 12 12.00 Utilities - vater 6.000 US 1 5.00 Internet and communication fees 150 month 9 1.44 Piant process monitoring 3.00 /samples 100 30.00 More speatoring cost 6.000 US 1 <th>Project Management (10%)</th> <th></th> <th></th> <th></th> <th>2,400</th>	Project Management (10%)				2,400
Annual C&M Costs. Operations Labor Senior principal engineer oversight (1 hours per week) 180 \$hour 52 9.44 Senior engineer oversight (2 hours per week) 127 \$hour 104 13.22 Engineer management (6 hours per week) 79 \$hour 312 30.66 Lead operator (30 hours per week) 79 \$hour 1.560 123.22 Junior operator (10 hours per week) 68 \$hour 520 35.44 Subcontractor support 500 month 12 12.00 General expenses 1.000 month 12 12.00 Subcontractor support 1,000 \$HP/year 20 20.00 Sodium hydroxide 4 gailon 500 2.30 TSCA Regulated LNAPL Disposal (2 gal per well per day 22.3 drum 1,000 22.30 Tor 30% of the wells based on ASTM E2556) 1 12.00 2.00 Discharge monitoring 1.000 / samples 10 30.00 30.00 Utilities - water 6 1/.000 gal 47.094 188.46 14 POTW discharge monitoring 300 / samples <t< th=""><th>Total MPE Startup Costs</th><th></th><th></th><th></th><th>50,000</th></t<>	Total MPE Startup Costs				50,000
Operations Labor Senior principal engineer oversight (1 hours per week) 180 \$/hour 52 9.44 Senior engineer oversight (2 hours per week) 127 \$/hour 104 13.22 Engineer management (6 hours per week) 98 \$/hour 132 30.66 Lead operator (10 hours per week) 68 \$/hour 1560 123.22 Junior operator (10 hours per week) 68 \$/hour 520 35.44 Subcontractor support 500 month 12 6.00 General expenses 1,000 month 12 6.00 Utilities - plant electric (60 HP, \$0.12/kw-hr) 1,000 HP/kyear 20 20.00 Sodium hydroxide 4 gallon 522 12.00 20.00 Sodium hydroxide 6 /1,000 gal 47,094 188.40 22.20 20.00	•				
Senior principal engineer oversight (1 hours per week) 120 \$hour 52 9.44 Senior engineer oversight (2 hours per week) 127 \$hour 104 13.22 Engineer management (6 hours per week) 98 \$hour 312 30.60 Lead operator (30 hours per week) 98 \$hour 520 35.44 Subcontractor support 500 month 12 6.00 General expenses 1.000 month 12 12.00 Utilities - plant electric (60 HP, \$0.12/kw-hr) 1.000 month 12 22.00 Sodium hydroxide 4 gallon 500 20.00 22.00 TSCA Regulated LNAPL Disposal (2 gal per well per day c23 drum 1.000 samples 12 12.00 Utilities - water 6 (7.000 gal 40 22 12.00 12.00 Utilities - water 6 (7.000 gal 40 22 100 30.0 100 30.0 100 30.0 100 30.0 10.00 10.00 10.00 12.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00					
Senior engineer oversight (2 hours per week) 127 \$/hour 104 13.22 Engineer management (6 hours per week) 98 \$/hour 1.560 123.22 Junior operator (10 hours per week) 68 \$/hour 1.560 123.22 Junior operator (10 hours per week) 68 \$/hour 1.560 123.22 Junior operator (10 hours per week) 68 \$/hour 1.2 6.00 General expenses 1.000 month 12 6.00 Utilities - plant electric (60 HP, \$0.12/kw-hr) 1.000 \$/hHP/year 20 20.00 Sodium hydroxide 4 gallon 500 223.00 for 30% of the wells based on ASTM E2560 0 223.00 12 12.00 <t< td=""><td>•</td><td>100 0 "</td><td>50</td><td></td><td>0.400</td></t<>	•	100 0 "	50		0.400
Engineer management (6 hours per week) 98 \$/hour 312 30,60 Lead operator (10 hours per week) 79 \$/hour 1,560 123,22 Junior operator (10 hours per week) 68 \$/hour 520 35,40 Subcontractor support 500 month 12 6,00 General expenses 1,000 month 12 20,00 Soldom Mydroxide 4 gallon 500 20,00 Discharge to City POTW (1.6 gm per well) 4,00 /1,000 gal 47,094 188,40 POTW discharge monitoring 10,00 / samples 12 12,00 Utilities - water 6 /1,000 gal 40 22 142,00 Intermet and communication fees 150 month 9 1,44 Plant process monitoring 300 /1,000 gal 40 22 Utilities - water 6 /0,000 LS 1 5,000 Equipmen					9,400
Lead operator (30 hours per week) 79 \$hour 1,560 123.22 Junior operator (10 hours per week) 68 \$hour 520 35.40 Subcontractor support 500 month 12 600 General expenses 1,000 month 12 12.00 Sodium hydroxide 4 galton 500 20.00 Sodium hydroxide 4 galton 500 20.00 TSCA Regulated LNAPL Disposal (2 gal per well per day tor 30% of the wells based on ASTM E2556) 223 drum 1,000 223.00 Discharge to City POTW (1.6 gpm per well) 4.00 /1,000 gal 47.094 188.44 POTW discharge monitoring 1000 / samples 12 12.00 Utilities - water 6 /1,000 gal 40 22 Internet and communication fees 150 month 9 1.44 Plant process monitoring 300 / samples 100 30.00 Mice site maintenance 5.000 LS 1 6.00 Equipment trepairs/replacement (0.5% of equipment capital cost) 3.466 LS 1 3.50 AOP operations cost 60.000 LS		*· · ·			
Junic operator (10 hours per week) 68 \$hour 520 35,44 Subcontractor support 500 month 12 6,00 General expenses 1,000 month 12 220 Soldium hydroxide 4 gallon 500 220,00 TSCA Regulated LNAPL Disposal (2 gal per well per day 223 drum 1,000 223,00 for 30% of the wells based on ASTM E2556) 1,000 /samples 12 12,00 Discharge to City POTW (1.6 gpm per well) 4,00 /1,000 gal 47,094 188,44 POTW discharge monitoring 1,000 /samples 12 12,00 Utilities - water 6 (1,000 gal 40 22 Internet and communication fees 150 month 9 1,44 Plant process monitoring 300 / samples 100 30,00 Misc site maintenance 5,000 LS 1 6,000 Ion exchange operations cost 80,000 LS 1 80,000 Lab and field instrumentation maintenance 300 month 12 3,60 Lab and field instrumentation maintenance 300 month 12 <td>5 5 (1)</td> <td> +</td> <td></td> <td></td> <td></td>	5 5 (1)	+			
Subcontractor support 500 month 12 6,00 General expenses 1,000 month 12 12,00 Utilities - plant electric (60 HP, \$0.12/kw-hr) 1,000 SHP/year 20 20,00 Sodium hydroxide 4 gallon 500 2,00 TSCA Regulated LNAPL Disposal (2 gal per well per day for 30% of the wells based on ASTM E2556) 4.00 /1,000 gal 47,094 188,40 Discharge to City POTW (1.6 gpm per well) 4.00 /1,000 gal 47,094 188,40 POTW discharge monitoring 10,000 /samples 12 12,00 Utilities - water 6 /1,000 gal 40 22 Internet and communication fees 150 month 9 1,40 Plant process monitoring 300 / samples 100 30,00 Misc site maintenance 5,000 LS 1 8,00 Equipment repairs/replacement (0.5% of equipment capital cost) 3,466 LS 1 3,56 AOP operations cost 60,000 LS 1 80,00 6,00 Studied instrumentation maintenance 300 month 12 5,00 Repor					
