

8615 W. Bryn Mawr Avenue, Chicago, Illinois 60631-3501 Telephone: 773-380-9933 Facsimile: 773-380-6421 www.CRAworld.com

May 9, 2006

Ms. Laura C. Price Remedial Section/Voluntary Cleanup Unit Bureau of Environmental Remediation Kansas Department of Health & Environment 1000 SW Jackson, Suite 410 Topeka, Kansas 66612-1367 Reference No. 012559-53

Pricel

Dear Ms. Price:

Re:

Supplemental Confirmation Sampling Results

Voluntary Cleanup Investigation

Former GM Fairfax I Plant

Kansas City, Kansas

Conestoga-Rovers and Associates (CRA) on behalf of General Motors Corporation (GM) is providing this correspondence to the Kansas Department of Health & Environment (KDHE) in response to KDHE correspondence dated November 21, 2005 (KDHE correspondence). The KDHE correspondence approved CRA's supplemental confirmation sampling work plan dated October 13, 2005 (work plan). The work plan proposed to advance five (5) soil borings in the vicinity of previously advanced soil boring SB-110, install three (3) nested monitoring wells in the southern portion of the site, install two (2) nested monitoring wells in the northeastern portion of the site, collect additional groundwater samples from the monitoring well network, and collect additional groundwater elevation data.

1.0 INVESTIGATION RESULTS

The following sections will summarize work plan activities completed between December 2005 and January 2006 in response to KDHE correspondence.

SB-110 Area Investigation

In December 2005, five (5) soil borings (SB-118 through SB-122) were advanced between 10 and 12 feet below ground surface (bgs) in the vicinity of soil boring SB-110. The purpose of these borings was to verify the tetrachloroethene concentration previously detected at SB-110 and to delineate tetrachloroethene surrounding SB-110. SB-118 was advanced 20 feet north of SB-110, SB-119 was advanced 20 feet east of SB-110, SB-120 was advanced 20 feet south of SB-110, SB-121 was advanced 20 feet west of SB-110, and SB-122 was advanced in approximately the same location as SB-110. One (1) soil sample was collected from each soil boring location and submitted for tetrachloroethene laboratory analysis. The locations of soil borings SB-118 through SB-122 are illustrated on Figure 1 and the soil boring logs are provided in Attachment A. Soil laboratory analytical results are summarized in Table 1, laboratory

ISO 9001

May 9, 2006

2

Reference No. 012559-53

analytical reports are provided in Attachment B, and data validation memoranda are provided in Attachment C.

Tetrachloroethene concentrations were initially compared to the KDHE Tier 2 soil to groundwater protection pathway objective for a non-residential scenario (Tier 2 soil objective). It should be noted that the Tier 2 soil objective for tetrachloroethene (0.18 mg/kg) was selected for comparison purposes only and may not be appropriate as the remediation objective to address tetrachloroethene concentrations in the vicinity of SB-110.

Tetrachloroethene concentrations were below the Tier 2 soil objective in soil samples SB-120 (10-12 ft) and SB-121 (9-10 ft). The tetrachloroethene laboratory detection limit was above the KDHE Tier 2 soil objective in soil samples SB-118 (9-10 ft) and SB-122 (9-10 ft). The tetrachloroethene concentration in soil sample SB-119 (10-12 ft) was above the KDHE Tier 2 soil objective.

Tetrachloroethene concentrations were below the KDHE Tier 2 groundwater pathway objective for a non-residential scenario (Tier 2 groundwater objective) in groundwater samples collected in December 2004 from monitoring wells MW-1, MW-1A, MW-105, MW-109, MW-110, MW-110A, MW-111, and MW-160A. These results were previously provided to the KDHE in the Results of Confirmatory Sampling Program Report dated April 2005 (April 2005 Report). Tetrachloroethene was also not observed in groundwater samples collected in January 2006 from monitoring wells MW-116A/B through MW-119A/B, and MW-121A/B.

Monitoring well locations are provided on Figures 2 through 4. Groundwater laboratory analytical results and groundwater elevation data are summarized in Table 2 and Table 3 respectively. Laboratory analytical reports are provided in Attachment B, and data validation memoranda are provided in Attachment C.

A groundwater contour map, based on water level measurements in December 2005 is provided on Figure 3 and analytes detected in the groundwater are provided on Figure 4

Upgradient Monitoring Well Installation, Development, and Sampling

In December 2005, three (3) nested monitoring wells (MW-116A/B through MW-118A/B) were installed in the southern portion of the site to evaluate the quality of groundwater that is migrating onto the site. MW-116A/B through MW-118A/B are located generally upgradient of the former Fairfax I Assembly Plant building¹. Each nested monitoring well consists of one shallow monitoring well screened from either 20 to 30 feet bgs or 24.5 to 34.5 feet bgs and one intermediate well screened from either 48.5 to 58.5 feet bgs or 49 to 59 feet bgs. A licensed

¹ Based on groundwater flow towards the Missouri River.

May 9, 2006

3

Reference No. 012559-53

surveyor was retained to survey the location and elevation of MW-116A/B through MW-118A/B.

In January 2006, MW-116A/B through MW-118A/B were developed. Groundwater samples were collected from these locations and submitted for laboratory analysis of target analyte list (TAL) volatile organic compounds (VOCs). Chloromethane, cis-1,2-dichloroethene, trans-1,3-dichloroethene, trichloroethene, and vinyl chloride were detected in one or more of the samples collected from these locations. The concentrations of these constituents were however, below Tier 2 groundwater objectives.