General expenses 1,000 month 12 12,00 Utilities - plant electric (60 HP, \$0.12/kw-hr) 1,000 \$/HP/year 20 20,00 Sodium hydroxide 4 gallon 500 2,000 23,000 TSCA Regulated LNAPL Disposal (2 gal per well per day for 30% of the wells based on ASTM E2556) 223 drum 1,000 23,000 Discharge to City POTW (1.6 gpm per well) 4,00 /1,000 gal 47,094 188,40 223 POTW discharge monitoring 1,000 / samples 12 12,000 20,000 Utilities - water 6 /1,000 gal 47,094 188,40 22 Internet and communication fees 150 month 9 1,44 Plant process monitoring 300 / samples 10 30,00 Misc site maintenance 5,000 LS 1 6,000 Equipment repairs/replacement (0.5% of equipment capital cost) 3,466 LS 1 6,000 I ne exchange operations cost 6,000 LS 1 6,000 Sludge disposal 200 ton 30 6,000 Lab and field instrumentation maintenance 300 month					,
Utilities - plant electric (60 HP, \$0.12/kw-hr) 1,000 \$/HP/year 20 20,00 Sodium hydroxide 4 gallon 500 2,00 TSCA Regulated LNAPL Disposal (2 gal per well per day for 30% of the wells based on ASTM E2556) 223 drum 1,000 223,00 Discharge monitoring 1,000 / samples 12 12,00 Utilities - water 6 /1,000 gal 40 22 Internet and communication fees 150 month 9 1,44 Plant process monitoring 300 / samples 100 30,00 Misc site maintenance 5,000 LS 1 5,000 Equipment repairs/replacement (0.5% of equipment capital cost) 3,466 LS 1 3,56 AOP operations cost 80,000 LS 1 80,000 6,000 Lab and field instrumentation maintenance 300 month 12 80,000 Subtotal 816,90 40,80 40,80 40,80 Total MPE O&M Annual Costs 949,00 40,80 50,00 50,00 50,00 Summary MPE System Capital Cost \$2,969,00 \$3,100,					
Sodium hydroxide 4 galon 500 2.00 TSCA Regulated LNAPL Disposal (2 gal per well per day for 30% of the wells based on ASTM E2556) 223 drum 1,000 223.00 Discharge to City POTW (16 gpm per well) 4.00 /1.000 gal 47,094 188.44 POTW discharge monitoring 1,000 / samples 12 12.00 Utilities - water 6 /1.000 gal 40 22 Internet and communication fees 150 month 9 1.44 Plant process monitoring 300 / samples 100 30,00 Misc site maintenance 5,000 LS 1 5,000 Equipment repairs/replacement (0.5% of equipment capital cost) 3,466 LS 1 3,56 AOP operations cost 6000 LS 1 80,000 Subdot 1 80,000 Sludge disposal 200 ton 30 6,000 Solid 816.90 3,66 Health and safety equipment 500 month 12 5,000 3,60 3,60 Contingency (5%) Froject Management (10%) 40,86 40,86 40,86 40,86		·			
TSCA Regulated LNAPL Disposal (2 gal per well per day tor 30% of the wells based on ASTM E2556) 223 drum 1,000 223,00 Discharge to City POTW (1.6 gpm per well) 4.00 /1,000 gal 47,094 188,44 POTW discharge monitoring 1,000 / samples 12 12,00 Utilities - water 6 /1,000 gal 40 223 Internet and communication fees 150 month 9 1,44 Plant process monitoring 300 / samples 100 3000 Misc site maintenance 5,000 LS 1 5,000 Equipment repairs/replacement (0.5% of equipment capital cost) 3,466 LS 1 3,50 AOP operations cost 80,000 LS 1 80,000 Ion exchange operations cost 80,000 LS 1 800,000 Sludge disposal 200 ton 30 6,00 Lab and field instrumentation maintenance 300 month 12 6,00 Contingency (5%) Subtotal 816,90 816,90 Contingency (5%) Years of 0,8M 949,00 \$2,969,00 Summary MPE System Capital Cost \$2,969,00 \$5,00,00 \$5,00,00 \$3,100,00 <td></td> <td></td> <td></td> <td></td> <td>2,000</td>					2,000
Discharge to City POTW (1.6 gpm per well) 4.00 /1,000 gal 47,094 188,40 POTW discharge monitoring 1,000 /samples 12 12,00 Utilities - water 6 /1,000 gal 40 22 Internet and communication fees 150 month 9 1,40 Plant process monitoring 300 /samples 100 30,00 Misc site maintenance 5,000 LS 1 5,00 Equipment repairs/replacement (0.5% of equipment capital cost) 3,466 LS 1 3,50 AOP operations cost 6,000 LS 1 80,000 1 80,000 Ion exchange operations cost 80,000 LS 1 80,000 1 80,000 Sludge disposal 200 ton 30 6,00 1 80,000 Lab and field instrumentation maintenance 300 month 12 3,60 1 Health and safety equipment 500 month 12 3,60 1 40,80 Project Management (10%) 40,80 40,80 40,80 40,80 40,80 33,00,00 33,00,00<	TSCA Regulated LNAPL Disposal (2 gal per well per day	0			223,000
POTW discharge monitoring 1,000 / samples 12 12,00 Utilities - water 6 /1,000 gal 40 20 Internet and communication fees 150 month 9 1,44 Plant process monitoring 300 / samples 100 30,00 Misc site maintenance 5,000 LS 1 5,000 Equipment repair/eplacement (0.5% of equipment capital cost) 3,466 LS 1 3,55 AOP operations cost 6,000 LS 1 80,000 S 1 80,000 Sludge disposal 200 ton 30 6,000 Lab and field instrumentation maintenance 300 month 12 3,60 Lab and field instrumentation maintenance 300 month 12 6,00 50,00 Contingency (5%) 40,88 40,88 40,88 40,88 40,88 Project Management (10%) 40,88 40,88 40,88 40,88 40,88 Total MPE O&M Annual Costs 949,00 33,100,00 550,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00	,	4.00 /1.000 gal	47.094		188,400
Utilities - water 6 /1,000 gal 40 20 Internet and communication fees 150 month 9 1,44 Plant process monitoring 300 / samples 100 30,00 Misc site maintenance 5,000 LS 1 5,00 Equipment repairs/replacement (0.5% of equipment capital cost) 3,466 LS 1 3,55 AOP operations cost 6,000 LS 1 6,000 Ion exchange operations cost 80,000 LS 1 80,000 Sludge disposal 200 ton 30 6,000 Lab and field instrumentation maintenance 300 month 12 8,000 Lab and field instrumentation maintenance 300 month 12 8,000 Contingency (5%) Subtotal 816,90 40,84 Project Management (10%) 40,84 40,86 949,00 Summary MPE System Capital Cost \$2,969,00 \$3,100,00 MPE System Capital Cost \$2,969,00 \$3,100,00 \$3,100,00 Years of 0&M \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00					12,000
Plant process monitoring 300 / samples 100 30,00 Misc site maintenance 5,000 LS 1 5,00 Equipment repairs/replacement (0.5% of equipment capital cost) 3,466 LS 1 3,56 AOP operations cost 6,000 LS 1 6,00 Ion exchange operations cost 80,000 LS 1 80,00 Sludge disposal 200 ton 30 6,00 Lab and field instrumentation maintenance 300 month 12 3,60 Health and safety equipment 500 month 12 6,00 Reporting Subtotal 816,90 816,90 Contingency (5%) Froject Management (10%) 40,88 40,88 Total MPE O&M Annual Costs 949,00 \$2,969,00 MPE System Capital Cost \$2,969,00 \$3,100,00 MPE Capital Cost \$3,000 \$3,000,00 MPE Cost Annual Costs \$3,000,00 \$3,000,00 Years of O&M 1 50,000	5 S	•			200