Downgradient Monitoring Well Installation, Development, and Sampling

In December 2005, two (2) nested monitoring wells (MW-119A/B and MW-121A/B) were installed in the northeastern portion of the site to evaluate the quality of groundwater that is migrating towards the Missouri River. MW-119A/B and MW-121A/B are located generally downgradient of the former Fairfax I Assembly Plant building². Each nested monitoring well consists of one shallow monitoring well screened from either 23.5 to 33.5 feet bgs or 25 to 35 feet bgs and one intermediate well screened from either 48.5 to 58.5 feet bgs or 49 to 59 feet bgs. A licensed surveyor was retained to survey the location and elevation of MW-119A/B and MW-121A/B.

In January 2006, MW-119A/B and MW-121A/B were developed. Groundwater samples were collected from these locations and submitted for laboratory analysis of TAL-VOCs. Carbon disulfide was detected in the sample collected from MW-119A. The carbon disulfide concentration was however, less than the Tier 2 groundwater objective.

Groundwater Elevation Data

Between December 2005 and January 2006, one or more groundwater elevation measurements were collected from monitoring wells MW-1, MW-1A, MW-1C, MW-102A, MW-102C, MW-103A, MW-103B, MW-103C, MW-104, MW-105, MW-108 through MW-111, MW-110A, MW-160A, MW-116A/B through MW-119A/B, and MW-121A/B.

2.0 ADDITIONAL GROUNDWATER SAMPLING

As proposed in the work plan, CRA will collect a second round of groundwater samples from nested MW-116A/B through MW-119A/B, and MW-121A/B and submit the samples for VOC laboratory analysis. CRA intends to collect these samples in the spring of 2006.

² Based on groundwater flow towards the Missouri River.

May 9, 2006

4

Reference No. 012559-53

3.0 SUMMARY OF FINDINGS

Soil samples exceeding KDHE Tier 2 soil objectives with respect to tetrachloroethene is limited to the vicinity of soil borings SB-110 and SB-119 at approximately 10 feet bgs. A potable water well is not present on-site, therefore the soil to groundwater pathway is incomplete. Tetrachloroethene concentrations are below the KDHE soil pathway objectives for a non-residential scenario (direct contact standard).

Groundwater samples collected from nested monitoring wells MW-116A/B through MW-119A/B, and MW-121A/B were all below Tier 2 groundwater objectives for TAL-VOCs.

4.0 RECOMMENDATIONS

CRA recommends that the exceedences of tetrachloroethane (Tier 2 soil to groundwater) in the soil at the SB-110 area be addressed through a combination of groundwater monitoring or use of an environmental use control. The groundwater monitoring could be performed in conjunction with the monitoring program associated with the remedial action that is planned for the area near MW-103A. CRA is currently evaluating final options and remedial design for the localized area of groundwater impacts at MW-103A (refer to the CRA document dated August, 2001 "Pre-design Investigation Work Plan" submitted to the KDHE).

If you have any questions regarding the Supplemental Confirmation Sampling Results, please do not hesitate to call me.

Yours truly,

CONESTOGA-ROVERS & ASSOCIATES

Phil Harvey

PH/ko/1 Attachments

c.c.: Ken Richards, GM (2)

Kevin Brown, GM

TABLE 1

SOIL ANALYTICAL RESULTS SUPPLEMENTAL CONFIRMATION SAMPLING RESULTS FORMER GM FAIRFAX I PLANT SITE KANSAS CITY, KANSAS

SB-122 S-012559-122005-SC-005 12/20/2005 9 - 10 ft Duplicate	0.27 U
SB-122 S-012559-122005-SC-004 12/20/2005 9 - 10 ft	0.27 U
SB-121 S-012559-122005-SC-003 12/20/2005 9 - 10 ft	0.15
SB-120 S-012559-121505-SC-002 12/15/2005 10 - 12 ft	0.034
SB-119 S-012559-121505-SC-001 12/15/2005 10 - 12 ft	6.4.5
SB-118 S-012559-122005-SC-006 12/20/2005 9-10 ft	0.29 U ⁵
4 17 0	Son Son to Sont to Pathway ² Groundwater ³ 140 0.18
5	Sou Pathway ² 140
	units Pathwa mg/kg ⁱ 140
Sample Location Sample ID: Sample Date Sample Depth (ft bgs) ¹	Parameters VOAs ⁴ Tetrachloroethene

¹ft bgs - feet below ground surface

²Risk Based Standards for Kansas (RSK Manual), Appendix A, Tier 2, Non-Residential Soil Pathway Scenario, KDFE, March 1, 2003.

Risk Based Standards for Kansas (RSK Manual), Appendix A, Tier 2, Non-Residential Soil to Groundwater Protection Pathway Scenario, KDHE, March 1, 2003.

⁴mg/kg - milligram per kilogram

⁵U - not detected at the associated value

GROUNDWATER ANALYTICAL RESULTS SUPPLEMENTAL CONFIRMATION SAMPLING RESULTS FORMER GM FAIRFAX I PLANT SITE KANSAS CITY, KANSAS

			KANSAS CITY, KANSAS	ANSAS			
Sample Location: Sample ID: Sample Date:			MW-116A GW-011706-JH-001 1/17/2006	MW-116B GW-011706-JH-002 1/17/2006	MW-117A GW-011706-JH-003 1/17/2006	MW-117B GW-011706-JH-004 1/17/2006	MW-118A GW-011706-JH-006 1/17/2006
		Groundwater					
Parameters (mg/L) ¹	Units	Pathway ²					
Volatile Organic Compounds							
1,1,1-Trichloroethane	mg/1	0.2	$0.001~{\rm U}^3$	0.001 U	0,001 U	0.001 U	0.001 U
1,1,2,2-Tetrachloroethane	mg/1	0.001	0.001 U				
1,1,2-Trichloroethane	mg/l	0.005	0.001 U				
1,1-Dichloroethane	mg/l	1.3	0.001 U				
1,1-Dichloroethene	mg/1	0.007	0.001 U				
1,2-Dichloroethane	mg/1	0.005	0.001 U	0,001 U	0,001 U	0,001 U	0.001 U
1,2-Dichloropropane	mg/1	0.005	0.001 U	0.001 U	0.001 U	0,001 U	0.001 U
2-Butanone (Methyl Ethyl Ketone)	mg/1	2.8	0.01 U				
2-Hexanone	mg/1	SN	0.01 U				
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	I/gm	0.23	0.01 U				
Асеголе	I/g/m	0.93	0.01 U	0.01 U	O.01 U	0.01 U	0.01 U
Benzene	mg/1	0.005	0.001 U				
Bromodichloromethane	mg/1	0.08	0.001 U				
Bromoform	mg/1	0.08	0.001 U	0.001 U	0.001 U	0.001	0.001 U
Bromomethane (Methyl Bromide)	mg/1	0.01	0.001 U				
Carbon disulfide	l/gur	0.03	0.001 U				
Carbon tetrachloride	mg/1	0.005	0.001 U	0.001 U	0.001 U	0.001 U	U 100:0
Chlorobenzene	mg/l	0.1	0.001 U				
Chloroethane	mg/1	SN.	O,001 U	0.001 U	0.001 U	0,001 U	0.001 U
Chloroform (Trichloromethane)	mg/1	80'0	0.001 U				
Chloromethane (Methyl Chloride)	mg/1	0.04	0,001 U	0.001 U	0.001	0.00019 J	0.001 U
cis-1,2-Dichloroethene	mg/1	20'0	0.0005 U	0.0005 U	0.0005 U	0.0013	0.0029
cis-1,3-Dichloropropene	mg/1	NS	0.001 U	0.001 U	0,001 U	0.001 U	0.001
Dibromochloromethane	mg/1	0.08	0.001 U				
Ethylbenzene	mg/1	0.7	0,001 U	0.001 U	0.001 U	0.001	0.001 U
Methylene chloride	mg/1	0.005	0.001 U	0.001 U	0.001 U	0,001 U	0.001 U
Styrene	mg/1	0.1	0,001 U	U 100'0	0.001 U	0,001 U	0.001 U
Tetrachloroethene	mg/1	0.005	0.001 U	0.001 U	0,001 U	U 100.0	0.001 U
Toluene	mg/l	· , 1	0.001 U	0.001 U	U 100'0	U 100.0	0.001 U
trans-1,2-Dichloroethene	mg/1	0.1	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0,0005 U
trans-1,3-Dichloropropene	.1/gw	SN	0.001 U	0,001 U	0.001 U	0.001 U	0.001 U
Trichloroethene	mg/1	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.0016
Vinyl chloride	mg/1	0.002	0.001 U	0.001 U	0.001 U	0,001 U	0.001 U
Xylene (total)	mg/1	10	0.001 U	0,001 U	0.001 U	0.001 U	0.001 U
	-						

GROUNDWATER ANALYTICAL RESULTS SUPPLEMENTAL CONFIRMATION SAMPLING RESULTS FORMER GM FAIRFAX I PLANT SITE KANSAS CITY, KANSAS

sample Location: Sample ID: Sample Date:			MW-118B GW-011706-JH-005 1/17/2006	MW-119A GW-011806-JH-010 1/18/2006	MW-119A GW-011806-JH-011 1/18/2006 Duelicate	MW-119B GW-011806-JH-009 1/18/2006	<i>MW-121A</i> <i>GW-011806-JH-013</i> 1/18/2006	<i>MW-121B</i> <i>GW-011806-JH-012</i> <i>1/18/2006</i>
Parameters (mg/L)	Units	Groundwater Pathway						
Volatile Organic Compounds	1/ 2002	ć	11 100 0	. 000	11 100 0	11 100 0	11 100 0	0 001 11
1,1,1-111Litotoethane	mg/1	5.000	0.001 0.001	0.001	0.001	O 100'0	0.001 U	D 100'0
1,1,2-Trichloroethane	mg/1	0.005	0.001 U	0.001 U	D 100.0	0.001 U	0.001 U	O.001 U
1,1-Dichloroethane	mg/l	1.3	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,1-Dichloroethene	mg/1	0.007	0.001 U	0.001 U	0.001 U	0.001 U	U 100.0	0.001 U
1,2-Dichloroethane	mg/1	0.005	0.001 U	0.001 U	0.001 U	0,001 U	0.001 U	0.001 U
1,2-Dichloropropane 2-Butanona (Mathul Hituri Katoma)	mg/1 mg/1	0.005	0.000	O 100'O	U.001 U 1010	U.001 U.001	0.01 U	0.01 U
2-directly busy vectors	mg/1	SZ SZ	0.01 U	0.01 U	0.01 U	U 10'0	0.01 U	0.01 U
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	mg/1	0.23	0.01 U	0.01 U	0.01 U	0.01 U	0,01 U	0.01 U
Acetone	mg/1	0.93	0,01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Вепделе	mg/1	0.005	0,001 U	0.001 U	0,001 U	0.001 U	0.001	0.001 U
Bromodichloromethane	mg/1	80.0	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Bromoform	mg/1	0.08	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Bromomethane (Methyl Bromide)	mg/l	0,01	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	U 100.0
Carbon disultide	mg/1	0.03	0.001 U	0.0003 J	0.00035 J	0.001 U	0.001 U	0.001 U
Carbon tetrachloride	mg/1	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Chlorobenzene	mg/1	0.1	0,001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U
Chloroethane	mg/1	SN	0.001 U	0.001	0.001 U	0,001 U	0.001 U	0.001 U
Chloroform (Trichloromethane)	l/gm	0.08	0.001 U	0.001	0.001	0.001 0	0.001 U	0.001
Chloromethane (Methyl Chloride)	mg/1	0.04 0.07	0.0049	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
cis-1,3-Dichloropropene	mg/1	NS	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Dibromochloromethane	mg/1	0.08	0,001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Ethylbenzene	mg/1	0.7	U 100'0	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Methylene chloride	mg/1	0.005	U 100.0	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Styrene	mg/1	0.1	0.001 U	0.001 U	0.001 U	O.001 U	0.001 U	0.001 U
, Tetrachloroethene	mg/1	0.005	0.001 U	0.001 U	0.001 U	0,001 U	0.001 U	0.001 U
Toluene	mg/1	1	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001
trans-1,2-Dichloroethene	mg/1	0.1	0.00027 J	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
trans-1,3-Dichloropropene	mg/1	NS	0.001 U	0,001 U	0.001 U	0.001 U	0.001 U	0.001 U
Trichloroethene	mg/l	0.005	0.001 U	0.001 U	0.001 U	O.001 U	0.001 U	0.001 U
Vinyl chloride	mg/1	0,002	0.0011	0,001 U	0,001 U	O,001 U	0.001 U	0,001 U
Xylene (total)	mg/l	10	0.001 U	0.001 U	0.001 U	0.001 U	0.00 <u>1</u> U	0.001