Misc site maintenance 5,000 LS 1 5,000 Equipment repairs/replacement (0.5% of equipment capital cost) 3,466 LS 1 3,55 AOP operations cost 6,000 LS 1 6,000 Ion exchange operations cost 80,000 LS 1 80,000 Sludge disposal 200 ton 30 6,000 Lab and field instrumentation maintenance 300 month 12 3,60 Health and safety equipment 500 month 12 6,00 Contingency (5%) 40,84 40,84 40,84 Project Management (10%) 40,84 40,86 949,00 Summary MPE System Capital Cost \$2,969,00 \$2,969,00 MPE System Capital Cost \$2,969,00 \$50,00 \$3,100,00 MPE Capital Cost \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00 Total MPE O&M Annual Costs \$949,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00 \$3,100,00	Internet and communication fees	150 month	9		1,400
Equipment repairs/replacement (0.5% of equipment capital cost) 3,466 LS 1 3,50 AOP operations cost 6,000 LS 1 6,00 Ion exchange operations cost 80,000 LS 1 80,00 Sludge disposal 200 ton 30 6,00 Lab and field instrumentation maintenance 300 month 12 3,60 Health and safety equipment 500 month 12 6,00 Contingency (5%) 40,84 940,00 40,84 Project Management (10%) 40,86 949,00 40,86 Summary MPE System Capital Cost \$2,969,00 \$3,100,00 MPE System Capital Cost \$2,969,00 \$3,100,00 \$3,100,00 Total MPE O&M Annual Costs \$949,00 \$3,100,00 \$3,100,00	Plant process monitoring	300 / samples	100		30,000
AOP operations cost 6,000 LS 1 6,000 Ion exchange operations cost 80,000 LS 1 80,000 Sludge disposal 200 ton 30 6,000 Lab and field instrumentation maintenance 300 month 12 3,60 Health and safety equipment 500 month 12 3,60 Reporting Subtotal 816,90 Contingency (5%) 40,82 40,82 Project Management (10%) 40,82 40,82 Total MPE O&M Annual Costs 949,00 \$2,969,00 MPE System Capital Cost \$2,969,00 \$3,100,00 MPE Capital Cost \$3,100,00 \$3,100,00 Total MPE O&M Annual Costs \$949,00 \$3,100,00	Misc site maintenance	5,000 LS	1		5,000
Ion exchange operations cost 80,000 LS 1 80,00 Sludge disposal 200 ton 30 6,00 Lab and field instrumentation maintenance 300 month 12 3,60 Health and safety equipment 500 month 12 500 month 12 500 month 12 500,00 Reporting Contingency (5%) 40,84 Project Management (10%) 40,80 Total MPE O&M Annual Costs 949,00 Summary MPE System Capital Cost (assume 2 weeks) MPE Capital Cost \$2,969,00 MPE Capital Cost \$2,969,00 MPE Capital Cost \$3,100,00 Total MPE O&M Annual Costs \$3,100,00 Total MPE O&M Annual Costs \$949,00 Years of O&M 10	Equipment repairs/replacement (0.5% of equipment capital cost)	3,466 LS	1		3,500
Sludge disposal 200 ton 30 6,00 Lab and field instrumentation maintenance 300 month 12 3,60 Health and safety equipment 500 month 12 6,00 Subtotal 816,90 Reporting Contingency (5%) Project Management (10%) 50,00 40,82 Total MPE O&M Annual Costs 949,00 Summary \$2,969,00 MPE System Capital Cost MPE Capital Cost \$2,969,00 Total MPE O&M Annual Costs \$50,00 Years of O&M \$949,00	•	·			6,000
Lab and field instrumentation maintenance 300 month 12 3,60 Health and safety equipment 500 month 12 6,00 Subtotal 816,90 Reporting Contingency (5%) Project Management (10%) 50,00 40,84 Total MPE O&M Annual Costs 949,00 Summary MPE System Capital Cost MPE System Startup Cost (assume 2 weeks) MPE Capital Cost \$2,969,00 Total MPE O&M Annual Costs \$3,100,00 Years of O&M 10					80,000
Health and safety equipment 500 month 12 6.00 Subtotal 816,90 Contingency (5%) 40,80 Project Management (10%) 40,80 Total MPE O&M Annual Costs 949,00 Summary \$2,969,00 MPE System Capital Cost \$2,969,00 MPE System Capital Cost \$50,00 MPE Capital Cost \$50,00 MPE System Capital Cost \$2,969,00 MPE System Capital Cost \$2,969,00 MPE System Capital Cost \$3,100,00 MPE Capital Cost \$3,100,00 Total MPE O&M Annual Costs \$949,00 Years of O&M \$949,00	5 I				6,000
Subtotal 816,90 Subtotal 816,90 Contingency (5%) 40,80 Project Management (10%) 40,80 Total MPE O&M Annual Costs 949,00 Summary MPE System Capital Cost (assume 2 weeks) \$2,969,00 MPE System Startup Cost (assume 2 weeks) \$50,00 MPE Capital Cost \$50,00 MPE Capital Cost \$50,00 MPE System Startup Cost (assume 2 weeks) \$50,00 MPE Capital Cost \$50,00 MPE Capital Cost \$50,00 Years of O&M \$949,00					3,600
Reporting 50,00 Contingency (5%) 40,84 Project Management (10%) 40,80 Total MPE O&M Annual Costs 949,00 Summary MPE System Capital Cost \$2,969,00 MPE System Startup Cost (assume 2 weeks) \$50,00 MPE Capital Cost \$50,00 MPE Capital Cost \$50,00 MPE Capital Cost \$50,00 MPE Capital Cost \$50,00 Years of O&M \$949,00	Health and safety equipment	500 month	12		<u>6,000</u>
Contingency (5%) Project Management (10%)40,84 40,86Total MPE O&M Annual Costs949,00SummaryMPE System Capital Cost MPE System Startup Cost (assume 2 weeks) MPE Capital Cost\$2,969,00 \$50,00 \$50,00MPE Capital Cost\$2,969,00 \$50,00 \$53,100,00Total MPE O&M Annual Costs Years of O&M\$949,00 \$3,100,00				Subtotal	816,900
Contingency (5%) Project Management (10%)40,84 40,86Total MPE O&M Annual Costs949,00SummaryMPE System Capital Cost MPE System Startup Cost (assume 2 weeks) MPE Capital Cost\$2,969,00 \$50,00 \$50,00MPE Capital Cost\$2,969,00 \$50,00 \$53,100,00Total MPE O&M Annual Costs Years of O&M\$949,00 \$3,100,00	Reporting				50,000
Project Management (10%) 40,80 Total MPE O&M Annual Costs 949,00 Summary MPE System Capital Cost \$2,969,00 MPE System Startup Cost (assume 2 weeks) \$50,00 MPE Capital Cost \$3,100,00 Total MPE O&M Annual Costs \$949,00 Years of O&M \$949,00	Contingency (5%)				40,845
Summary MPE System Capital Cost \$2,969,00 MPE System Startup Cost (assume 2 weeks) \$50,00 MPE Capital Cost \$3,100,00 Total MPE 0&M Annual Costs \$949,00 Years of 0&M 1					40,800
MPE System Capital Cost\$2,969,00MPE System Startup Cost (assume 2 weeks)\$50,00MPE Capital Cost\$3,100,00Total MPE O&M Annual Costs\$949,00Years of O&M1	Total MPE O&M Annual Costs				949,000
MPE System Startup Cost (assume 2 weeks) \$50,00 MPE Capital Cost \$3,100,00 Total MPE 0&M Annual Costs \$949,00 Years of 0&M 1	Summary				
MPE System Startup Cost (assume 2 weeks) \$50,00 MPE Capital Cost \$3,100,00 Total MPE 0&M Annual Costs \$949,00 Years of 0&M 1	MPE System Capital Cost				\$2,969,000
Total MPE O&M Annual Costs \$949,00 Years of O&M					\$50,000
Years of O&M	MPE Capital Cost				\$3,100,000
Years of O&M	Total MPE O&M Annual Costs				\$949,000
MPE Total 17,400,00	Years of O&M				15
	MPE Total				17,400,000

Area 17 MPE Cost Assumptions:

- Investigation to refine vertical and horizontal treatment area will be conducted, cost for investigation is not included as a separate line item as it is assumed it will be covered by the cost savings from reducing the treatment area.
- Base cost assumes pilot test of 2 MPE wells and full-scale MPE of 9 wells
- MPE Wells installed to a depth of 22 feet with 10 foot treatment interval (12-22 ft)
- MPE Wells installed assuming a 15 foot ROI
- · Assume pilot test wells will be utilized in full-scale system operation
- Sonic drilling for all wells
- Cost estimates are engineering estimates, +/- 30 to 50 percent

Pilot Test Work Plan and update Health and Safety Plan								
Items	Unit	Qty	Cost	Extension	Assumptions			
1. Labor								
Principal Engineer/Scientist	HR	35	\$143	\$5,009				
Sr Engineer/Sci II	HR		\$131	\$0				
Sr Engineer/Sci I	HR	70	\$124	\$8,681				
Sr Project Engineer/Scientist II	HR		\$108	\$0				
Sr Project Engineer/Scientist I	HR	140	\$98	\$13,653				
Project Engineer/Scientist	HR		\$89	\$0				
Engineer/Scientist	HR	70	\$73	\$5,120				
	Lab	or Markup	0%	\$0				
	Project Ma	Project Management		\$3,246				