¹mg/1- milligrams per liter
²Risk Based Standards for Kansas (RSK Marual), Appendix A, Tier 2, Non-Residential Groundwater Pathway Scenario, KDHE, March 1, 2003.
³U - not detected at the associated value
⁴NS - No regulatory standard
⁵J - estimated at the associated value

TABLE 3

GROUNDWATER ELEVATION DATA SUPPLEMENTAL CONFIRMATION SAMPLE RESULTS FORMER GM FAIRFAX I PLANT SITE KANSAS CITY, KANSAS

		Decem	ber 2005	Janua	ry 2006
	Top of Casing		Groundwater		Groundwater
Monitoring	Elevation	Water Level	Elevation	Water Level	Elevation
Well	$(ft AMSL)^{ 1}$	(ft BTOC) ²	(ft AMSL)	(ft BTOC)	(ft AMSL)
MW-1	746.43	28.49	7 17.94	NM ³	NM
MW-1A	745.93	28.58	<i>7</i> 17.35	29.02	716.91
MW-1B	745.40	NM	NM	NA	NA
MW-1C	746.13	NM	NM	29.15	716.98
MW-102A	748.82	31.72	717.10	DRY^4	DRY
MW-102B	746.13	NM	NM	NA^5	NA
MW-102C	749.20	NM	NM	32.18	717.02
MW-103A	747.71	NM^5	NM	31.82^6	715.88
MW-103B	746.30	NM	NM	29.22	717.08
MW-103C	745.90	NM	NM	28.99	716.91
MW-104	746.51	29.37	717.14	29.52	716.99
MW-105	746.70	29.57	717.13	29.74	716.96
MW-108	747.17	29.93	717.24	30.22	716.95
MW-109	746.11	28.41	717.70	28.97	717.14
MW-110	745.79	28.24	717.55	28.68	717.11
MW-110A	743.89	26.42	717.47	26.91	716.98
MW-111	74 5.96	28.37	717.59	NM	NM
MW-115A	748.07	NM	NM	DRY	DRY
MW-116A	743.54	NM	NM	26.60	716.94
MW-116B	743.37	NM	NM	26.45	716.92
MW-117A	743.72	NM	NM	26.89	716.83
MW-117B	743.75	NM	NM	26.90	716.85
MW-118A	747.02	NM	NM	30.34	716.68
MW-118B	746.86	NM	NM	30.18	716.68
MW-119A	746.69	NM	NM	30.28	716.41
MW-119B	746.65	NM	NM	30.25	716.40
MW-121A	745.53	NM	NM	29.30	716.23
MW-121B	745.80	NM	NM	29.55	716.25
MW-160A	746.56	29.83	716.73	29.99	716.57

 $^{^{1}}$ ft AMSL - feet above mean sea level

² ft BTOC - feet below top of casing

 $^{^3}$ NM - well location was not measured during this site visit

⁴ DRY - groundwater was not present within well during this site visit

 $^{^{\}rm 5}$ NA - well location was not accessible during this site visit

⁶ approximately 1.34 feet of free product was observed in MW-103A during this site visit

ATTACHMENT A STRATIGRAPHIC AND INSTRUMENTATION LOGS

CLIENT: GM

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Fairfax I Plant Site

PROJECT NUMBER: 012559

LOCATION: Kansas City, Kansas

HOLE DESIGNATION: SB-118

DATE COMPLETED: December 15, 2005

DRILLING METHOD: 41/4 HSA

FIELD PERSONNEL: S. COBB

DRILLING CONTRACTOR: HARISS DRILLING SERVICES DRILLER: C.D. ELEV. SAMPLE DEPTH ft BGS ft AMSL STRATIGRAPHIC DESCRIPTION & REMARKS **BOREHOLE** INTERVAL 'N' VALUE NUMBER REC (ft) 742.6 GROUND SURFACE No Sample Collected ٠2 Backfilled with cement bentonite grout -6 8 733.6 CL-CLAY, fine sand, friable, light gray, moist, slight odor present 188 732.6 10 END OF BOREHOLE @ 10.0ft BGS - 12 OVERBURDEN LOG 012559-BH.GPJ CRA_CORP.GDT 5/5/06 - 14 - 16 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES: CHEMICAL ANALYSIS