Project Management Work Plan Subtotal

\$3,246 \$36,000

ilot Test Well Drilling					
1 Labor and expenses include oversight of injection well insta					
development. Geologist to oversee drilling and developmer	nt.				
2 Drilling					
Treatment depth 22 ft					
Treatment thickness 10 ft					
MPE Well ROI 15 ft					
Number of MPE Wells: 2 wells					
MPE Well Depth 22 ft					
Monitoring Wells 8 wells					
Monitoring Well Depth 22 ft					
Drilling rate 50 ft/day					
MPE wells are 4" diameter with 10' SS screens					
MWs are 2" diameter with PVC screens					
3 Other					
PID rental for drilling (not needed for well development)					
Survey new injection and monitoring wells					
Hours per well for setup/decon/move 1 hr					
Hours per well for development 1.5 hr					1
ems	Unit	Qty	Cost	Extension	Assumptions
Labor					
Principal Engineer/Scientist	HR	9	\$143	\$1,288	
Sr Engineer/Sci II	HR		\$131	\$0	
Sr Engineer/Sci I	HR	14	\$124	\$1,736	
Sr Project Engineer/Scientist II	HR		\$108	\$0	
			1		Coordination,
Sr Project Engineer/Scientist I	HR	28	\$98	\$2,731	Contracting, Field
	1.113	20	φυυ	ψ2,701	Support
Project Engineer/Scientist	HR		\$89	\$0	oupport
Flojeci Engineen/Scientist	ПК		409	φΟ	
					Field 12 hrs/day,
Engineer/Scientist	HR	55	\$73	\$4,023	day utility located
5					and KO Meeting
					5
ARCADIS Expenses		_		.	
Field vehicle	DAY	5	\$115	\$575	
Mileage	MI	300	\$0.45	\$135	
Meals	DAY	5	\$50	\$250	
Hotel	DAY	4	\$120	\$480	
PPE	DAY	5	\$25	\$125	
PID	DAY	5	\$75	\$375	
Subcontractor Drilling	•				•
Mob/Demob	ls	1	\$1,200	\$1,200	
4" x 6" Sonic Drilling with Continuous Sampling	ft	176	\$32	\$5,632	
7" x 8" Sonic Drilling with Continuous Sampling	ft	44	\$45	\$1,980	
Sonic Bedrock Drilling	ft	0	\$60	\$0	
2" PVC Well Installation (Labor and Materials)	ft	176	\$16	\$2,816	
2" x 5' SS Screen (Labor and Materials)	each	0	\$350 \$700	<u>\$0</u>	
2" x 10' SS Screen (Labor and Materials)	each	0	\$700	\$0	
4" PVC Well Installation (Labor and Materials)	ft	24	\$24	\$576	
4" x 10' SS Screen (Labor and Materials)	each	2	\$1,300	\$2,600	
Development	hr	15	\$175	\$2,625	
Well Completions	each	10	\$300	\$3,000	
Drums	each	9	\$60	\$540	
Move, Setup, Decon, IDW Handling (sonic)	hr	10	\$325	\$3,250	
Stand-By	hr		\$400	\$0	
Stanu-Dy	<u> </u>		,	· ·	•
. Other		9	\$100	\$900	
. Other	drum				1
Dether IDW - Disposal Soil	drum drum		\$100		
. Other	drum drum	3	\$100	\$300	Assume 20 drum
Dether IDW - Disposal Soil			\$100 \$200	\$300	
Other IDW - Disposal Soil IDW - Disposal Water IDW - Transportation	drum trip	3	\$200	\$200	Assume 20 drum per trip
Defer IDW - Disposal Soil IDW - Disposal Water	drum trip LS	3 1 1	\$200 \$500	\$200 \$500	
Other IDW - Disposal Soil IDW - Disposal Water IDW - Transportation Survey new wells	drum trip LS Lab	3 1 1 or Markup	\$200 \$500 0%	\$200 \$500 \$0	
Other IDW - Disposal Soil IDW - Disposal Water IDW - Transportation Survey new wells	drum trip LS Lab on ARCADIS	3 1 or Markup Expenses	\$200 \$500 0% 15%	\$200 \$500 \$0 \$235	
Other IDW - Disposal Soil IDW - Disposal Water IDW - Transportation Survey new wells	drum trip LS Lab on ARCADIS	3 1 or Markup Expenses o on Subs	\$200 \$500 0%	\$200 \$500 \$0	Assume 20 drum per trip

1 Labor and expenses includes personnel to perform the	e MPE pilot test				
ems	Unit	Qty	Cost	Extension	Assumptions
. Labor					
Principal Engineer/Scientist	HR	40	\$143	\$5,724	
Sr Engineer/Sci II	HR		\$131	\$0	
Sr Engineer/Sci I	HR	93	\$124	\$11,534	Field Support
Sr Project Engineer/Scientist II	HR		\$108	\$0	Field Support
Sr Project Engineer/Scientist I	HR	132	\$98	\$12,873	Coordination, field support
Project Engineer/Scientist	HR	264	\$89	\$23,507	Field - 2 People 5 days, twice weekl for 3 weeks
Engineer/Scientist	HR		\$73	\$0	
a. ARCADIS Expenses					
Field vehicle	DAY	22	\$115	\$2,530	
Mileage	MI	1320	\$0.45	\$594	
Meals	DAY	22	\$50	\$1,100	
Hotel	DAY	8	\$120	\$960	
Level D PPE	DAY	22	\$25	\$550	
PID rental	DAY	11	\$75	\$825	
Dreager Chip Reader	DAY	11	\$60	\$660	
Dreager Chips	EACH	8	\$200	\$1,600	
WL Meter	DAY	11	\$37	\$407	
Gauges, meters, Magnehelic	LS	2	\$1,000	\$2,000	
Generator Rental	WK	4	\$600	\$2,400	
Generator Delivery	LS	1	\$100	\$100	
Diesel for generator	GAL	840	\$4	\$3,360	24 hrs, 30 days, 2 gal/hr, @ 4.00/ga
Subcontractor - Lab	·				•
Lab - VOC Vapor samples	EACH	20	\$125	\$2,500	
Lab- VOCs 8260	EACH	20	\$75	\$1,500	
Lab- Metals and Na, Al, Mn 6010	EACH	20	\$150	\$3,000	
Lab- TDS SM 2540C	EACH	20	\$20	\$400	
Lab- Fe 200.7	EACH	20	\$10	\$200	
Lab- Alkalinity 310.1	EACH	20	\$20	\$400	
Lab- TOC 9060	EACH	20	\$20	\$400	
Subcontractor					
Mobilization and same day set up	LS	1	\$1,150	\$1,150	
System Rental	MO	1	\$20,000	\$16,000	
Technician	DAY	5	\$1,050	\$5,250	
Demob/Remob (weekend)	EACH		\$800	\$0	
Vapor Carbon Drums (180lb drums)	LS	2	\$650	\$1,300	
Vapor Carbon Drums (180lb drums) Credit	LS	2	\$500	\$1,000	
Frac Tank	MO	2	\$1,000	\$2,000	
Non-TSCA Regulated LNAPL Disposal	Gal	20000	\$1	\$18,000	Assume 1 gallon per month per we
Non-TSCA Regulated LNAPL Transportation	Trip	4	\$1,000	\$4,000	Assume 6000 ga per trip
Demobilization	LS	1	1,150	1,150	ľ.
	kup on ARCADIS	p on Subs	0% 15% 15% 10%	\$0 \$2,938 \$8,738 \$5,364	

Project Management MPE Pilot Test Subtotal

\$5,364 \$147,000

1 Labor to design system					
tems	Unit	Qty	Cost	Extension	Assumptions
1. Labor					
Principal Engineer/Scientist	HR	100	\$174	\$17,400	
Sr Engineer/Sci II	HR		\$145	\$0	
Sr Engineer/Sci I	HR	200	\$135	\$27,000	
Sr Project Engineer/Scientist II	HR		\$115	\$0	
Sr Project Engineer/Scientist I	HR	400	\$98	\$39,200	
Project Engineer/Scientist	HR		\$85	\$0	
Engineer/Scientist	HR	200	\$68	\$13,600	
	Lab	or Markup	0%	\$0	
	Project Ma	Project Management		\$9,720	