Page 1 of 1

PROJECT NAME: Fairfax I Plant Site

HOLE DESIGNATION: SB-119

PROJECT NUMBER: 012559

DATE COMPLETED: December 15, 2005

CLIENT: GM

DRILLING METHOD: 41/4 HSA

LOCATION: Kansas City, Kansas

FIELD PERSONNEL: S. COBB

DRILLING CONTRACTOR: HARISS DRILLING SERVICES

	CONTRACTOR: HARISS DRILLING SERVICES STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	R: C.D. BOREHOLE			SAME	LE	
DEPTH ft BGS		AMSL		NUMBER	INTERVAL	(£)	H ₁	
	GROUND SURFACE	742.0		N N	NTER	REC (ft)	'N' VALUE	
-	No Sample Collected							
- -2								
_4								
-								
-6			Backfilled with cement bentonite grout					
-8								
		:						
-10	CL-CLAY, gray, moist, slight odor	732.0		188		7		
-12	END OF BOREHOLE @ 12.0ft BGS	730.0			<u> </u>			
			·					
-14								
- 16 - 16								
NC	DTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO C	CURRENT ELEVATION TABLE			1	<u> </u>	
	CHEMICAL ANALYSIS							

Page 1 of 1

PROJECT NAME: Fairfax I Plant Site

PROJECT NUMBER: 012559

CLIENT: GM

LOCATION: Kansas City, Kansas

HOLE DESIGNATION: SB-120

DATE COMPLETED: December 15, 2005

DRILLING METHOD: 41/4 HSA

FIELD PERSONNEL: S. COBB

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	BOREHOLE	œ		_	ш	
l				NUMBER	INTERVAL	REC (ft)	'N' VALUE	
2	No Sample Collected		Backfilled with cernent bentonite grout				6	
10	CL-CLAY, brown, moist END OF BOREHOLE @ 12.0ft BGS	10.0		155			Table 1 to the second s	
-14 -16				And the state of t				

Page 1 of 1

PROJECT NAME: Fairfax I Plant Site

HOLE DESIGNATION: SB-121

PROJECT NUMBER: 012559

DATE COMPLETED: December 15, 2005

CLIENT: GM

DRILLING METHOD: 41/4 HSA

EPTH	STRATIGRAPHIC DESCRIPTION &	DEMARKS	ELEV.	BOREHOLE			SAMF	'LE	
BGS	STRATIGRAFFIIC DESCRIPTION &		AMSL		H H	*VAL	£)	LUE	
		GROUND SURFACE	742.2		NUMBER	INTERVAL	REC (ff)	'N' VALUE	
	No Sample Collected		-						
2									•
						1			
4									
Ì				Backfilled w	th				
				Backfilled wing cement bentonite					
6				grout					
-									
8									
	•		733.2						
	CL-CLAY, firm, brown, moist		733.2		155	\bigvee	1		
10			732.2						
	END OF BOREHOLE @ 10.0ft BGS								
Ì									
12									
		•							
14									
14									
16		•							

Page 1 of 1

PROJECT NAME: Fairfax I Plant Site

CHEMICAL ANALYSIS

PROJECT NUMBER: 012559

HOLE DESIGNATION:

SB-122

DATE COMPLETED: December 15, 2005

DRILLING METHOD: 41/4 HSA

CLIENT: GM FIELD PERSONNEL: S. COBB LOCATION: Kansas City, Kansas DRILLER: C.D. DRILLING CONTRACTOR: HARISS DRILLING SERVICES ELEV. SAMPLE DEPTH BOREHOLE STRATIGRAPHIC DESCRIPTION & REMARKS ft AMSL ft BGS 'N' VALUE INTERVAL NUMBER REC (#) GROUND SURFACE 742.2 No Sample Collected Backfilled with cement bentonite grout 6 8 733.2 CL-CLAY, fine sand, gray, moist, odor present 188 732.2 - 10 END OF BOREHOLE @ 10.0ft BGS - 12 OVERBURDEN LOG 012559-BH.GPJ CRA_CORP.GDT 5/5/06 - 16 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES:

Page 1 of 1

PROJECT NAME: FAIRFAX I PLANT SITE

PROJECT NUMBER: 12559

CLIENT: GM

LOCATION: KANSAS CITY, KANSAS

HOLE DESIGNATION: MW-116A

DATE COMPLETED: December 16, 2005

DRILLING METHOD: 41/4 ID HSA

FIELD PERSONNEL: S.COBB

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	MONITOR WELL			SAMI	PLE	
BGS		AMSL		NUMBER	INTERVAL	REC (ft)	N' VALUE	
	GROUND SURFACE TOP OF CASING	743.90 743.54	<u> </u>	N S	INTE	RE	> 2	
	No Sample Collected		CONCRETE					
			CONCRETE					
5			CEMENT/					
			CEMENT/ BENTONITE GROUT					
10			27 C WELL].				
			2" Ø WELL CASING					
15								
İ			8" Ø BOREHOLE					
20			BENTONITE					
			CHIPS					
5								
			SAND PACK					
10				·				
			2" Ø WELL SCREEN					
5 -	END OF BOREHOLE @ 35.0ft BGS	708.90	WELL DETAILS					
	-		Screened interval: 719,40 to 709,40ft AMSL					
ю			24.50 to 34.50ft BGS Length: 10ft					
			Diameter: 2in Slot Size: 10					
15			Material: PVC					
			Sand Pack: 721.40 to 708.90ft AMSL					
50			22,50 to 35,00ft BGS Material: SAND #5					
			,					
55								
50								
55								
70								
				-				
					<u> </u>			<u> </u>