Full-Scale MPE Design Subtotal

\$107,000

Meals		DAY	1	\$50	\$50	
Meals		DAY	1	\$50	\$50	
Hotel		DAY	0	\$120	\$0	
PPE						
		DAY	1	\$25	\$25	
PID		DAY	1	\$75	\$75	
Subcontractor Drilling						
Mob/Demob		ls	1	\$1,200	\$1,200	
	ampling	ft	I	\$32	\$0	
4" x 6" Sonic Drilling with Continuous Sa			454	¥ -		
7" x 8" Sonic Drilling with Continuous Sa	ampling	ft	154	\$45	\$6,930	
Sonic Bedrock Drilling		ft	0	\$60	\$0	
	oriale)					
2" PVC Well Installation (Labor and Mat		ft	0	\$16	\$0	
2" x 5' SS Screen (Labor and Materials)		each	0	\$350	\$0	
	3)	each	0	\$700	\$0	
		ft	84	\$24	\$2,016	
2" x 10' SS Screen (Labor and Materials	oriale)					
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Mat		R		\$1,300	\$9,100	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Mat			7			
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials		each	7			
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development			7 0	\$175	\$0	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development		each hr	0	\$175		
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions		each hr each	0 7	\$175 \$300	\$2,100	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development		each hr	0	\$175		
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums	5)	each hr each each	0 7 10	\$175 \$300 \$60	\$2,100 \$600	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions	5)	each hr each	0 7	\$175 \$300	\$2,100	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so	5)	each hr each each hr	0 7 10	\$175 \$300 \$60 \$325	\$2,100 \$600 \$2,275	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so	5)	each hr each each hr	0 7 10	\$175 \$300 \$60 \$325	\$2,100 \$600 \$2,275	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums	5)	each hr each each	0 7 10	\$175 \$300 \$60	\$2,100 \$600	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By	5)	each hr each each hr	0 7 10	\$175 \$300 \$60 \$325	\$2,100 \$600 \$2,275	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By	5)	each hr each each hr	0 7 10	\$175 \$300 \$60 \$325	\$2,100 \$600 \$2,275	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By Other	5)	each hr each each hr hr	0 7 10 7	\$175 \$300 \$60 \$325 \$400	\$2,100 \$600 \$2,275 \$0	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By Other	5)	each hr each each hr hr	0 7 10 7	\$175 \$300 \$60 \$325 \$400	\$2,100 \$600 \$2,275 \$0	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By Other IDW - Disposal Soil	5)	each hr each each hr hr drum	0 7 10 7 10	\$175 \$300 \$60 \$325 \$400 \$100	\$2,100 \$600 \$2,275 \$0 \$1,000	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By Other	5)	each hr each each hr hr	0 7 10 7	\$175 \$300 \$60 \$325 \$400	\$2,100 \$600 \$2,275 \$0	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By Other IDW - Disposal Soil	5)	each hr each each hr hr drum	0 7 10 7 10	\$175 \$300 \$60 \$325 \$400 \$100	\$2,100 \$600 \$2,275 \$0 \$1,000	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By Other IDW - Disposal Soil IDW - Disposal Water	5)	each hr each each hr hr drum drum	0 7 10 7 10 3	\$175 \$300 \$60 \$325 \$400 \$100 \$100	\$2,100 \$600 \$2,275 \$0 \$1,000 \$300	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 0 Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By Dther IDW - Disposal Soil	5)	each hr each each hr hr drum	0 7 10 7 10	\$175 \$300 \$60 \$325 \$400 \$100	\$2,100 \$600 \$2,275 \$0 \$1,000	Assume 20 drur per trip
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By Other IDW - Disposal Soil IDW - Disposal Water IDW - Transportation	5)	each hr each hr hr drum drum trip	0 7 10 7 10 3	\$175 \$300 \$60 \$325 \$400 \$100 \$100 \$200	\$2,100 \$600 \$2,275 \$0 \$1,000 \$300 \$200	Assume 20 drun per trip
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By Other IDW - Disposal Soil IDW - Disposal Water	5)	each hr each hr hr drum drum trip LS	0 7 10 7 10 3 1 1	\$175 \$300 \$60 \$325 \$400 \$100 \$100 \$200 \$500	\$2,100 \$600 \$2,275 \$0 \$1,000 \$300 \$200 \$500	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By Other IDW - Disposal Soil IDW - Disposal Water IDW - Transportation	s) nic)	each hr each hr hr drum drum trip LS LS	0 7 10 7 10 3 1 1 0 or Markup	\$175 \$300 \$60 \$325 \$400 \$100 \$100 \$200 \$500 0%	\$2,100 \$600 \$2,275 \$0 \$1,000 \$300 \$200	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By Other IDW - Disposal Soil IDW - Disposal Water IDW - Transportation	s) nic)	each hr each hr hr drum drum trip LS LS	0 7 10 7 10 3 1 1 0 or Markup	\$175 \$300 \$60 \$325 \$400 \$100 \$100 \$200 \$500 0%	\$2,100 \$600 \$2,275 \$0 \$1,000 \$300 \$200 \$500 \$0	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By Other IDW - Disposal Soil IDW - Disposal Water IDW - Transportation	s) nic)	each hr each hr hr drum drum trip LS Lab on ARCADIS	0 7 10 7 10 3 1 1 or Markup Expenses	\$175 \$300 \$60 \$325 \$400 \$100 \$100 \$200 \$500 0% 15%	\$2,100 \$600 \$2,275 \$0 \$1,000 \$300 \$200 \$500 \$0 \$33	
2" x 10' SS Screen (Labor and Materials 4" PVC Well Installation (Labor and Materials 4" x 10' SS Screen (Labor and Materials Development Well Completions Drums Move, Setup, Decon, IDW Handling (so Stand-By Other IDW - Disposal Soil IDW - Disposal Water IDW - Transportation	s) nic)	each hr each hr hr drum drum trip LS Lab on ARCADIS	0 7 10 7 10 3 1 1 or Markup Expenses o on Subs	\$175 \$300 \$60 \$325 \$400 \$100 \$100 \$200 \$500 0%	\$2,100 \$600 \$2,275 \$0 \$1,000 \$300 \$200 \$500 \$0	