Page 1 of 1

PROJECT NAME: FAIRFAX I PLANT SITE

PROJECT NUMBER: 12559

CLIENT: GM

LOCATION: KANSAS CITY, KANSAS

HOLE DESIGNATION: MW-116B

DATE COMPLETED: December 20, 2005

DRILLING METHOD: 41/4 ID HSA

FIELD PERSONNEL: S.COBB

EPTH	G CONTRACTOR: HARRISS DRILLING SERVICES STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	MONITOR WELL			SAMI	PLE	
BGS	GROUND SURFACE	AMSL 743.70	Mottro	NUMBER	INTERVAL	REC (ft)	'N' VALUE	
	TOP OF CASING	743.70		1	N	2	ž	
	No Sample Collected							
			CONCRETE					
						1		
			CEMENT/	İ				
0			BENTONITE GROUT					
			GROOT					
5								
			2" Ø WELL]		
.0			CASING		1			
5								
						.		
			8" Ø					
10			BOREHOLE			1		
	:			1			1	
55								
40								
1 5			BENTONITE					
			CHIPS					
			SAND PACK					
50			SAND FACE			1		
55								
			SCREEN				ŀ	
		200 70	1=1		1			
30	END OF BOREHOLE @ 60.0ft BGS	683.70	WELL DETAILS					
			Screened interval:					
65			695.20 to 685.20ft AMSL 48.50 to 58.50ft BGS					
	·		Length: 10ft					
			Diameter: 2in Slot Size: 10					İ
70			Material: PVC		1			
		1	Sand Pack: 697.20 to 683.70ft AMSL					ļ
75			46.50 to 60.00ft BGS					1
10	·		Material: SAND #5					

Page 1 of 1

PROJECT NAME: FAIRFAX I PLANT SITE

PROJECT NUMBER: 12559

CLIENT: GM

LOCATION: KANSAS CITY, KANSAS

HOLE DESIGNATION: MW-117A

DATE COMPLETED: December 13, 2005

DRILLING METHOD: 41/4 ID HSA

FIELD PERSONNEL: S.COBB

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR WELL			SAMF	PLE	
BGS	GROUND SURFACE	AMSL 744.00	1910/11/01/11/202	NUMBER	NTERVAL	REC (ft)	N' VALUE	
	TOP OF CASING	743.72		Ž.	Ĭ Ĭ	뀖	Ž Ž	
	See MW-117B for stratigraphy	,	CONCRETE					
		٠	CONCRETE					
5			BENTONITE CHIPS					
0		:	2" Ø WELL CASING					-
15			₹ Ø BOREHOLE					
20			SAND PACK					
25			2" Ø WELL SCREEN					
30 -	END OF BOREHOLE @ 30.0ft BGS	714.00	WELL DETAILS					
35 40 45			Screened interval: 724.00 to 714.00ft AMSL 20.00 to 30.00ft BGS Length: 10ft Diameter: 2in Slot Size: 10 Material: PVC Sand Pack: 726.00 to 714.00ft AMSL 18.00 to 30.00ft BGS Material: SAND #5	A A A A A A A A A A A A A A A A A A A				
50								
55							- Indiana control of the control of	
30								
35		the same of the sa						
70								

Page 1 of 1

PROJECT NAME: FAIRFAX I PLANT SITE

PROJECT NUMBER: 12559

CLIENT: GM

LOCATION: KANSAS CITY, KANSAS

HOLE DESIGNATION: MW-117B

DATE COMPLETED: December 15, 2005

DRILLING METHOD: 41/4 ID HSA

FIELD PERSONNEL: S.COBB

PTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR WELL			SAMF	PLE	
BGS	STRATIGRAFIIE DESCRIPTION & NEWFINE	AMSL		JER.	:VAL	(#)	TUE	, mdc
	GROUND SURFA TOP OF CASIN			NUMBER	INTERVAL	REC	'N' VALUE	PID (ppm)
	No Sample Collected	741.80	CONCRETE					
	CL-CLAY, with fine sand and gravel, loose, grayish brown	739.40	CONCRETE	188	\bowtie		0	203
	- no gravel, brown, moist, friable at 4.0ft BGS	2 2		288	\bowtie		0	6.5
	SC-SAND, very fine grained, little silt and clay, brown, moist	737.00 735.60		3\$\$ 4\$\$	\bowtie	·	2 3	0.5 2.3
o - 🗌	CL-CLAY, fine sand, very soft, brown, moist	733.40	CEMENT/ BENTONITE	5SS	\triangleright		3	2.4
	SC-SAND, very fine grained, light brown, moist	732.00	GROUT	6SS	\triangleright		4	1.0
_	ML-SILT, sandy, soft, brown, very fine grained, wet			788	\bowtie		7	5.
5	SP-SAND, fine grained, brown, moist			888	\bowtie		14	3.
	- grayish brown at 14.0ft BGS - medium grained, trace fine gravel, compact at			988	\bowtie		16	2.9
0	16.0ft BGS		2" Ø WELL CASING	1088	\triangleright		-27	2.
	- compact, moist, pale brown at 20.0ft BGS			1155	\boxtimes		16	. 0.:
5				1288		1	21	7.
_	- light grayish brown, wet at 26.0ft BGS			1388	∇		12	6.
	- wet-saturated at 28.0ft BGS		8" Ø	1455			16	6.
0			BOREHOLE	1588	\boxtimes]	11	N.
	- very loose, gravel (fine) content increases, gray, wet-saturated at 32.0ft BGS			1688	\boxtimes		2	N
5				1788	\geq		14	N
	the second line (fine) at 28 Off BCS			1855	\geq		20	N.
,	- extremely gravelly (fine) at 38.0ft BGS			1988	\geq	,	12	N.
0				2088	\geq	*	14	N.
	\$ 50 DOG 5			2155	\bowtie	*	18	N
5	- gravel content decreases at 44.5ft BGS		BENTONITE	2255		*	12	N
	- very gravelly (fine to coarse) at 48.0ft BGS		CHIPS	2388	\bowtie	>	12	N
0			SAND PACK	24SS 25SS			6 10	N
				26SS	\leftarrow	*	8	N
			2" Ø WELL	27SS	\leftarrow	>	20	N
5			SCREEN	2855		*	14	N
		684 00		2955		*	29	N
iO	END OF BOREHOLE @ 60.0ft BGS	684.00				4		
	22 5. 24. 27. 22. 3		WELL DETAILS Screened interval:	-				
55			695,00 to 685,00ft AMSL 49,00 to 59,00ft BGS				ſ	
,5			Length: 10ft					
			Diameter: 2in Slot Size: 10					1
o o	· .		Material: PVC					
			Sand Pack: 697,00 to 684,00ft AMSL					
75	·		47,00 to 60.00ft BGS					1.
	•		Material: SAND #5					
].					1		1	

Page 1 of 1

PROJECT NAME: FAIRFAX I PLANT SITE

PROJECT NUMBER: 12559

CLIENT: GM

LOCATION: KANSAS CITY, KANSAS

HOLE DESIGNATION: MW-118A

DATE COMPLETED: December 12, 2005

DRILLING METHOD: 41/4 ID HSA

FIELD PERSONNEL: S.COBB

EPTH	CONTRACTOR: HARRISS DRILLING SERVICES	ELEV.	MONITORIMELL			SAM	PLE	
BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL	MONITOR WELL	NUMBER	3VAL	REC (ft)	N' VALUE	
	TOP OF CASING GROUND SURFACE	747.02 744.00		NOM	INTERVAL	REC	N.	
	No Sample Collected		CONCRETE					
5			BENTONITE CHIPS					
10			2" Ø WELL CASING					
15			8" Ø BOREHOLE					
20			SAND PACK					
25			2" Ø WELL SCREEN					7.46
30	END OF BOREHOLE @ 30.0ft BGS	714,00	WELL DETAILS Screened interval: 724.00 to 714.00ft AMSL					
35			20.00 to 30.00ft BGS Length: 10ft Diameter: 2in Slot Size: 10					
40			Material: PVC Sand Pack: 726.00 to 714.00ft AMSL					
45			18.00 to 30.00ft BGS Material: SAND #5				į	
50								
55		·						
60								
65		-						
70								

Page 1 of 1

PROJECT NAME: FAIRFAX I PLANT SITE

PROJECT NUMBER: 12559

CLIENT: GM

LOCATION: KANSAS CITY, KANSAS

HOLE DESIGNATION: MW-118B

DATE COMPLETED: December 13, 2005

DRILLING METHOD: 41/4 ID HSA

FIELD PERSONNEL: S.COBB

TH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR WELL	<u> </u>	T .	SAMI	1	
GS	TOP OF CASI GROUND SURFA	AMSL ING 746.86 ACE 744.00		NUMBER	INTERVAL	REC (ft)	'N' VALUE	
	No Sample Collected		CONCRETE					
							1	
			CEMENT/					
			CEMENT/ BENTONITE GROUT			1		
					1	1		
			2" Ø WELL CASING					
			8" Ø		1			
'			8"Ø BOREHOLE			1		
	*.							
)					1			
							l	
.		-	BENTONITI	:	1			
5			BENTONITE					
)	•		SAND PAC					
5			2" Ø WELL SCREEN					
, L	SND OF BORELIOLE @ 50 Off BCS	684.00						
	END OF BOREHOLE @ 60.0ft BGS		WELL DETAILS Screened interval:					
-			695.50 to 685.50ft AMSL 48.50 to 58.50ft BGS	ļ				
5			Length: 10ft					
			Diameter: 2in Slot Size: 10					
)			Material: PVC					
			Sand Pack: 697,50 to 684,00ft AMSL					
5			46.50 to 60.00ft BGS Material: SAND #5					
			Indicator of the no				.	
	OTES: MEASURING POINT ELEVATIONS MAY CHANG			1.				_ [

Page 1 of 1

PROJECT NAME: FAIRFAX I PLANT SITE

PROJECT NUMBER: 12559

CLIENT: GM

LOCATION: KANSAS CITY, KANSAS

HOLE DESIGNATION: MW-119A

DATE COMPLETED: December 20, 2005

DRILLING METHOD: 41/4 ID HSA

FIELD PERSONNEL: S.COBB

EPTH	STRATIGRAPHIC DESCRIPTION & REM	/ARKS	ELEV.	MONITOR WELL SAMPLE	
BGS			AMSL	NUMBER NUMBER REC (ft)	
		TOP OF CASING DUND SURFACE	746.69 743.70		····
	No Sample Collected			CONCRETE	
			-		
5			,	CEMENT/ BENTONITE	į
				GROUT	·
10		•		2" Ø WELL CASING	
15				8" Ø BOREHOLE	1
20				BENTONITE CHIPS	
25		•		SAND PACK	
			<u> </u>		
30				2" Ø WELL SCREEN	
			708.70		
35	END OF BOREHOLE @ 35.0ft BGS		130.75	WELL DETAILS Screened interval:	
40				720.20 to 710.20ft AMSL 23.50 to 33.50ft BGS	
+0				Length: 10ft Diameter: 2in	
45				Slot Size: 10 Material: PVC	
	·			Sand Pack: 722,20 to 708.70ft AMSL	
50				21.50 to 35.00ft BGS Material: SAND #5	
55					
60					
65					
70					
-					
	NOTES: MEASURING POINT ELEVATIONS M		<u> </u>		1