1 Labor and expenses includes personnel tems	Unit	Qty	Cost	Extension	Assumptions
1. Labor	Onit	હાપ્ર	COSI	Extension	Assumptions
Principal Engineer/Scientist	HR	30	\$143	\$4,293	
Sr Engineer/Sci II	HR	30	\$131	<u>\$4,293</u> \$0	
Sr Engineer/Sci I	HR	120	\$124	\$14,882	Field Support
Sr Project Engineer/Scientist II	HR	120	\$108	\$0	Field Support
			ψ100		Coordination, field
Sr Project Engineer/Scientist I	HR	300	\$98	\$29,256	support, start up
Project Engineer/Scientist	HR	360	\$89	\$32,054	Oversight 5 days electrical, 10 days subgrade, 5 days system, 10 days start up
Engineer/Scientist	HR		\$73	\$0	
a. ARCADIS Expenses					
Field vehicle	DAY	35	\$115	\$4,025	
Mileage	MI	2100	\$0.45	\$945	
Meals	DAY	35	\$50	\$1,750	
Hotel	DAY	29	\$120	\$3,480	
Level D PPE	DAY	35	\$25	\$875	
PID rental	DAY	30	\$75	\$2,250	
Inderground					
Mob/Demobilization	LS	1	\$5,000	\$5,000	
Trenching	LF	300	\$10	\$3,000	estimate for contractor labor and materials
MPE piping	LF	1170	\$5	\$5,850	estimate for contractor labor and materials
Backfill/Compaction	LF	300	\$25	\$7,500	estimate for contractor labor and materials
Surface Restoration	LF	300	\$5	\$1,500	estimate for contractor labor and materials
MPE Well Connections	EACH	9	\$500	\$4,500	estimate for contractor labor and materials
IDW- Disposal	TON	227	\$21	\$4,647	
IDW - Transportation	TRIP	4	\$200	\$800	Assume 68 tons per trip (40 cy)
Other Subs/Materials/Equipment					
Electrician	LS	1	\$15,000	\$15,000	
Electrical Drop	LS	2	\$20,000	\$40,000	
Equipment Trailer Mob/Unload	LS	1	\$5,000	\$5,000	
Carbon First Fill (liquid/vapor)	LB	4000	\$3	\$12,000	4 1000 lb Vessels
System Construction	LS	1	\$120,000	\$120,000	Conex container and equipment (blowers, compressor, etc.)
Survey	LS	1	\$1,500	\$1,500	survey piping
	Markup on ARCADIS	p on Subs nagement	0% 15% 15% 10%	\$0 \$1,999 \$33,945 \$8,049 \$364,099	

1 Labor and expenses for annual O&M	Unit	0.44	Cast	Extension	Accumutions
ems . Labor	Unit	Qty	Cost	Extension	Assumptions
Principal Engineer/Scientist	HR	24	\$143	\$3,434	
Sr Engineer/Sci II	HR	24	\$131	<u>\$0,434</u>	
Sr Engineer/Sci I	HR	48	\$124	\$5,953	
Sr Project Engineer/Scientist II	HR	-10	\$108	<u>\$0</u>	
Sr Project Engineer/Scientist I	HR	96	\$98	\$9,362	
Project Engineer/Scientist	HR		\$89	\$0	
Engineer/Scientist	HR	192	\$73	\$14,043	Monthly O&M plus 4 troubleshooting visits
ARCADIS Expenses					
Field vehicle	DAY	16	\$115	\$1,840	_
Mileage	MI	1920	\$0.45	\$864	
Meals	DAY	16	\$50	\$800	
Hotel	DAY	15	\$120	\$1,800	
Level D PPE	DAY	16	\$25	\$400	
PID rental ubs/Materials/Equipment	DAY	16	\$75	\$1,200	
Carbon Fill/Disposal Utilities - Electric VOC - Air	LB MO EACH	16000 12 36	\$3 \$556 \$125	\$48,000 \$6,669 \$4,500	2 1000 lb Vessels (vapor) changed out twice per year 2 GAC changed every other month Monthly Influent,
Non-TSCA Regulated LNAPL Disposal	Gal	4238	\$123	\$4,238	Midfluent, Effluent Assume 4.3 gal per well per day fo 30% of the wells based on ASTM E2556
Non-TSCA Regulated LNAPL Transportation	Trip	78	\$200	\$15,600	Assume 20 drums per trip or 1 trip pe year
Water Disposal	1000 Gal	2365.2	\$4.00	\$9,461	Assume 0.5 gpm per well
Misc. supplies	Markup on ARCADIS Markuj Project Ma Ar Yea	p on Subs	\$2,000 0% 15% 15% 10%	\$2,000 \$0 \$1,036 \$13,570 \$3,279 \$149,000 15 \$2,235,000	

O&M:	\$2,235,000
Full-Scale Well Installation/System Installation:	\$398,000
Pilot/Design:	\$333,000

MPE 17 Total:	\$2,970,000

Appendix E Cost Detail Acronyms and Abbreviations

RCRA Corrective Action Corrective Measures Study RACER Plants 2, 3, and 6 Lansing, Michigan

Acronyms and Abbreviations:

AI	aluminum	MW	monitoring well
AOP	advanced oxidation process	Na	sodium
cond	conductivity	NA	not applicable
су	cubic yards	O&M	operations and maintenance
Demob	demobilize	PID	photoionization detector
Fe	iron	PLC	programmable logic controller
FESL	Flammability and Explosivity Screening Level	PM	project management
ft	feet	POTW	publically owned treatment works
ft ²	square feet	PPE	personal protective equipment
GAC	granular-activated carbon	PVC	polyvinyl chloride
g/L	grams per liter	Qty	quantity
gpm	gallons per minute	RC	Restrictive Covenant
GW	groundwater	Remob	remobilize
hr	hour	ROI	radius of influence
hrs	hours	RW	recovery well
IDW	investigation derived waste	Sci	scientist
IP	interface probe	SM	standard method
ISCO	in-situ chemical oxidation		
IW	injection well	Sr	senior
KO	knock out	SS	stainless steel
kw	kilowatt	SVE	soil vapor extraction
Lab	laboratory	TDS	total dissolved solids
lb	pound	TSCA	Toxic Substance Control Act
lbs	pounds	VFD	variable frequency drive
LNAPL	light non-aqueous phase liquid	VI	vapor intrusion
ls	lump sum	VMPs	vapor monitoring points
MCLs	maximum contaminate levels	VOC	volatile organic compounds
mi	mile	WDI	Wayne Disposal, Inc.
misc	miscellaneous	WL	water-level meter
Mn	manganese	yr	year
mob	mobilize	yrs	years
MPE	multi-phase extraction		