Page 1 of 1

PROJECT NAME: FAIRFAX I PLANT SITE

PROJECT NUMBER: 12559

CLIENT: GM

LOCATION: KANSAS CITY, KANSAS

HOLE DESIGNATION: MW-119B

DATE COMPLETED: December 21, 2005

DRILLING METHOD: 41/4 ID HSA

FIELD PERSONNEL: S.COBB

PTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR WELL			SAMI	r 1	
3GS	TOP OF CASIN GROUND SURFAC	AMSL 746.65 743.60		NUMBER	INTERVAL	REC (#)	N' VALUE	
			CONCRETE	Z	Z		Z	ļ
	No Sample Collected		CONCRETE		ļ			
			CEMENT					
)			CEMENT/ BENTONITE GROUT					
			GROUT GROUT					
;				ľ				
					1			
							1	
•			2" Ø WELL CASING					
Į	·				ŀ			
						1		
					1			
			8" Ø BOREHOLE					
			BOREHOLE		ŀ			
								ŀ
,								
'		1						
5			BENTONITE					
			BENTONITE					
)			SAND PACK					
5			2" Ø WELL					
			SCREEN	ļ				
							į	
)	END OF BOREHOLE @ 60.0ft BGS	683.60	WELL DETAILS					
			Screened interval:					
,			694,60 to 684,60ft AMSL 49,00 to 59,00ft BGS					
			Length: 10ft				1	
			Diameter: 2in		1			
)	•		Slot Size: 10 Material: PVC		1	1.		
•			Sand Pack:		-			
			696.60 to 683.60ft AMSL 47.00 to 60.00ft BGS			-		
5	; 		Material: SAND #5	ŀ				1
								1
			· .	<u> </u>			<u> </u>	1

Page 1 of 1

PROJECT NAME: FAIRFAX I PLANT SITE

PROJECT NUMBER: 12559

CLIENT: GM

LOCATION: KANSAS CITY, KANSAS

HOLE DESIGNATION: MW-121A

DATE COMPLETED: December 22, 2005

DRILLING METHOD: 41/4 ID HSA

FIELD PERSONNEL: S.COBB

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR WELL			SAM	1	
BGS	TOP OF CASING GROUND SURFACE	745.53 742.80		NUMBER	INTERVAL	REC (ff)	'N' VALUE	
	No Sample Collected		CONCRETE					
;	•							
			CEMENT/ BENTONITE					
			GROUT					
0								
			2" Ø WELL CASING					
5								
			8" Q					
,,			8" Ø BOREHOLE					
20			BENTONITE					
			CHIPS					
25								
ŀ			SAND PACK	ļ				
30								
.			2" Ø WELL SCREEN					
			SCREEN					
35	END OF BOREHOLE @ 35.0ft BGS	707.80	WELL DETAILS					
			Screened interval:					
10			717.80 to 707.80ft AMSL 25.00 to 35.00ft BGS					
ļ			Length: 10ft Diameter: 2in		ļ.			
			Stot Size: 10					
15			Material: PVC Sand Pack:					
			719.80 to 707.80ft AMSL 23.00 to 35.00ft BGS		l .			
50			Material: SAND #5					
55]			
,,,								
				ļ				
30								
		1			[
35			1					
~	•							
}			,					
70	·					1		
								1

Page 1 of 1

PROJECT NAME: FAIRFAX I PLANT SITE

PROJECT NUMBER: 12559

CLIENT: GM

LOCATION: KANSAS CITY, KANSAS

HOLE DESIGNATION: MW-121B

DATE COMPLETED: December 22, 2005

DRILLING METHOD: 41/4 ID HSA

FIELD PERSONNEL: S.COBB

тн	S CONTRACTOR: HARRISS DRILLING SERVICES STRATIGRAPHIC DESCRIPTION & REMARKS		MONITOR WELL	SAMPLE				
GS	TOP OF CASING GROUND SURFACE	745.80 742.90	- - -	NUMBER	INTERVAL	REC (ft)	'N' VALUE	
	No Sample Collected		CONCRETE	_			_	
	No dampio dellosted							
						ĺ		l
1			CEMENT/ BENTONITE GROUT					
			GROUT					
1								
			2" Ø WELL				'	
			CASING			1	Ì	
1								
		1						
1			8" Ø BOREHOLE] .	1	
			BOREHOLE					
						1	1	
						1		
					1			
			BENTONITE					
							1	
)			SAND PACK					
1							-	
.		ļ ·	2" Ø WELL			1		
5	·		SCREEN					
) -	END OF BOREHOLE @ 60.0ft BGS	682.90	WELL DETAILS					
			Screened interval:					
,			694,40 to 684,40ft AMSL 48,50 to 58,50ft BGS		1			
			Length: 10ft Diameter: 2in					
			Slot Size: 10					
0			Material: PVC Sand Pack:					
.			696.40 to 682.90ft AMSL					
5			46,50 to 60,00ft BGS Material: SAND #5	ĺ				
1			THOUGHOUT OF WALP 17-0					
			CURRENT ELEVATION TABL				Ш	